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Abstract—Processing data collected by a network of
agents often boils down to solving an optimization prob-
lem. The distributed nature of these problems calls for
methods that are, themselves, distributed. While most
collaborative learning problems require agents to reach
a common (or consensus) model, there are situations in
which the consensus solution may not be optimal. For
instance, agents may want to reach a compromise between
agreeing with their neighbors and minimizing a personal
loss function. We present DJAM, a Jacobi-like distributed
algorithm for learning personalized models. This method
is implementation-friendly: it has no hyperparameters that
need tuning, it is asynchronous, and its updates only
require single-neighbor interactions. We prove that DJAM
converges with probability one to the solution, provided
that the personal loss functions are strongly convex and
have Lipschitz gradient. We then give evidence that DJAM
is on par with state-of-the-art methods: our method reaches
a solution with error similar to the error of a carefully
tuned ADMM in about the same number of single-neighbor
interactions.

I. LEARNING PERSONAL MODELS

Consider n agents, each with a personal loss function:

fi : Rp → R, θi 7→ fi(θi), for agent i = 1, . . . , n. For

example, fi(θi) could be the loss of a model parameter-

ized by θi on agent i’s personal dataset. The agents are

the nodes of an undirected, connected network.

Each agent aims to find a model that minimizes both

the mismatch with its neighbors’ models and its personal

loss. More specifically, agents aim to solve

min
θ1,...,θn

1

2

n
∑

i<j

Wij‖θi − θj‖
2 +

n
∑

i=1

fi(θi), (1)

where W = (Wij) ∈ Rn×n is a symmetric matrix that

mirrors the topology of the network: Wij ≥ 0 if agents i
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and j are connected in the network; Wij = 0 otherwise.

The weight Wij controls the degree of agreement we

want between agents i and j: a larger Wij enforces more

similarity between the corresponding agents’ models.

Problem (1) can model a number of applications,

including peer-network recomender systems, distributed

(linear) classification [1], opinion propagation, and field

estimation [2]; the latter is discussed in Section IV. The

weights Wij may be chosen, for instance, based on the

spatial distance between pairs of agents, or according to

the similarity of their personal datasets.

Closest related works. Optimization problem (1) has

been addressed in [1]. For convex loss functions fi that

are quadratic, the authors suggest a distributed algorithm,

which we refer to as Model Propagation Algorithm

(MPA). In each round of MPA, an agent wakes up at

random, interacts with one of its neighbours, and both

go back to sleep; the pattern repeats for the following

rounds. MPA is an algorithm that is easy to implement

because it is asynchronous (each agent has its own clock

to wake up), has no parameter to tune, and involves

only single-neighbour interactions (the agent that wakes

up does not need to coordinate message-passing with

several neighbours). The authors in [1] prove that MPA

converges to the solution of (1) in expectation (mean-

value), for quadratic loss functions; for these functions,

the iterations of the method we propose coincide with

those of MPA. For more general loss functions, those

authors suggest a different algorithm, based on ADMM,

which needs parameter tuning to reach optimal perfor-

mance. This ADMM-based algorithm for collaborative

learning (CL-ADMM), will be compared with our algo-

rithm in Section IV.

Problem (1), with the same kind of asynchronous

single-neighbour interactions, can also be tackled by the

algorithm proposed in [2]. In the language of [2], this

corresponds to having agents deviate from the “rational”

decision at each round (the rational decision would

http://arxiv.org/abs/1803.09737v2


require each agent to interact will all its neighbors).

For such “irrational” decisions, the authors show that,

with probability one, the iterations of their algorithm

will visit infinitely often a neighborhood of the solution

of (1), although the iterations may continually escape

that neighborhood. Finally, a recent follow-up on [1]

is [3], where a block coordinate descent method with

broadcast communications is used to solve problem (1).

Contributions. We show that a simple Jacobi-like dis-

tributed algorithm, which we call DJAM, can solve (1)

with the same kind of asynchronous single-neighbor

interactions. DJAM, which can also be seen as a ran-

domized block-coordinate method, has no parameters

that need tuning. For continuously differentiable personal

loss functions that are strongly convex and have Lips-

chitz gradient, that is, such that, for all i,

(∇fi(x) −∇fi(y))
T (x− y) ≥ mi‖x− y‖2 (2)

for some mi > 0 and all x, y, and

‖∇fi(x)−∇fi(y)‖ ≤ Mi‖x− y‖ (3)

for some Mi ≥ 0 and all x, y, we show that DJAM

converges to the solution of (1) with probability one. The

values of mi and Mi are used for proving convergence

but need not be known when implementing DJAM.

DJAM improves on MPA not only because it applies

to a larger class of functions than quadratics, but also

because it converges in a stronger sense: as the proof

of Theorem 1 ahead shows, the DJAM iterations are

uniformly bounded; thus, the convergence in expectation

in [1] follows by the dominated convergence theorem

from our convergence with probability one. Our result

only applies to a (somewhat) more restricted class of

functions than the one of [2], but our convergence mode

is stronger than the one of [2]. Also, unlike in [3], our

method does not require knowing the values of Mi upon

implementation.

Other related work. Although [1], [2] are the closest

works that we are aware of, many other distributed

algorithms solve variations of problem (1). We now

mention some representative work.

A number of distributed algorithms allow agents to

solve an underlying optimization problem by reaching

consensus on the solution. They use techniques ranging

from distributed (sub)gradient descent [4], [5] to more

elaborate techniques such as EXTRA [6], distributed

ADMM [7], [8], dual averaging [9], and distributed

Augmented Lagrangean (AL) [10]. Some algorithms aim

at more specific optimization tasks such as distributed

lasso regression [11], distributed SVMs [12], and dis-

tributed RFVL networks [13]. All of these methods aim

at reaching consensus solutions—all agents converge to

the same value. Conversely, in problem (1), agents want

to find different (personalized) values.

The related problem of network lasso is dealt with in

[14]; however, the cost in [14] puts a strong emphasis

on neighbouring models being exactly equal, whereas in

our case we want them to be similar, but not necessarily

equal. The methods proposed in [15] and [16] can tackle

more general problems, but both require that agents

communicate with all their neighbors before updating,

while our method needs only communications between

two agents at a time. Problem (1) is also referred to as

multitask problem; this problem is solved in [17] for a

more restricted class of personal losses than ours.

II. DJAM

A naive Jacobi-like approach to solve (1) would work

as follows: at each round t, one agent i, picked at

random, would update its model according to

θi(t+ 1) = argmin
θi

1

2

∑

k∈Ni

Wik‖θi − θk(t)‖
2 + fi(θi),

where Ni is the set of neighbors of agent i. This naive

approach, however, has a major drawback: it requires

that agent i communicates with all its neighbors—to re-

ceive their up-to-date models θk(t)—before updating its

own model. Coordinating such message-passing, at each

round, is cumbersome. A lighter scheme, involving only

a single pair of agents at a time, is simpler to implement

in practice, and requires fewer communications, at the

expense of slowing down convergence.

The key idea, which we borrow from [1], is to have

each agent i keep its own model Θi
i as well as (often

outdated) versions of its neighbors’ models, Θk
i for

k ∈ Ni. The versions of each pair of neighbors are

updated whenever they communicate with each other.

More specifically, at each round t, agent i wakes up

and chooses a neighbor j ∈ Ni to communicate with.

They begin by exchanging information on their models,

meaning that Θj
i (t+1) = Θj

j(t) and Θi
j(t+1) = Θi

i(t).
All other variables remain unchanged. Afterwards, both

agents update their own model via

Θl
l(t+1) = argmin

θl

1

2

∑

k∈Nl

Wlk‖θl−Θk
l (t+1)‖2+fl(θl)

(4)

for l ∈ {i, j}.

For the purpose of analyzing DJAM, we merge these

two steps into a single one. Since the personal model

Θi
i can be created at any time at agent i via (4), it need

2



not be stored. This means that, at round t of DJAM, two

neighboring agents i and j will compute and share their

own models with each other:

Θj
i (t+1) = argmin

θj

1

2

∑

k∈Nj

Wjk‖θj−Θk
j (t)‖

2+fj(θj),

(5)

and similarly for Θi
j . Mind that the right-hand side of (5)

is computed by agent j and sent to agent i, who stores

the result in the variable on the left-hand side of (5).1

III. PROOF OF CONVERGENCE FOR DJAM

We now prove that DJAM, the algorithm with updates

given by (5), converges with probability one to the

solution of (1). We omit some laborious (but otherwise

painless) technical steps that would make the notation

and proofs too lengthy.

Let E be the set of edges of the network that links the

agents. The network need not be fully connected: each

agent is connected only to a subset of the remaining

agents. We assume that at each round (A1) one edge

of E is chosen at random, independently of previous

choices; and (A2) each edge in E has a fixed, positive

probability of being chosen. It is easy to verify that,

under assumptions (A1) and (A2), each edge in E is

chosen infinitely often with probability one.

The number of times a given edge (i, j) is chosen

between rounds s and t (with s ≤ t) is a random

variable defined as S(i,j)(s, t) :=
∑t

τ=s Y(i,j)(τ), where

Y(i,j)(τ) = 1 if edge (i, j) is chosen at round τ , and zero

otherwise. We now define a useful family of stopping

times (Tm)m≥0. We let T0 := 0 and, for m ≥ 0,

Tm+1
..= min

{

t | S(i,j)(Tm + 1, t) ≥ 1, ∀(i, j) ∈ E
}

.

In words, Tm+1 is the first round after Tm by which

all edges have been chosen at least once. Assumptions

(A1) and (A2) imply that any Tm is finite for any m.

Addtionally, Tm → ∞ as m → ∞ with probability one.

We first state an important consequence of assump-

tions (2) and (3) on each personal loss function fj .

Lemma 1. Let wj
..=

∑

k∈Nj
Wjk , and take the function

Fj(x) = fj(x)+
1
2wj‖x‖2. Note that ∇Fj is a bijective

map (with inverse map (∇Fj)
−1) because, from standard

convex theory, ∇fj is. Then, for any a and b,

‖(∇Fj)
−1(a)− (∇Fj)

−1(b)‖ ≤ (mj + wj)
−1 ‖a− b‖.

Proof. Choose x = (∇Fj)
−1(a) and y = (∇Fj)

−1(b).
Clearly, a − b = (∇fj(x) − ∇fj(y)) + wj(x − y).

1Updates (4) and (5) are equivalent apart from a minor technicality:

The values of Θj
i

are equal for all t, while those of the Θi
i

may be
(finitely) delayed from one implementation to the other. This detail
does not affect the validity of our results.

Multiplying both sides of this equality by (x−y)T yields

(x − y)T (a − b) ≥ (mj + wj)‖x − y‖2, where the in-

equality is due to the strong convexity of fj , property (2).

By the Cauchy-Schwartz inequality, ‖x − y‖‖a− b‖ ≥
(x − y)⊤(a − b), and, thus, ‖x − y‖‖a − b‖ ≥ (mj +
wj)‖x− y‖2. Inserting the definitions of x and y yields

‖a−b‖ ≥ (mj+wj)
∥

∥(∇Fj)
−1(a)− (∇Fj)

−1(b)
∥

∥.

We now give our main convergence result.

Theorem 1 (DJAM converges with probability one). Let

Θ∗ = (Θ∗
1, . . . ,Θ

∗
n) be the solution of (1). Let Θj

i (t+1),
i = 1, . . . , n, j ∈ Ni, be updated via (5) whenever edge

(i, j) is chosen at round t, and similarly for Θi
j(t+ 1).

Then, for any pair of agents (i, j), Θj
i (t) → Θ∗

j as t →
∞, with probability one.

Proof. Let Fj , and wj be defined as in Lemma 1.

Suppose edge (i, j) is chosen at time t. It can be verified

from (5) and from the first order condition for optimality

that Θj
i (t + 1) = (∇Fj)

−1
(

∑

k∈Nj
WjkΘ

k
j (t)

)

,

where Fj is as defined in Lemma 1; similarly, we

have that Θ∗
j = (∇Fj)

−1
(

∑

k∈Nj
WjkΘ

∗
k

)

for each

component of the solution.

Lemma 1 allows us to find that

‖Θj
i (t+ 1)−Θ∗

j‖

≤ (mj + wj)
−1‖

∑

Wjk(Θ
k
j (t)−Θ∗

k)‖

≤ (mj + wj)
−1

∑

Wjk‖Θ
k
j (t)− Θ∗

k‖

≤ (mj + wj)
−1wj max

k
‖Θk

j (t)−Θ∗
k‖

≤ (mj + wj)
−1wjV (t), (6)

where V (t) := maxl,k ‖Θ
k
l (t) − Θ∗

k‖ is the maximum

error at round t between the agents’ estimates and the

solution.

If edge (i, j) is chosen at round t, we have, by the

derivation above, that

‖Θj
i (t+ 1)−Θ∗

j‖ ≤ V (t). (7)

If that edge is not chosen, then Θj
i (t+ 1) = Θj

i (t) and,

by definition of V (t), ‖Θj
i (t + 1) − Θ∗

j‖ ≤ V (t). We

conclude that (7) holds for any pair (i, j) and, so, V (t+
1) ≤ V (t). Since V (t) ≥ 0, the limit (which is a

random variable) V ..= limt→∞ V (t) is thus always well

defined. The goal of the proof is to show that V = 0
with probability one.

Recall that Tm+1 denotes the first round after Tm by

which all edges were selected at least once. It should

be clear to the reader that the remainder of the proof

holds almost surely, since Tm is finite for all m with

3



probability one. Suppose edge (i, j) was selected at

round Tm + s. Then

‖Θj
i (Tm + s)−Θ∗

j‖ ≤ (mj + wj)
−1wjV (Tm), (8)

cf. inequality (6). Since, by definition of Tm and Tm+1,

all edges (i, j) in the graph were selected at least once

between Tm and Tm+1, inequality (8) holds for all

(i, j) ∈ E when Tm + s = Tm+1. In other words,

‖Θj
i (Tm+1)−Θ∗

j‖ ≤ (mj + wj)
−1wjV (Tm)

for all edges (i, j) ∈ E . It follows, by the definition of

V (Tm+1), that

V (Tm+1) ≤ βV (Tm), (9)

where β ..= maxi {(mi + wi)
−1wi} ∈ [0, 1).

Let us take the limit m → ∞ in (9). We know that

Tm → ∞, and it follows from (9) that V ≤ βV . Thus,

owing to 0 ≤ β < 1, we must have V = 0, which

implies Θj
i (t) → Θ∗

j as t → ∞, for any (i, j).

Inequality (9) implies that V (t) ≤ V (0). The iterations
(

Θl
k(t)

)

t≥0
are, thus, uniformly bounded. We conclude

(by the dominated convergence theorem) that our result

implies the convergence in expectation result in [1].

IV. FIELD ESTIMATION EXAMPLE

Setup. Following [2], we consider a field estimation

setup that leads to a problem of the form (1). The n
agents are spread in a region and wish to profile a

certain quantity, say, temperature, over the region: agent i
cares only about the value of the quantity at its location,

θi. Assume that the true values of the temperatures,

θ = (θ1, . . . , θn), are drawn from a prior distribution:

a normal distribution with known mean and covariance

Σ; as in [2], we assume that the off-diagonal elements

of Σ−1 match the sparsity of the network, that is,

(Σ−1)ij > 0 if and only if (i, j) ∈ E . Agent i measures

yi = θi + νi, where νi models identically distributed

sensor noise (for simplicity), which is independent across

agents.

MAP estimation. A maximum a posteriori (MAP)

approach seeks the θ = (θ1, . . . , θn) that maximizes
∑n

i=1 logProb(yi | θi) + logProb(θ1, . . . , θn); or,

equivalently, the θ that minimizes

1

2





∑

i∼j

σij(θi − θj)
2 +

n
∑

i=1

σiiθ
2
i



+

n
∑

i=1

φ(yi − θi),

(10)

where σij := (Σ−1)ij and φ depends on the distribution

of the noise νi. We let φ be a Huber penalty function to

handle outliers [18]. Finally, defining the personal loss

t
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Fig. 1. Mean relative error
(
∥

∥Θi
i
(t) −Θ∗

i

∥

∥ /
∥

∥Θ∗

i

∥

∥

)

per agent on the
smooth field estimation problem for an instance with n = 30 agents;
the mean was obtained by averaging over 100 Monte Carlo trials. Our
method, DJAM, corresponds to the blue line with no markers. The
other lines correspond to CL-ADMM with ρ equal to 0.1 (red +),
0.316 (yellow #), 1.0 (violet �), 3.16 (green △), and 10 (cyan ♦). All
methods stop improving after reaching a relative error slightly above
10−9, which we believe is due to rounding errors.

functions as fi(θi) ..= φ(yi − θi) +
1
2σiiθ

2
i puts (10) in

the form (1). Also, assumptions (2) and (3) hold.

Results: comparing DJAM with CL-ADMM. Since

the algorithm MPA from [1] applies only to quadratic

functions, we use the ADMM-based algorithm CL-

ADMM from [1] to compare with DJAM. Note that both

CL-ADMM and DJAM converge to the solution with

probability one. The algorithm CL-ADMM, however,

being based on ADMM, has a parameter to tune—

the parameter in the quadratic penalization part of the

augmented Lagrangian function. This parameter, which

we refer to as ρ, is known to affect noticeably the

convergence speed of ADMM.

The results for a field estimation instance are shown

in Figure 1. It shows, across rounds t, the relative error

between an agent’s private model Θi
i(t) and the solution

component Θ∗
i :
∥

∥Θi
i(t)−Θ∗

i

∥

∥ / ‖Θ∗
i ‖. The relative error

was averaged over agents and over 100 Monte Carlo

trials where, in each Monte Carlo run, we choose a

different set of edges along time.

Figure 1 confirms that the speed of convergence of

CL-ADMM varies with the parameter ρ noticeably. In

fact, we verified in other simulations (omitted due to

lack of space) that the optimal ρ varied significantly with

the number of agents, with the range of values for σij ,

and with the noise distribution—we found the optimal ρ
for those simulations by careful hand-tuning. In contrast,

DJAM is on par with the best ρ in Figure 1, and needs

no parameter tuning.
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