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Abstract

In the past decade, sparsity-driven regularization has led to advancement of image reconstruction al-
gorithms. Traditionally, such regularizers rely on analytical models of sparsity (e.g. total variation (TV)).
However, more recent methods are increasingly centered around data-driven arguments inspired by deep
learning. In this letter, we propose to generalize TV regularization by replacing the ¢;-penalty with an alter-
native prior that is trainable. Specifically, our method learns the prior via extending the recently proposed
fast parallel proximal algorithm (FPPA) to incorporate data-adaptive proximal operators. The proposed
framework does not require additional inner iterations for evaluating the proximal mappings of the cor-
responding learned prior. Moreover, our formalism ensures that the training and reconstruction processes
share the same algorithmic structure, making the end-to-end implementation intuitive. As an example, we
demonstrate our algorithm on the problem of deconvolution in a fluorescence microscope.

1 Introduction

The problem of reconstructing an image from its noisy linear observations is fundamental in signal process-
ing. Formulating the reconstruction as a linear inverse problem

y=Hx+e, e

the unknown image x € R¥ is computed from measurements y € RM. Here, the matrix H € RM > models
the response of the acquisition device, while e € RM represents the measurement noise. In practice, the
reconstruction often relies on the regularized least-squares approach:

- (1
X = argmin {Ily — Hx||7, + TR(X)}, 2
x€RN 2

where R is a regularization functional that promotes some desired properties in the solution and 7 > 0
controls the strength of the regularization.

In most reconstruction schemes, an analytical prior model is used. One of the most popular regularizers
for images is total variation (TV) [1]], defined as Rrv(x) = |Dx||s,, where D is the discrete gradient
operator. The TV functional is a sparsity-promoting prior (via the ¢;-norm) on the image gradient. Used in
compressed sensing [2}3]], TV regularization has been central to inverse problems and successfully applied
to a wide range of imaging applications [4-7]].
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Two commonly used methods for performing TV regularized image reconstructions are the (fast) it-
erative shrinkage/thresholding algorithm ((F)ISTA) [8] and alternating direction method of multipliers
(ADMM) [9]. These algorithms reduce the complex optimization problem to a sequence of simpler oper-
ations applied to the iterates. Both methods require evaluating the proximal mapping of the TV regularizer
at each iteration [[10]]. This amounts to solving a denoising problem that does not depend on H and imposes
piecewise-smoothess on the reconstruction [[11]].

From a fundamental standpoint, the modular structure of FISTA and ADMM algorithms separates the
prior model (specified by the proximal) from the underlying physical model H. To develop more effective
regularizers than TV, researchers have thus modified the proximal operators based on practical grounds
(notably, the subsequent mean-squared-error (MSE) performance) rather than analyticity. One class of algo-
rithms called “plug-and-play” (PnP) [[12-16] replaces the proximal step with powerful denoising techniques
such as BM3D [17]]. More recently, motivated by the success of neural networks [[18] in image analysis
applications [[19]], learning-based methods have also been proposed for designing regularization strategies.
One popular approach is to unfold a specific iterative reconstruction algorithm that is derived for a TV-like
regularization and consider a parametrized proximal step instead of a fixed one. Through the learning of
parametrization coefficients in a data-driven fashion, such algorithms have adapted the regularizer to the
underlying properties (deterministic and/or stochastic) of the data [20-24]].

The efficiency of designing trainable regularizers is primarily determined by the algorithm that is chosen
to be unfolded. The major challenge is that many proximal operators, such as that of TV, do not admit
closed form solutions and require additional iterative solvers for computation [8}25]]. This complication
might limit the learning process to differentiable models [22]. Alternatively, ISTA-based schemes can be
used without such confinements for learning proximals that are simpler [23]]. Using variable-splitting [9],
ADMM-based learning has addressed these proximal-related problems. However, the final reconstruction
algorithm obtained by this formulation is efficient only for a restricted class of forward models due to the
inherent properties of ADMM [21},26]]. Moreover, since variable-splitting introduces auxiliary variables, such
methods also require more memory, which becomes a bottle-neck for large-scale imaging problems [27]].

In this letter, we propose a new learning-based image reconstruction method called the trainable parallel
proximal algorithm (TPPA). Our algorithm extends the recently proposed fast parallel proximal algorithm
(FPPA) [28] to its data-adaptive variant. At its core, FPPA uses a simple wavelet-domain soft-thresholding to
compute the proximal of TV, eliminating the need for an additional iterative solver. Building upon this aspect,
our framework: 1) efficiently learns a TV-type regularization by replacing the soft-thresholding function by
a parametric representation that is then learned for a given data-class, 2) is general and does not put any
restrictions on the forward model H. We also show that the training and reconstruction processes share
the same algorithmic structure, making TPPA's end-to-end implementation very convenient. We apply the
proposed method to the problem of deconvolution in fluorescence microscopy. Our results show that the
learned regularization improves the deconvolution accuracy compared to TV and PnP models.

2 Mathematical Background

Our formalism starts with discussing the fundamentals of the FPPA method. This is then followed by the
derivation of our method, which is the data-driven variant of FPPA.

2.1 FPPA for TV regularization

First, we provide some background on TV regularization via FPPA. The method uses wavelets to define (and
generalize) the TV regularizer. To see this, we first define a transform W : RN — RN*4 that consists of the
gradient operator D = (D,,D,), as well as an averaging operator A = (A,, A,). The averaging operator
A computes pairwise averages of pixels along each dimension. We rescale both operators by 1/(21/2) for
notational convenience. Note that combining these operators makes W an invertible transform and it holds
that WI'W = I, which is not the case for D alone. However, note that WWT +# I due to W being
redundant [29].



W can be rewritten as a union of four orthogonal transforms {W }.c(1...4], allowing W to be interpreted
as the union of scaled and shifted Haar wavelets and scaling functions [|30]. This viewpoint provides us with
the central idea of FPPA, which recasts the TV regularizer by using the four orthogonal Haar transforms:

4
Rov(x) =7v2> > |[Wix]n|. (3)
k=1n€Hy

Hi C[1,...,N]is the set of all the detail (i.e. difference) coefficients of the transform Wy. This relationship

is then used to design the following updates at iteration ¢:
st pext T (1 — pe)x' 2 (4a)
z' st —yH' (Hs' —y) (4b)
x! «— WIT(Wz!, 2v277,), (40)

where the scalar soft-thresholding function
T(Zv T) £ Sgn(z) maX(|Z| -7, 0)7 (5)

is applied element-wise on the detail coefficients. As in the FISTA implementation of TV (TV-FISTA) [8], the
parameters {u;} are set as [31]]

1—q- . 1 /
He = 1-— %, with qr = 5(1 + 1 +4qt271) (6)

and ¢o = 1. Note that FPPA exploits the well-known connection between the Haar wavelet-transform and
TV, and it is closely related to a technique called cycle spinning [|32-35]].
The convergence rate of FPPA is given by [28]]

* 2 *

Cx) ~€0c') € gyl = XU, + 4G, @
where {x'} are the iterates from (4)), C is the true TV cost functional, and x* is a minimizer of C. This means
that for a constant step-size v > 0, convergence can be established in the neighborhood of the optimum,
which can be made arbitrarily close by letting v+ — 0. Additionally, the global convergence rate of FPPA
O(1/t?) matches that of TV-FISTA [8]].

FPPA that works with a fixed regularizer such as TV. The idea and convergence of FPPA can be generalized
to regularizers beyond TV by using other wavelet transform and considering multiple resolutions.

3 Proposed Approach: Trainable Parallel Proximal Algorithm (TPPA)

We now present our method, which adapts the regularization to the data rather than being designed for a
fixed one. Given H and W, we see that the shrinkage function solely determines the reconstruction. We
have noted that the TV reconstruction is strictly linked to the soft-thresholding within the scheme outlined
in (4). However, the efficiency of a shrinkage function varies with the type of object being imaged [36]]. This
necessitates revisiting FPPA to obtain a data-specific reconstruction algorithm.

Our model keeps {Wy.}c1..4) as the pairwise averages and differences and considers an iteration-
dependent sequence of shrinkage functions for each wavelet channel k£ € [1...4]. We adopt the following

parametrization:
P

Ti@) = Y dpe (5 —p): ®)

p=—P



where {c] } are the expansion coefficients and ¢ is a basis function positioned on the grid A[-P ... P] C AZ.
We additionally reparametrize each step-size v; > 0 with a scalar a; € R and a one-to-one function

{eo‘_l ifa <1,

o otherwise.

v =¢(a) = )

This representation facilitates automatic tuning of the step-sizes {v;} while ensuring their non-negativity.
We note that the overall parametrization can be restricted to its iteration-independent counterpart (i.e. same
set of parameters for each iteration). Moreover, by appropriately constraining the parameters to lie in a
well-characterized subspace, the convergence rate given in can be preserved. However, such constraints
are potentially restrictive on the reconstruction performance [37].

At iteration ¢, the TPPA updates are

st x4 (1- ut)xtfz (10a)
7'« s' — ¢(a)H (Hs' —y) (10b)
x Zi:l WiT H(Wyzt), (100)

where the scaling factors are absorbed into the coefficients. In contrast to (4), TPPA uses a sequence of
adjustable shrinkage functions for each W, in addition to self-tuning the step-size. More importantly, com-
pared to similar approaches based on ADMM [26,(37], TPPA does not rely on H'H being a structured matrix
(such as block-circulant) for computational efficiency.

3.1 Training of Model Parameters

We now consider determining our model parameters (i.e. shrinkage functions and step-sizes) via an offline
training. Through a collection of training pairs {(x¢, ye¢) }¢c[1...}, Our goal is to learn

0 = {Ot}te[1..4T]7

where 8 £ {ay,ct}, with ¢t = {¢hptren..a), pe—p...p) denoting the vector of coefficients. The total number
of trainable parameters is dim(0) = T + TK (2P + 1). We define the cost for parameter learning to be the
mean squared error (MSE) over the training data

L
1 -
£(0) = B Z 1%(6,y¢) — xll7,. (1D
=1

where X(60,y) is the output of (10]) for a given measurement vector y, and set of parameters 6 after a fixed
number of iterations 7T'. The learned parameters are thus obtained via

0" = argmin £(0). 12)
0
The implication of is immediate: Given a fixed computation cost (that is expectedly cheaper than that
for TV), the shrinkages are optimized to maximize the reconstruction accuracy over the training dataset.
Note that the optimization problem in is smooth and hence first-order optimization methods are
convenient. We use the gradient descent algorithm with Nesterov’s acceleration scheme [31] (see Algo-
rithm [1f).
We now explain how the gradient of the cost function in is derived. We denote the gradient by V&
and rely on backpropagation [38]] for obtaining its analytical expression. Here, we point out the main aspects

INote that iterates of the parameters are represented by 8(?) to distinguish from 6¢.



Algorithm 1 Parameter training

Input: a training pair (xy,y¢), learning rate v, number of training iterations I.
Output: optimized parameters 6*.

Initialize: 8(®) and ¢(©)

Set: qo = 1.

For:=1,2,...,1, compute

0 « p=1) — yVE(Pli~D) (use Algorithm [2),

g (1 + \/@) /2,
¢(i) — 00 (Qi—l _ 1/%‘)(9(” _ 9(1—1))’

and return ().,

of our derivation since such calculations are lengthy. First, we define the residual term r* = [9&/ 8xt]T and
use the chain rule to get:

T
I‘t72 _ |: (95 :|
T Oxt—2
axt—l T 3 axt T
- {axtz] r'l |:8Xt2:| r'. (13)
Using matrix calculus, the derivatives as thus

oxt—1 - . .
oxt—-2 pe— W hdiag (7;_; (u')) W (I - 7,1 H'H),

where ut = Wz!. Similarly, we compute

ox?

8Xt—2

As for the derivatives of the training parameters, we use the chain rule once again to attain the following:

= (1 — p)W'diag (7/(u")) W (I - HH).

T
[;j} = —¢'(a!)(Hs' — y)HW diag (ﬁ’(ut)) Wrt;
o1t T
] - e

where ®! ¢ RV*(2P+1) is the matrix representation of the basis functions in the sense that 7;'(ul) = ®!cf.
Considering these partial derivatives along with (I3), we obtain the scheme described in Algorithm [2] to
compute the backpropagation. Finally, we note that the reconstruction in and Algorithms [1| and
essentially share the same structure (i.e. gradient descent with acceleration). This makes the proposed
model convenient, since the computational implementation can be reused.

4 Numerical Results

We now present in silico experiments corroborating TPPA, with deconvolution of fluorescence microscopy
images where the point spread function (PSF) of the microscope is approximated by a Gaussian kernel of
variance 2 pixels. The imaging process is assumed not to be photon-limited; noise is modeled as additive
white Gaussian noise (AWGN) of 30 dB SNR.



Algorithm 2 Backpropagation for Algorithm

Input: a training pair (xy,y/), the set of parameters 8, number of TPPA iterations 7.
Output: components of the gradient VE.

Set: uT*t =1, vI*tl =0, and rT = (X(0,y,) — x¢).

Fort=T,T —1,...,1, compute

bt + Wldiag (7, (u)) Wrt,

vt <« bt — v, HTHb?,

v vt (L= ) v,
and store

(221" = —¢/(a")(Hs' — y,)THD,

[ir = (&) Wirt (k=1,...,4).

el
Ocy,

Table 1: Average deconvolution performance (on the validation set) of the methods considered in the exper-
iments. Numbers indicate SNR in decibel units.

Deconvolution Algorithm

PSF Kernel Size =~ TV~ PnP (using BM3D) Proposed Method
5x5 21.99 24.69 24.96
9%x9 20.77 22.33 22.57

Fluorescence microscopy images of human bone osteosarcoma epithelial cells (U20S Line)ﬂ from [39]
are used as our ground-truth data. All images’ intensity are scaled between 0 and 1. To generate the training
pairs, we use 100 images and apply the forward model to a single patch (per image) of size 64 x64 extracted
around the center of the field-of-view. Once the images chosen for training are excluded, we select a different
20 images of size 256 x 256 as a validation set.

Learning is carried out by using Algorithm|[1]with 200 iterations (that is I = 200) with v = 5x10~*. We set
the number of layers for TPPA as T' = 10. The shrinkage functions are parametrized by 10% equally-spaced
cubic B-splines over the dynamic range of Wx. All shrinkages are initialized with the identity operator.
Finally, we note that ap = 1/|HTH||3 and x° = 0 € R".

As a baseline comparison, we consider TV regularization implemented using FPPA described in (4). The
algorithm is run until either 100 iterations is reached or |x; — x;—1]2/|xi—1]]2 < 1079 is satisfied. We
also compare against the PnP model where the proximal of TV is replaced by BM3D [17]. The latter is
implemented using 10 FISTA iterations (same as the number of layers in TPPA) and all methods use a zero
initialization. For each validation image, we optimize the regularization parameters for both algorithms (by
using an oracle) for the best-possible SNR performance. Average SNRs of the reconstruction are reported in
Table [1l for different sizes of the blur kernel.

The results show that the accuracy of our model is better than the other algorithms considered. In
particular, the SNR performance provided by TPPA is significantly better than that of TV. Furthermore, visual
inspection of the reconstructions reveals that the TV deconvolution creates the characteristic blocky artifacts
at textured regions (see Figure[l). Since the successive sequence of shrinkage functions are adapted to the

2The dataset consists of multi-color images where each color channel depicts different flurophores targeted to different organelles
or cellular components. In our simulations, we use the channel corresponding to the blue color which targets the cell nucleus.



riginal Simulted ) TV deconvolution
Image  Measurement SNR =21.27 dB SNR =23.19 dB SNR =24.47 dB

Figure 1: An example of 2D deconvolution with fluorescence microscopy images, given a known 9x9 Gaus-
sian PSF: The ground-truth image (left) illustrates the nucleus of a group of U20S cells. Our learning-based
reconstruction preserves homogeneity of the background and more of the texture, increasing the SNR. See
text for further details.

underlying features of the training data, one notices that these artifacts are reduced for TPPA. Our method
also renders the boundary of the nucleus more faithfully and provides a homogeneous background. These
observations confirm the efficiency of our data-specific approach (in terms of deconvolution quality) and
highlight its potential importance in practical scenarios.

5 Conclusion

We developed a learning-based algorithm for linear inverse problems that is in the spirit of TV regularization.
Our approach, TPPA, has enabled us to move away from the soft-thresholding operator (with a fixed thresh-
old value at all iterations) to a collection of parametrized shrinkage functions that are optimized (in MSE
sense) for a training set. Compared to TV regularization and PnP technique, our deconvolution simulations
demonstrate that advantages of TPPA in terms of accuracy.
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