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A Low-Complexity LS Turbo Channel Estimation
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Abstract—Turbo channel estimation algorithms can improve
estimation accuracy in multiuser (MU)-multi-input multi-output
(MIMO) systems. However, the conventional least squares (LS)
turbo channel estimation technique based on the maximum
likelihood (ML) approach is difficult to be performed in large
MU-MIMO systems since it requires a cubic complexity order
O(κ3N3

TN
3
R) for a system constant κ and numbers of NT -

transmit and NR-receive antennas. This is because the con-
ventional technique computes inversion of a covariance matrix
whose size is proportional to κNTNR. We propose a new low-
complexity LS estimation technique that requires a complexity
order O(κ3N3

T ) only by utilizing algebraic property on the
covariance matrix. Simulation results shown in this letter verify
that the proposed technique significantly reduces processing time
without sacrificing the estimation performance.

Index Terms—Maximum likelihood (ML) estimation, turbo
channel estimation, singular value decomposition (SVD).

I. INTRODUCTION

Turbo receiver frameworks (e.g., [1], [2]) provide one of
the most promising solutions to the multiuser interference
(MUI) problem in multiuser (MU)-multiple-input multiple-
output (MIMO) systems. Turbo channel estimation algorithms
can improve estimation accuracy by jointly utilizing training
sequence (TS) and soft replica of transmitted data [3]. Least
squares (LS) channel estimation is the most basic technique
since it can be extended to compressive estimation algorithms
and/or subspace-based minimum mean square error (MMSE)
techniques [4], [5]. However, the conventional LS channel es-
timation techniques [5], [6] based on the maximum likelihood
(ML) approach (e.g., [7]) requires a cubic complexity order of
the MIMO system size to consider spatial covariance matrices.
It is, hence, difficult to be performed in MU-MIMO systems
that require a large number of receive antennas. This letter
proposes a new low-complexity LS turbo channel estimation
technique without sacrificing the estimation performance.

After this Introduction, Section II shows the system model
assumed in this paper. Section III proposes the new low-
complexity MU-MIMO turbo LS channel estimation tech-
nique. Section IV verifies the effectiveness of the proposed
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technique via computer simulation results. Section V shows
the concluding remarks.

II. SYSTEM MODEL

The same MU-MIMO system as that in [8] is assumed,
where we refer to the system composed of U NT -antenna
users and an NR-antenna base station as {U,NT }×NR MU-
MIMO. As depicted in Fig. 1, the u-th transmitter modulates
(Mod.) data sequence in phase shift keyed (PSK) symbols after
interleaving (Πu) the convolutional coded (CC) bits cu(ic).
At the slot timing l, the Ld-symbol data sequence xu

d,k′(l) is
transmitted together with Lt-symbol TS xu

t,k′(l) using k′ =
1, · · · , NT antennas in a frequency selective fading channel
whose channel impulse response (CIR) length is at most W
symbols. The received signals can be described in an NR×L̃S

matrix, as Y(l) = H(l)X(l) + Z, where

X(l) = [Xt(l), Xd(l)] ∈ CWUNT×L̃S ,
H(l) = [H1(l), · · · ,HUNT

(l)] ∈ CNR×WUNT ,

with L̃S = Lt + Ld + 2(W − 1). The TS matrix Xt(l)
is given by [XT

t,1(l), · · · ,XT
t,UNT

(l)]T, where Xt,k(l) =

tplzW

{
[xuT

t,k′(l),0T
W−1]

}
for an index k = k′ + (u− 1)NT

corresponding to the k′-th transmission (TX) stream of the
u-th user. The operation tplzW {r} constructs a W × Lr

Toeplitz matrix whose first row vector is r ∈ C1×Lr . The data
matrix Xd(l) can be defined similarly. The CIR matrix H(l)
may follow the spatial channel model (SCM) [9], where the
variance of the matrix Frobenius norm for the CIR sub-matrix
is E[∥Hk(l)∥2] = σ2

H(⌈k/NT ⌉) with a constant σ2
H(u). The

operator ⌈·⌉ is the ceiling function. The n-th row vector in
the noise matrix Z follows the Complex normal distribution
CN(0, σ2

zIL̃S
).

As illustrated in Fig. 1, the receiver performs channel es-
timation (EST) by using the TS and the soft replica x̂u

d,k(l)
of the transmitted symbols xu

d,k(l). The soft replica x̂u
d,k(l) is

generated from the a priori log-likelihood ratio (LLR) λa
EST,u

which is obtained after interleaving the a posteriori LLR
λp
DEC,u fed back from the decoder (CC−1). Note that the EST

is performed jointly over the receive (Rx) antennas in a turbo
equalization (EQU) framework [8]. However, the channel
decoding is performed per a user individually by means of
the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm.

III. CHANNEL ESTIMATION

A. LS Turbo Channel Estimation

1) Problem: An LS turbo estimation based on the ML
approach is formulated as Ĥ(l) = arg minH Ltd (l,H). The
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Fig. 1. A {U,NT } ×NR MU-MIMO system.

joint log-likelihood function Ltd(l,H) is, similarly to [3], [6],
[7], defined by Lt(l,H) + Ld(l,H), where

Lt(l,H) =
1

σ2
z

∥Yt(l)−HXt(l)∥,

Ld(l,H) =
1

σ2
z

∥Yd(l)−HX̂d(l)∥2Γ

with X̂d(l) denoting the soft replica version of Xd(l). Yt(l)
and Yd(l) are the received TS and data matrix correspond-
ing to Xt(l) and Xd(l), respectively. The weighted matrix
Frobenius norm is ∥M∥2A = tr{MHAM} for conformable
matrices M and A. The spatial covariance matrix Γ [6] is

given by Γ =
(
INR

+
∑U

u=1

∆σ̂2
d,u

σ2
z

R̂H,u

)−1

, where

∆σ̂2
d,u = 1

LdNT

∑NT

k=1 E[∥xu
d,k(l)∥2]− ∥x̂u

d,k(l)∥2 (1)

and R̂H,u = Ĥ
[i−1]
u (Ĥ

[i−1]
u )H. The u-th user’s channel esti-

mate Ĥ
[i−1]
u is obtained by the previous [i− 1]-th iteration.

2) Exact LS Solution: For the sake of conciseness, the
parameter l is omitted hereafter. The LS channel estimate can
be obtained [6] via

vec{Ĥ} = R−1
XX · vec{RYX}, (2)

where vec(A) is the vectorization operator to produce an
MN ×1 vector by stacking the columns of an M ×N matrix
A. We define

RXX = RT
XXt

⊗ INR
+ R̂T

XXd
⊗ Γ, (3)

RYX = RYXt
+ ΓRYXd

, (4)

where ⊗ denotes the Kronecker product and

RXXt
= XtX

H
t , RYXt

= YtX
H
t ,

R̂XXd
= X̂dX̂

H
d , RYXd

= YdX̂
H
d .

However, as discussed in [5], [6], the solution (2) requires the
complexity order O((WUNTNR)

3) if we compute the matrix
inversion by using the Gaussian elimination.

B. Approximated LS Turbo Channel Estimation
The LS estimation (2) can be performed with the complexity

O((WUNT )
3) if we assume the spatially uncorrelated channel

approximation for ∀u to compute the covariance matrix Γ:

R̂H,u ≈ INR
. (5)

C. Low-Complexity LS Turbo Channel Estimation
1) Factorized Matrix Inversion: We can factorize (3) as

RXX =
(
R

T/2
XXt

⊗ INR

)
J
(
R

T/2
XXt

⊗ INR

)H

, (6)

where
J = IWUNT

⊗ INR
+Q⊗ Γ

with
Q = R

−T/2
XXt

R̂T
XXd

R
− ∗

2

XXt
. (7)

By using the singular value decomposition (SVD) for the
matrices Q and Γ:

Q = UQΣQUH
Q, (8)

Γ = UΓΣΓU
H
Γ, (9)

the matrix J can be factorized, as

J = (UQ ⊗UΓ)ΣJ(UQ ⊗UΓ)
H, (10)

where ΣJ = IWUNTNR
+ ΣQ ⊗ ΣΓ is a diagonal matrix.

From (6) and (10), the matrix inverse of (3) is reduced to

R−1
XX =

(
ŨQ ⊗UΓ

)
Σ−1

J

(
ŨQ ⊗UΓ

)H

, (11)

where ŨQ = R
− ∗

2

XXt
UQ.

2) Proposed Solution: The computation that substitutes
(11) into (2) after separately performing (11) still requires
O((WUNTNR)

3). We can, however, perform the matrix in-
version in (2) with O((WUNT )

3 + N3
R) by calculating its

vector-wise factors. Specifically, by substituting (11) into (2),

vec{Ĥ} =
(
ŨQ ⊗UΓ

)
Σ−1

J

(
ŨQ ⊗UΓ

)H

vec{RYX},

where we have(
ŨQ ⊗UΓ

)H

vec{RYX} = vec{UH
ΓRYXŨ∗

Q}. (12)

This is because (CT ⊗ A)vec{B} = vec{ABC} holds for
conformable matrices A, B, and C. The matrix version of (2)
can, therefore, be written as

Ĥ = matNR

[(
ŨQ ⊗UΓ

)
· v

]
= UΓ matNR

{v} ŨT
Q, (13)

where

v = diag{Σ−1
J } ⊙ vec{UH

ΓRYXŨ∗
Q}. (14)

The operation matN (a) forms an N × M matrix from the
argument vector a ∈ CNM×1, i.e., a = vec{matN{a}}.
Moreover, the operator ⊙ is the entry-wise vector multipli-
cation.

The complexity order required to obtain (13) is dominated
by O((WUNT )

3 + N3
R + (WUNT )

2Ltd) = O((WUNT )
3)

if WUNT ≫ NR, where the details is shown in Table I. We
note that Cholesky factorization R−1

XXt
= R

−1/2
XXt

R
−H/2
XXt

can
be performed off-line since the TS is known at the receiver.
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TABLE I
DETAILS OF COMPUTATIONAL COMPLEXITY ORDER

Symbol Complexity order Eqn.
RXX O((WUNT )2Ltd) (3)
RYX O(WUNTNRLtd) (4)
Q O((WUNT )3) (7)
UQ,ΣQ O((WUNT )3) (8)
UΓ,ΣΓ O(N3

R) (9)
Σ−1

J O(WUNTNR) (11)
v O((WUNTNR)2) (14)

IV. NUMERICAL EXAMPLES

A. Simulation Setups

This paper assumes {2, 4} × 12 MIMO channels based on
the SCM [9], where the antenna element spacing at the base
station and the mobile station are set at 0.5 wavelength. The
CIRs of the first and second users respectively follow the
Pedestrian-B (PB) model [9] with a 3 km/h mobility (PB3)
and the Vehicular-A (VA) model [9] with a 30 km/h mobility
(VA30). The path positions of the PB and VA models are
respectively set at {1, 2.4, 6.6, 9.4, 17.1, 26.9} and {1, 3.2, 6,
8.6, 13.1, 18.6} symbol timings assuming that a TX bandwidth
is 7 MHz with a carrier frequency of 2 GHz. The CIR length
W and the variance σ2

H(u) are set at 31 and 1, respectively.
The TS vectors xu

t,k are generated by using the first Lt =
320 bits of length 511 Gold sequences. The data sequence
xu
d,k is Ld = 1024 8PSK-symbols, where the variance is

E[∥xu
d,k∥2]/Ld = 1 for ∀u, k.

B. Receiver Performance

1) Channel Estimation Performance: Fig. 2(a) shows nor-
malized MSE (NMSE) performances of the LS channel es-
timation techniques in the MU-MIMO channel realizations,
where NMSE = E[∥Ĥ − H∥2]/E[∥H∥2] for channel es-
timates Ĥ. The analytical NMSE performance is given by
ANMSEL̄td

(σ2
z) = σ2

zWUNTNR/{L̄tdE[∥H∥2]} for length
L̄td = Lt + Ld reference signals [5]. As depicted in Fig. 2,
the NMSE of the proposed technique is identical to that of the
conventional exact LS technique and it follows the analytical
NMSE performance in a high signal-to-noise ratio (SNR)
regime, SNR ≥ 16 dB, where the turbo receiver can detect
the data sequence correctly after six iterations.

2) Bit error rate (BER) Performance: Fig. 2(b) shows BER
performance of the turbo receiver using the LS channel estima-
tion algorithms, where Genie technique assumes known data
sequences but only for the channel estimator in order to show a
benchmark. The receiver using the approximated LS estimator
exhibits BER deterioration by 0.5 dB at the BER = 10−5,
compared to that of the exact LS tehcnique. This is because,
as shown in Fig. 2(a), the approximated LS technique suffers
from NMSE deterioration in a moderate SNR regime.

C. Convergence Property

Fig. 3 depicts NMSE convergence property over the
LLR’s accuracy, where the mutual information (MI)
IaEST,u = I(λa

EST,u; cu) between the LLR λa
EST,u

and the coded bits cu at the transmitter is defined
by 1

2

∑
m=±1

∫ +∞
−∞ Pr(λ

a
EST,u|m) log2

Pr(λ
a
EST,u|m)

Pr(λa
EST,u)

dλa
EST,u

with the conditional probability density Pr(λ
a
EST,u|m) given

m = 1 − 2cu. For the sake of simplicity, this subsection
assumes that all users take the same MI IaEST,u. The average
SNR is set at 18 dB. The analytical NMSE is given according
to the reference signal length L̄td ≈ Lt + γσ̂2

d,uNd with
γ = σ2

z/(σ
2
z + ∆σ̂2

d,uNTσ
2
H(u)/NR), where ∆σ̂2

d,u defined
by (1) is calculated from x̂u

d,k of the accuracy IaEST,u.
As shown in Fig. 3(a), the NMSE performance of the

proposed technique achieves exactly the same NMSE perfor-
mance as that of the conventional estimator. The NMSE per-
formance of the approximated LS channel estimation coincides
with that of the conventional estimator at IaEST,u = 0 and 1.
This is because we may ignore the covariance matrix Γ when
IaEST,u = 0, i.e., when channel estimation is performed with
the TS only. When IaEST,u = 1, the approximation (5) is not
used to compute Γ since ∆σ̂2

u = 0. However, the approximated
estimator using (5) degrades the NMSE performance when
0 < IaEST,u < 1.

Hence, as shown in Fig. 3(b), the approximated estima-
tor suffers from the NMSE deterioration in the first three
iterations, which affects BER convergence performance. It
is observed from Fig. 3(b) that the turbo receiver using
the approximated estimator requires six iterations to achieve
BER ≤ 10−6 whereas five iterations are sufficient for the
proposed technique at SNR = 18 dB.

D. Processing Time

Fig. 4 shows the processing time of the LS channel esti-
mation techniques, where the channel estimators implemented
with Matlab R2017b are performed on a single core in a Xeon
E5-2680v2 processor using 64 Gbyte RAM. As observed from
Fig. 4, the processing time of the conventional LS estimator
[5], [6] increases as the number of Rx antennas increases. It
takes, on average, 100 sec to obtain an LS estimate matrix for
a {2, 4} × 64 MIMO channel realization, although the Xeon
processor of the clock frequency 2.8 GHz is utilized.

However, the processing time of the proposed technique
is almost independent of the number of Rx antennas. This
is because, as discussed in Section III, the complexity order
required for the proposed technique is O((WUNT )

3) when
NR ≪ WUNT . It reduces the processing time more than
99% in the {2, 4} × 64 MIMO receiver. The processing time
required for the proposed technique is, however, five times
greater than that of the approximated LS channel estimation
due to the operations (7) and (8). Nevertheless, the increased
processing time is very minor compared to that of the con-
ventional LS channel estimation in the {2, 4}× 8 MU-MIMO
receiver.

V. CONCLUSIONS

The conventional LS turbo channel estimation formu-
lated as an ML problem requires the complexity order
O((WUNTNR)

3), which makes it difficult to perform the
ML-based estimation in an MU-MIMO system using a large
number of Rx antennas. As a solution to the problem, this letter



4

� � �� �� �� �� ��
��

��

��
��

��
�

��
�

� � �� �� �� �� ��
��

��

��
��

��
��

��
��

��
��

��
�

��������

�
�
�
�

���������	


��������	

������������� �	

�
�
�
�	


�
��
�


��������

��� ���

��������


������

������������

�����

	
�����

	
������

Fig. 2. NMSE (a) and BER (b) performances in the {2, 4} × 12 MU-MIMO system, where the PB3 and VA30 models are assumed for the first and second
users, respectively. The curve of ANMSEL̄td

(σ2
z) shows the analytical NMSE performance. The generator polynomial of the CC is (g1, g2) = (7, 5)8.
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Fig. 3. Convergence properties at SNR = 18 dB: the NMSE over the MI (a), and the NMSE / BER performances over turbo iterations (b).
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Fig. 4. Processing Time of LS estimators in the {2, 4} ×NR MU-MIMO.

has proposed a new low-complexity LS channel estimation
technique by utilizing algebraic property on the covariance
matrix of the reference signals. The simulation results pre-
sented in this letter verify that the proposed technique signifi-
cantly reduces the processing time to O((WUNT )

3) without
sacrificing the estimation performance.
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