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Abstract

In stochastic linear/non-linear active dynamic systems, states are estimated with the evidence 

through recursive measurements in response to queries of the system about the state to be 

estimated. Therefore, query selection is essential for such systems to improve state estimation 

accuracy and time. Query selection is conventionally achieved by minimization of the evidence 

variance or optimization of various information theoretic objectives. It was shown that 

optimization of mutual information-based objectives and variance-based objectives arrive at the 

same solution. However, existing approaches optimize approximations to the intended objectives 

rather than solving the exact optimization problems. To overcome these shortcomings, we propose 

an active querying procedure using mutual information maximization in recursive state estimation. 

First we show that mutual information generalizes variance based query selection methods and 

show the equivalence between objectives if the evidence likelihoods have unimodal distributions. 

We then solve the exact optimization problem for query selection and propose a query 

(measurement) selection algorithm. We specifically formulate the mutual information 

maximization for query selection as a combinatorial optimization problem and show that the 

objective is sub-modular, therefore can be solved efficiently with guaranteed convergence bounds 

through a greedy approach. Additionally, we analyze the performance of the query selection 

algorithm by testing it through a brain computer interface typing system.
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I. Introduction

In stochastic linear/non-linear dynamic systems, a state vector describes one instance over a 

realization of the path of the stochastic propagation of a target identity that follows the 

specified dynamic system. State can be determined (estimated) from relevant evidence 

collected by the dynamic system. For example, evidence can be obtained through the 

stimulation of the environment where the dynamic system is defined. In optical imaging and 

radar problems, propagating field from the active sensors is the query into the environment 

and scattered field is the evidence [1]. Noninvasive brain computer interfaces that rely on 

external stimuli to detect user intent is another field where state estimation (user intent) over 

dynamic systems (e.g. brain’s time-varying response to external stimuli) with active queries 
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for evidence extraction (external stimuli presentation to obtain brain response) is commonly 

used for inference of the time-varying user intent [2], [3]. To estimate state over the 

stochastic dynamic models, maximum a-posteriori (MAP) estimation is generally used [4]. 

In intermediate steps of the state estimation, a common approach is to update the posterior 

distribution using the collected evidence until a certain confidence interval is achieved [5]. 

Achieving high confidence usually requires collecting more evidence; and hence, usually 

decreases the rate of convergence to the true state. Therefore, we argue that informative 

query selection (selecting subset of sensors or stimuli to query the most informative 

evidence) in such processes is crucial to increase the confidence while keeping faster 

convergence rate.

Seeking the most informative/useful evidence/measurement is sometimes referred as query 

(sensor/data/stimuli) selection in signal processing applications, such as computer-vision [6], 

[7], radar [1], robot-control [8], experiment design [9], image retrieval [10], [11]. In 

recursive updates for MAP estimation, in one approach, the query is selected to maximize 

the expected posterior of a particular update [12]. This approach is then improved when 

Fisher information-based objectives are used for query selection [13], [14]. Such approaches 

mainly exploit measurement variance, assuming the measurement noise (which is usually 

assumed to be colored) should be minimized. Therefore, through the minimization of a 

function of noise variance, at each posterior update the ambiguity in the state estimation is 

expected to decrease. Additionally, information theoretic objectives are also used for query 

selection. For example, entropy is used for query selection for sensor allocation in a truss 

structure [15]. Entropy measures the amount of uncertainty in a stochastic process; thus 

minimizing entropy seeks to reduce expected uncertainty about the parameter of interest. 

Entropy can be used for sequential query selection; for instance as illustrated with the 20-

questions approach [16], [17], [18], [19]. Analogously, mutual information is used for query 

selection in dynamic systems [20], [21], [22]. Mutual information objective measures the 

dependence level between stochastic processes [23]. With maximum mutual information 

(MMI), which is commonly preferred over entropy minimization, a query that maximizes 

the information gain regarding the variable of interest is selected.

In this paper, we focus on using an information theoretic approach based on mutual 

information for active query selection from a countable set of queries in recursive state 

estimation. First, we show that information theoretic approaches generalize the variance 

based query selection methods. Second, we extend the current literature on information 

theoretic query selection in the following ways: (i) we solve the exact optimization problem 

without defining a lower/upper bound on the optimization objective to achieve a tractable 

solution, (ii) we analytically obtain the close to global solution of the exact problem, (iii) we 

introduce a computationally efficient combinatorial optimization algorithm that achieves the 

global solution. We demonstrate the proposed approach at work in non-invasive brain 

computer interface design, specifically addressing the issue of optimal selection of stimuli.

II. Problem Formulation

In this section, we formulate query selection based on MMI for recursive state estimation. 

We denote the state, the evidence, and the query for the ith recursion as σ, εi, Πi, 
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respectively. In order to represent a sequence of variables such as ε0:c from index 0 up to c, 

we use the bold notation εc. Assume that we are just before the ith recursion; that is, we have 

observed evidence εi−1 for up to and including (i − 1)th query Πi−1. In order to obtain the ith 

query Πi, we will maximize the mutual information between prospective evidence and state 

given all queries and past evidence: I εi, σ |Πi, Πi − 1, εi − 1 . In all of the following, past 

queries Πi−1 and associated evidence εi−1 are given together, therefore to simplify the 

notation, we will omit the past queries in the condition list, as in 

I εi, σ |Πi, εi − 1 = H(σ |Πi, εi − 1) − H(σ |Πi, εi). Observe that, in the absence of evidence εi, 

state σ is independent of the prospective query Πi. Consequently, the first entropy term is 

constant with respect to Πi, and the optimization problem:

arg max
Πi

I εi, σ |Πi, εi − 1 = arg max
Πi

− H(σ |Πi, εi)
(1)

Since εi−1 has already been observed, and Πi is a particular subset of all potential queries, 

(1) can also be written as,

Πi = arg max
Πi

E
p(σ |εi − 1)

E
p εi |σ, Πi log p εi |σ, Πi p(σ |εi − 1, Πi)/ p εi |Πi

(2)

We can relate (2) with evidence variance minimization techniques as a natural lower bound,

log E
p(σ |εi − 1)

E
p εi |σ, Πi (p(σ |εi, Πi)) ≥ E

p(σ |εi − 1)
E

p εi |σ, Πi (log p(σ |εi, Πi)) (3)

This can be trivially observed using Jensen’s inequality. Therefore, the simplified MMI 

objective is a lower bound to the expected posterior maximization (EPM) method [12].

We have two main assumptions that enable the results in Section III: (i) the query set is 

countable; and (ii) response to the query given a particular state generates a noisy evidence 

[17] and evidence likelihood conditioned on state-query tuples have concentrated-unimodal 

distribution. In the next section we derive a tracktable solution to objective (2) by showing 

the equivalence between EPM and MMI using these assumptions.

III. Solution

It can be observed that the MMI objective in (2) requires evidence εi which is not observed. 

Therefore, it requires Monte Carlo Simulations based on a generative evidence model. In 

this paper, we assume that such a method to evaluate/estimate the necessary likelihoods and 

expectations is available with satisfactory accuracy. Due to the fact that the state is 

independent of the upcoming query, in (2), p(σ |εi − 1, Πi) = p(σ |εi − 1). With these two 

simplifications, the problem reduces to:
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arg max
Πi

E
p(σ |εi − 1)

E
p εi |σ, Πi log

p εi |σ, Πi

Ep(v)p εi |v, Πi (4)

where p(υ) p(σ |εi − 1). With v we can simplify the normalization term using the facts noted 

before. Furthermore, assuming that evidence εi acquired after query Πi consists of 

statistically independent measurements for each element in the query subset, 

p εi |σ, Πi = Πkp εk
i |σ, Πk

i , rewrite (4),

Πi = arg max
Πi

E
p(σ |εi − 1)

E
p εi |σ, Πi ∑

k
log p εk

i |σ, Πk
i

− log ∑
υ

∏
k

p εk
i |υ, Πk

i p(υ)
(5)

If the number of discrete values that a state can take is finite, we define a class assignment 

for state and there exists a specific question for each class, where the evidence obtained 

using this query is highly likely. We design a sequence of questions to identify/infer the 

state. Therefore we can relate the correspondence of queries to the states with a class 

indicating notation. We can denote the condition on the query and the state using the class 

notation as, p εk
i |σ, Πk

i = p εk
i |ck

i (σ) . With this notation we can rewrite (4) as the following 

equation,

Πi = arg max
Πi

E
p(σ |εi − 1)

E
p εi |σ, Πi ∑

k
log p εk

i |ck
i (σ)

− log ∑
υ

∏
k

p εk
i |ck

i (υ) p(υ)
(6)

Probability distributions of evidence given state-query dependent class label can be different 

for each state-query combination. Let z(σ, Π) = infσ′ ≠ σE
p(ε |σ, Πi)

(p(ε |σ, Π)/ p(ε |σ′, Π)). 

Queries for which z(σ, Π) > > 1 we designate ck
i (σ) = cσ(σ), and for which z(σ, Π) < < 1 we 

designate ck
i (σ) = c

σ
(σ). After making this substitution, adding/subtracting ∑klog p εk

i |c
σ

 (6) 

becomes;

Πi = E
p(σ |εi − 1)

E
p εi |σ, Πi ∑

k
log

p εk
i |cσ(σ)

p εk
i |cσ(σ)

− log ∑
υ

∏
k

p εk
i |ck

i (υ)
p εk

i |cσ(σ)
p(υ) (7)

With ck
i ∈ cσ, cσ , first summation can be separated into k : = k |ck

i = cσ  and k |ck
i = cσ . 

Additionally, we assume resulting evidence of cσ(σ) class has close to uniform likelihood for 

mismatched classes cυ(υ)∀υ. Thus, ε p(ε |cσ(σ)) υ ≠ σ, p(ε |cυ(υ))/ p(ε |cσ(σ)) ≈ 1 Thus, in the 
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second term we only require ck
i = cυ, we define the set of indices kυ: = k |ck

i = cυ . With 

simple algebraic manipulations (7) can be rewritten as,

Πi = arg max
Πi

E
p(σ |εi − 1)

E
p εi |σ, Πi ∑

k
log

p εk
i |cσ(σ)

p εk
i |cσ(σ)

− log ∑
υ

∏
kυ

p εkυ
i |cυ(υ)

p εkυ
i |cσ(σ)

p(υ)

(8)

Note that the exhaustive search for the optimal solution is exponentially growing with 

respect to query set size |Πi|. In order to propose a tractable solution we introduce an 

assumption for the objective in (8) that allows us to show equivalence between EPM and 

MMI. Specifically, for a particular class ck
i  the corresponding evidence εk

i ck
i  has a unimodal 

distribution with a variance that is negligible compared to its mean-value-squared. 

Furthermore with that assumption we introduce the following notation to indicate scalar-

valued conditional expected likelihood-ratios of the evidence indicating model performance.

Eε p(ε |cσ(σ))
p(ε |cσ(σ))
p(ε |cσ(σ)) = sσ

1

Eε p(ε |cσ(σ))
p(ε |cσ(υ))
p(ε |cσ(σ)) = sσ, υ

0
(9)

By design ∀σ, υ ≠ σ sσ
1 ≥ sσ, υ

0  and supυsσ, υ
0 = 1 and this is satisfied when v = σ (or model is 

insufficient to discriminate); note that in the event this is not satisfied, by swapping the 

class-conditional distributions between the two labels, this condition can be satisfied. 

Equality arises when the evidence is not class-specific on average. Additionally we note that 

sσ
1 ∞, sσ, υ

0 0 with improved class separability. Notice that these scores are the expected 

values of the evidence likelihood ratios that appear in (8). Let kσ Πi = ∑k δ
ck
i , cσ

 denote the 

number of times a particular state is queried in a query set. Observe that in (8) since the 

likelihood ratio in the first term only calculated for the expected state σ, this expectation 

yields only Sσ
1. However, in the normalization term v takes every possible state value 

including σ. If v is equal to sigma we have Sσ
1 in the normalization. In the cases where v 

takes different state values than σ we observe s
σ, υ
0 . Thus the normalization term has both 

score values. The following equation is trivial to obtain from (8);
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Πi = arg max
Πi

E
p(σ |εi − 1)

kσlog sσ
1 − log p(σ |εi − 1) sσ

1 kσ + ∑
υ ≠ σ

sσ, υ
0 kυp(υ)

= arg min
Πi

Ep(σ |εi − 1) log p(σ |εi − 1) + ∑
υ ≠ σ

sσ, υ
0 kυ

sσ
1 kσ

p(υ)

(10)

Here we reduce to objective to a form which is described by scores only which can be solved 

combinatorially. In the next section we introduce an algorithm to solve the optimization 

problem presented in (10).

IV. Method

Here we propose a solution to Eq.(10) without discarding the normalization factor which is 

also a function of the query. We will show that the optimization in (10) can be represented as 

a sub-modular subset selection problem; therefore, we will develop a greedy algorithm that 

can find a solution close to global optimum solution [24].

Based on our assumptions on Sσ
1 and s

σ, υ
0 , we have the following observations.

Observation 1.

Previously we stated that sσ
1 ∞ and sσ, υ

0 0. Therefore ∀kυ, kσ ∈ ℤ+, sσ, υ
0 kυ/ sσ

1 kσ 0. 

Therefore the query set Πi should contain unique elements.

Observation 2.

Following Obs.1, we can reduce the objective in (10) to a form without scores. We require a 

notation to represent the states addressed by a particular query Πi which we denote as 

Σ Πi = σ |ck
i = cσ ∀k  we define the objective,

O σ, Πi = ∑
σ ∈ Σ

p(σ |εi − 1)log (p(σ |εi − 1))

+ ∑
σ ∉ Σ

p(σ |εi − 1) log ∑
σ ∉ Σ

p(σ |εi − 1)
(11)

Observation 3.

Observe that the objective in (11) monotonically decreases wrt. Πi. Pick two random sets 

Π2 = Π1 ∪ π  where π ∉ Π1 and observe that π ⊆ x | x ∉ Π1  and x | x ∉ Π2 ⊂ x | x ∉ Π1
Define Σ1 = Σ Π1 , Σ2 = Σ Π2  and observe that Σ1 ⊆ Σ2
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O σ, Π2 − O σ, Π1 = p(a |εi − 1) log p(a |εi − 1)
∑σ ∉ Σ1

p(σ |εi − 1)

+ ∑
σ ∉ Σ2

p(σ |εi − 1) log
∑σ ∉ Σ2

p(σ |εi − 1)

∑σ ∉ Σ1
p(σ |εi − 1)

≤ 0

(12)

Using these observations we state that the optimization presented in (10) is a sub-modular 

subset selection problem. It was shown that such problems can be efficiently solved using 

greedy algorithms [24]. Accordingly, we can write a greedy update to select query elements 

based on the objective presented in (11). Assume that at the kth step, we have the query set 

Π0:k
i , and we would like to select a specific item π as the (k + 1)th query with Σ(π) = a, then 

we use the following greedy update,

πk + 1 = arg min
π ∉ Π0:k

i
p(a |εi − 1)log (p(a |εi − 1))

+ ∑
σ ∉ Σ Πk

i ∪ π

p(σ |εi − 1) log ∑
σ ∉ Σ Πs

i ∪ π

p(σ |εi − 1)

(13)

We denote the remaining probability mass at kth query selection by 

𝒫k = 1 − ∑
σ ∈ Σ Πk

i p(σ |εi − 1). Inserting this equation into (13) and with algebraic 

manipulations, we have,

πk + 1 = arg min
π ∉ Πk

i
p(a |εi − 1)log (p(a |εi − 1))

+ 𝒫k − p(a |εi − 1) log 𝒫k − p(a |εi − 1) where 𝒫k ∈ [0, 1]
(14)

Using the relation in (14) we propose Alg.1,

Proposition 1. Alg.1 can be realized with “N-best selection”.

Proof: ∀𝒫s ∈ [0, 1] ∃ Πs
i , p(σ |εi)∀σ. Pick π, π, π with corresponding states a, a, a,

• p(a |εi) ≥ 𝒫s/2, ∃ p(a |εi) = 1 − p(a |εi) where π ≠ π and 

p(a |εi) = 0 ∀π ≠ π . O(σ, π) = O(σ, π) therefore we can pick π.

• p(a |εi) ≥ 𝒫s/2, p(a |εi) ≠ 0 ∀π ≠ π. It is trivial that the objective is minimized with 

π.
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• Where p(a | εi) < 𝒫s/2 ∀a. As the objective is strictly monotonically decreasing in 

0, 𝒫s , pick π with Σ(π) satisfying the highest likelihood which minimizes the 

objective.

Algorithm 1 Mutual Information Based Query Selection

1: Πi , N ∈ ℤ+

2: x xc | p σc |εi − 1 ∀c

3: procedure GREEDY SUBSET SELECTION(Πi, σ, x)

4:  p ← 1

5:  for i ∈ 1, 2, ⋯, Πi
 do

6:   c = arg mincxclog xc + p − xc log p − xc c

7:   Πi Πi ∪ Σ−1 σc

8:   p p − xc

9:   x x\ xc

10: return: Πi

Observe that in any case p(a |εi) ≥ p(a |εi)∀a ≠ π. Other cases can be created by switching π 
without loss of generality. Since selection of 𝒫s is arbitrary, one can conclude Alg.1 can be 

realized by using “N-best selection algorithm”. ■

V. Experiments

We use electroencephalography (EEG) data recorded when human users performed typing 

tasks using RSVP Keyboard [3], which is a noninvasive EEG-based brain computer interface 

for typing. Specifically, calibration data of 12 healthy participants (collected with 

Northeastern University IRB-130107). During calibration, participants are presented with 

100 sequences of symbols. A sequence contains randomly ordered 10 symbols, one of which 

is the target symbol. EEG is acquired from 16 channels using the International 10–20 

configuration (Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, P1, P2,C1, C2, Cp3, Cp4, P5, P6). These 

signals are used to learn class (target and nontarget) conditional EEG feature distributions. A 

copy-letter task where simulated users (modeled with said conditional EEG feature 

distributions) copy particular letters, where the state (intent of the user) is to be estimated 

through EEG measurements induced by stimulus symbol sequences (queries). During 

simulations when a target/non-target letter is presented to the user, EEG features from 

appropriate class conditional distributions are sampled. These samples are used to estimate 

the state. For the details of this simulation framework, the reader is referred to Orhan’s work 

[25].

We categorize the users based on their calibration performance (based on area under the 

receiver operating characteristics curve (AUC)): 6 users with AUC ∈ [75, 85] and 6 users 
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with AUC ∈ (85, 95]. We compare MMI with min/max querying [26], max only querying 

(sub-optimal variance minimization for query scheduling) and random querying (baseline). 

We perform 1000 Monte Carlo simulations using the same prior for each method. In Fig. 1, 

we observe that the proposed querying method converge to the confidence interval faster 

than the other methods.

We also stated in Sec. III, proposed querying method also relies on the confidence of the 

evidence model. Observe that AUC, as a performance metric in the framework, can be 

related to the scores in (9). As AUC increases scores diverge from one. Therefore estimation 

requires less number of queries for evidences that are more descriptive. We visualize this 

concept in Fig.2. As performance of the users increases, number of query samples required 

for the estimation reduces.

VI. Conclusion

In this paper we provided an efficient algorithm with guaranteed convergence properties of 

the optimization of MMI for query selection during recursive Bayesian state estimation. We 

analyzed the performance of the algorithm through BCI typing interface. Our results showed 

that the proposed method outperforms other commonly used query techniques for BCI 

typing. Specifically, as illustrated the method always chooses N-best queries if N is the 

maximum number of available query. This technique is useful if we can always trust the 

currently available posterior distribution defined over the state. However, if the statistical 

properties of the evidence which enables the estimation of the posterior distribution changes 

(e.g., nonstationarity in the EEG measurements) in a way to decrease our belief in the 

estimation accuracy, then a method purely relying on choosing the N-best based on the 

current posterior may not always be the optimum query selection. Therefore, in our future 

work, we will extend our approach to include also exploration beyond our current belief on 

the estimated posterior which is fully exploited. We aim to formulate the query selection as a 

multi-objective optimization which will balance between exploration and exploitation.
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Fig. 1: 
AUC ∈ [75, 85] (left) and ∈ (85, 95] (right).

Koçanaoğulları et al. Page 12

IEEE Signal Process Lett. Author manuscript; available in PMC 2019 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Using the same 12 users we are using different sessions to simulate the task.
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