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Abstract—We propose a technique that jointly detects the
presence of almost-cyclostationary (ACS) signals in wide-
sense stationary (WSS) noise and provides an estimate of
their cycle period. Since the cycle period of an ACS process
is not an integer, the approach is based on a combination of
a resampling stage and a multiple hypothesis test, which deal
separately with the fractional part and the integer part of
the cycle period. The approach requires resampling the signal
at many different rates, which is computationally expensive.
For this reason we propose a filter bank structure that allows
us to efficiently resample a signal at many different rates by
identifying common interpolation stages among the set of
resampling rates.

Index Terms—Almost-cyclostationarity, cycle period es-
timation, detection, multiple hypothesis test, sample rate
conversion.

I. INTRODUCTION

CYCLOSTATIONARY (CS) processes are random
processes with periodically varying statistical prop-

erties, which arise in many different fields of science
and nature such as mechanics, climatology, economics,
and communications [1], [2]. For instance, in mechan-
ics CS signals occur due to gear or propeller rotation,
and in communications due to modulation, multiplexing,
and sampling, see e.g. [1]. Continuous-time signals are
typically sampled before further processing. A sampled
discrete-time signal is almost-cyclostationary (ACS) if the
sampling interval is not a sub-multiple of the cycle period.
This is generally the case if the cycle period of the
continuous-time signal is unknown [3]. In this work we
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propose a detector for discrete-time second-order ACS
processes.

The detection of ACS signals is of interest in many
fields. For instance, in communications it is of great
importance in spectrum sensing for cognitive radio, and
in mechanics it can be used for fault gear or bearing diag-
nostics [1], [2]. Typically, state of the art (A)CS detectors
assume prior knowledge of the cycle period, e.g. [4], [5],
[6]. However, in practice the period might be unknown
or not known exactly due to clock or oscillator errors,
which decreases the performance of the detectors [7]. The
cycle period itself is an interesting signal parameter. For
instance, in communications it relates to the symbol rate
and carrier frequency [1], [2]. For this reason it is desirable
to use a detector that jointly detects ACS signals and
estimates their cycle period.

In our preliminary work in [8] we proposed a technique
to detect the presence of ACS signals with unknown cycle
period in wide-sense stationary (WSS) noise. In this work
we extend the technique in two ways: First, in addition
to detecting ACS signals, we simultaneously estimate
their cycle period. Second, we provide a computationally
efficient implementation of the technique. The idea behind
our approach is as follows. A multiple hypothesis test is
employed to determine the unknown integer part, and a
resampling stage deals with the unknown fractional part.
For each potential integer part the signal is resampled at
potential fractional parts such that the optimal resampling
rate yields a CS signal with cycle period equal to the
candidate integer part. This allows us to apply the gen-
eralized likelihood ratio test (GLRT) derived in [4] for
each candidate integer part. Subsequently, the multiple
hypothesis test is used to determine the unknown integer
part. In order to reach a decision in the overall test WSS
vs. ACS signals we use Holm’s sequentially rejective test
[9], which controls the probability of false alarm of the
overall test and simultaneously provides an estimate of
the integer part of the cycle period. This result combined
with the corresponding optimal resampling rate yields an
estimate of the cycle period.

In order to achieve good detection and estimation perfor-
mance, the grid of candidate resampling rates has to be fine
enough, which increases the computational complexity
of the technique. For this reason we propose a filter
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bank structure to efficiently resample the signal at many
different rates.

II. PROBLEM FORMULATION

We consider a continuous-time zero-mean multivariate
process u(t) ∈ CL that is second-order cyclostationary
with cycle period T0, or, equivalently, cyclostationary with
fundamental cycle frequency α0 = 1/T0. Hence, it has a
periodic matrix-valued covariance function with period T0

R(t, τ) = E
[
u(t)uH(t− τ)

]
= R(t+ T0, τ) ∈ CL×L.

(1)
Once the signal u(t) is sampled with sampling interval
Ts < T0, the discrete-time signal u[n] is ACS with funda-
mental cycle frequency α̃0 = Ts/T0 [10]. Now we define
a cycle period P as the reciprocal of α̃0, i.e. P = T0/Ts,
which is in general a real number rather than an integer.
Assuming that T0 ≥ 3/2Ts, we can divide the cycle period
P into an integer and fractional part as follows

P = Pint + ε, (2)

where Pint = 2, 3, . . . and ε ∈ [−0.5, 0.5).
Now our aim is to solve the following hypothesis test

H : u[n] is WSS,
A : u[n] is ACS.

(3)

Moreover, if the presence of an ACS signal is detected,
then we simultaneously estimate the cycle period P . We
assume that u[n] is proper complex Gaussian and that
we observe M i.i.d. realizations of u[n] of length N .
We propose a detector to solve the hypothesis test (3) by
combining a resampling stage, which enables to apply the
GLRT proposed in [4], with a multiple hypothesis test.
The resampling stage allows us to estimate the fractional
part of the cycle period, and the multiple hypothesis test
provides an estimate for the integer part if the presence
of ACS signals was detected. In order to reliably estimate
the fractional part of the cycle period, it is necessary to
resample the signal at many different rates. Since this is a
computationally complex process, we also propose a filter
bank structure to decrease the computational costs.

III. RESAMPLING STAGE

In order to handle the unknown fractional part of the
cycle period, let us assume first that the integer part of
the cycle period Pint is known. Now our goal is to find the
resampling rate ∆ such that the resampled signal becomes
CS with cycle period Pint, which allows us to apply the
test CS vs. WSS proposed in [4]. Specifically, for a set of
D candidate resampling rates

∆d =
Pint

Pint + εd
, d = 1, . . . , D, (4)

where εd = −0.5 + (d − 1)/D, we obtain the resampled
signal ũd[m] for which we compute the GLRT statistic

proposed in [4]. Let us briefly outline the computation of
the statistic:

G(∆d|Pint) =

N/Pint∏
k=1

det
(
Ĉk

)
, (5)

where Ĉk is the kth LPint × LPint diagonal block of

Ĉ =
[
diagL(Ŝ)

]−1/2

diagLPint
(Ŝ)
[
diagL(Ŝ)

]−1/2

. (6)

Here, diagL(Ŝ) and diagLPint
(Ŝ) denote block-diagonal

matrices obtained from the L×L and LPint×LPint blocks
on the diagonal of

Ŝ =
1

M

M∑
i=1

ziz
H
i , (7)

where

zi = (LN,N/Pint ⊗ IL)(FN ⊗ IL)Hyi, (8)

LN,N/Pint is the commutation matrix, FN is the DFT
matrix, and yi = [ũTi [0] · · · ũTi [N − 1]]T .

Subsequently, we find the maximum likelihood (ML)
estimate of the resampling rate ∆d or equivalently, due to
their relation in (4), the ML estimate of the fractional part
of the cycle period, by maximizing the likelihood under
A. Equivalently, we can minimize the GLR (5) for a given
integer part Pint

∆min = arg min
∆d=1,...,D

G(∆d|Pint). (9)

In order to make the resampling grid fine enough, D
must be a large number, and hence the resampling of
the signal at D different rates is computationally quite
expensive. There are efficient strategies to convert the
sample rate, but only for a single given ∆d, see e.g. [11].
In the following, we propose a filter bank that is designed
to deal with a set of D different resampling rates for each
candidate integer Pint.

Sample Rate Conversion
The sample rate conversion with the proposed filter bank

structure is illustrated in Figure 1. Each resampling rate
∆d for d = 1, . . . , D specifies an interpolation factor Ld
and decimation factor Md such that Ld

Md
= ∆d. Since

the number of resampling rates D can be quite large,
it is desirable to exploit common interpolation stages
among all upsampling rates Ld for d = 1, . . . , D in order
to save as many computations as possible. To this end,
each Ld is factorized into a product of prime numbers
Ld =

∏Λ
λ=1 L

(λ)
d , where L

(1)
d ≥ L

(2)
d ≥ · · · ≥ L

(Λ)
d .

Within the set of D upsampling rates, we identify common
factors such as

∏K
κ=1 L

(κ)
i =

∏K
κ=1 L

(κ)
j for K < Λ, i 6= j

and i, j ∈ {1, . . . , D}. Hence, the signal is interpolated
only once at those common stages. After the signal has
been interpolated at all required rates, it is downsampled
by the respective rates Md. Each interpolation stage is
implemented as a polyphase filter.
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u[n]
L
(1)
1 ↑ h

(1)
1 L

(2)
1 ↑ h

(2)
1 L

(3)
1 ↑ h

(3)
1 ↓ M1

ũ1[m]

↓ M2

ũ2[m]

L
(3)
i ↑ h

(3)
i ↓ Mi

ũi[m]

L
(2)
j ↑ h

(2)
j L

(3)
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(3)
j ↓ Mj

ũj [m]

Fig. 1: Proposed filter bank structure to convert the sampling rate 1/Ts to D different rates.

IV. MULTIPLE HYPOTHESIS TEST

The integer part of the cycle period in the detection
problem can be handled by a multiple hypothesis test,
which at the same time provides an estimate of the integer
part of the cycle period Pint. To this end, the multiple
hypothesis test is implemented as a set of binary tests with
a common null hypothesis, i.e.

H : u[n] is WSS, (10)

versus the following set of alternatives

A1 : u[n] is ACS with Pint = 2,

A2 : u[n] is ACS with Pint = 3,

...
AK : u[n] is ACS with Pint = Pmax,

(11)

where Pmax = K + 1 is the largest integer cycle period
under consideration. In the overall test WSS vs. ACS we
reject H if it is rejected in at least one of the binary tests.
The decision is reached by employing Holm’s sequentially
rejective test [9]. This test controls the familywise error
rate (FWER), which is the probability of at least one false
rejection and, therefore, in our case, it is identical to the
probability of false alarm pfa of the test in (3), i.e.

FWER = P (reject H in any test H vs. Ai|H)

≡ pfa. (12)

Following Holm’s test procedure we reach a decision in the
overall test by obtaining the minimum p-value pγ , where
γ indicates the index of the corresponding binary test, i.e.

γ = arg min
i=1,...,K

pi,

which we compare to a threshold pfa/K. Hence, if pγ ≥
pfa/K, then we fail to reject H, and if pγ < pfa/K, we
reject H and the signal is said to be ACS. To estimate the
p-values we exploit that the distribution of the GLR under
H for a given ∆d, G(∆d|Pint), can be approximated as

the distribution of a product of independent Beta random
variables [12]

1/G(∆d|Pint)
D
=

N/Pint∏
k=1

Pint−1∏
i=1

L∏
j=1

Y
(k)
ij , (13)

where Y (k)
ij ∼ Beta(αij , βi) with the parameters

αij = M − iL− (j − 1),

βi = iL.
(14)

In order to obtain the distribution of the minimum value
of the statistic G(∆min|Pint), we simplify the problem by
assuming independence among the GLRTs to apply results
from order statistics [13]. Specifically, we approximate the
cumulative distribution of G(∆min|Pint) as

F1(G(∆min|Pint)) = 1− [1− F (G(∆min|Pint))]
D. (15)

This result allows us to estimate the p-value pi for each
binary hypothesis test H vs. Ai for i = 1, . . . ,K.

We can at the same time obtain an estimate of the
cycle period of the ACS process as follows. If the multiple
hypothesis test rejects H, the integer part Pint is estimated
as

P̂int = γ + 1. (16)

Furthermore, the fractional part of the cycle period is
obtained from (4) as

ε̂ = P̂int(1/∆
γ
min − 1), (17)

where ∆γ
min denotes the optimal resampling rate corre-

sponding to hypothesis Aγ . Hence, the estimate of the
cycle period is given by

P̂ = P̂int + ε̂. (18)

V. NUMERICAL RESULTS

In this section we evaluate the performance of the
proposed technique and compare it to the techniques
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presented in [5] and [6]. For the evaluation we use Monte

Carlo simulations in a communications scenario:

H : u[n] = w[n],

A : u[n] = H[n] ∗ s[n] +w[n],
(19)

where w[n] ∈ C
L is colored Gaussian noise generated

with a moving average filter of order 20 and H[n] ∈ C
L×L

is a Rayleigh fading channel with a delay spread of 10

times the symbol duration T0 and a sampling frequency

of fs = 1.2 MHz. The ACS transmission signal s[n] ∈
C

L is obtained by subsampling a long QPSK-signal with

raised-cosine pulse shaping and roll-off factor 1. In order

to obtain M realizations, which are required to obtain the

test statistic, we generate one long sequence u[n] and cut

that into M pieces.

We obtain the joint probability of detection and correctly

estimating the cycle period

pd = P (pγ < pfa/K ∩ |P̂ − P | < 1/D | A) (20)

for a given probability of false alarm pfa. The benchmark

techniques [5] and [6] do not provide estimates of the cycle

period — they rather need this knowledge a priori. For a

fair comparison we obtain the test statistics of [5] and [6]

for the same grid of cycle periods we use for our technique.

Moreover, instead of performing a multiple hypothesis test,

we simply use the maximum test statistic. If this is greater

than the threshold used to solve the detection problem, the

cycle period corresponding to this maximum test statistic

is its estimate. Other cycle period estimation techniques

such as [14], [15] cannot be used as comparisons since

they are only cycle period estimators but not ACS signal

detectors.

For the simulation we use the following parameters: A

symbol duration of T0 = 2.6583μs, which yields a cycle

period of P = 3.19, L = 2 antennas, N = 300 samples

per antenna, M = 25 snapshots, and a probability of false

alarm fixed at pfa = 5%. In Figure 2 we can see pd for a

scenario with a resampling grid of size D = 100, where

the true cycle period lies on the grid of candidates. As can

be seen, the proposed technique substantially outperforms

the two competitors. For instance, for an SNR of −3dB

we observe a relative performance gain of 35% and 58%
of our technique compared to [5] and [6], respectively.

If we now choose a grid size D = 110, where the true

cycle period is off-grid by 0.9 · 10−3, we observe that

the performance of all three techniques decreases although

the proposed method still significantly outperforms the

competitors.

Generally, the appropriate choice of D depends on the

frequency resolution of the estimates, which is in the order

of 1/N . Since the resolution of the grid of fractional parts

is in the order of 1/D, a reasonable choice for D would

be D ≥ N as illustrated in the supplementary material.

Matlab code is available to download from: https://github.com/
SSTGroup/Cyclostationary-Signal-Processing
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Fig. 2: Probability of jointly detecting ACS signals and estimat-
ing P for pfa = 0.05 for the following scenario: P = 3.19,
L = 2 antennas, N = 300 samples, M = 25 realizations,
Pmax = 10, and D = 100
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Fig. 3: Probability of jointly detecting ACS signals and estimat-
ing P for pfa = 0.05 for the following scenario: P = 3.19,
L = 2 antennas, N = 300 samples, M = 25 realizations,
Pmax = 10, and D = 110

However, the larger D the higher the computational costs.

Therefore, the price to pay for good performance is com-

putational complexity. Comparing the relative computation

time of a MATLAB implementation with respect to the

technique proposed in [5] reveals that our detector requires

double the computation time, whereas [6] requires only

one fifth of the time of [5]. The relative computational

complexity of the techniques is independent of the grid

size D.

VI. CONCLUSION

We have proposed a technique that jointly detects

almost-cyclostationarity and estimates the cycle period.

While our technique is more computationally complex

than competing techniques, it also substantially outper-

forms them, which we have shown for a practically

relevant spectrum sensing application in cognitive radio.

https://github.com/SSTGroup/Cyclostationary-Signal-Processing
https://github.com/SSTGroup/Cyclostationary-Signal-Processing
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Supplementary material

Figure 4 shows the joint probability of detection and correctly estimating the cycle period pd as a
function of grid size D of the grid of fractional parts for a cycle period of P = 3.19, L = 2, N = 300
samples, M = 25 snapshots, and a probability of false alarm fixed at pfa = 5%. Furthermore, the
true cycle period lies off the grid of candidates. Since the frequency resolution of the estimates
is in the order of 1/N and the resolution of the grid of fractional parts is in the order of 1/D,
a reasonable choice for D is D ≥ N . This can be seen in Figure 4, where we used N = 300
samples. It can be observed that the performance increases until D ≥ N , where it saturates since
then the limiting factor is the frequency resolution determined by N and not the distance between
grid points and fractional parts determined by D.
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Fig. 4: Probability of jointly detecting ACS signals and estimating P for pfa = 0.05 for the following scenario:

P = 3.19, L = 2, N = 300 samples, M = 25 realizations, Pmax = 10, and SNR = −6 dB
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