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Boundary-guided Feature Aggregation Network for
Salient Object Detection

Yunzhi Zhuge, Pingping Zhang, Huchuan Lu

Abstract—Fully convolutional networks (FCN) has significantly
improved the performance of many pixel-labeling tasks, such as
semantic segmentation and depth estimation. However, it still
remains non-trivial to thoroughly utilize the multi-level convolu-
tional feature maps and boundary information for salient object
detection. In this paper, we propose a novel FCN framework
to integrate multi-level convolutional features recurrently with
the guidance of object boundary information. First, a deep
convolutional network is used to extract multi-level feature maps
and separately aggregate them into multiple resolutions, which
can be used to generate coarse saliency maps. Meanwhile, another
boundary information extraction branch is proposed to generate
boundary features. Finally, an attention-based feature fusion
module is designed to fuse boundary information into salient
regions to achieve accurate boundary inference and semantic
enhancement. The final saliency maps are the combination of the
predicted boundary maps and integrated saliency maps, which
are more closer to the ground truths. Experiments and analysis on
four large-scale benchmarks verify that our framework achieves
new state-of-the-art results.

Index Terms—Salient object detection, Boundary information
extraction, Attention, feature fusion.

I. INTRODUCTION

Saliency object detection is a fundamental computer vision
task which aims to identify the most eye-catching objects and
areas in an image [1] [2] [3] [4]. In the past two decades, great
success has been made in this pixel-labeling task. However,
due to several inevitable factors such as cluttered backgrounds
or blurred boundaries, it still remains a difficult task to
combine all hand-tuned cues in an appropriate way.

Recently, deep convolutional neural networks (CNNs) have
greatly improved the performances of many computer vision
tasks, such as image classification [5], semantic segmenta-
tion [6] and visual tracking [7], [8]. With the advantages
of fully convolutional networks (FCNs) [6], several FCNs-
based attempts have been performed and delivered state-
of-the-art performance in predicting saliency maps [9]–[11].
Nonetheless, existing models mainly focus on utilizing high-
level features extracted from last convolutional layers. As a
result, they are lack of low-level visual information such as
object boundary. Thus, these models tend to predict imperfect
results with poorly localized object boundaries.

In this paper, we propose a novel saliency detection method
based on multi-level features and boundary cues. To make
full use of the multi-level convolutional features and boundary
information, we present a boundary-guided feature aggregat-
ing architecture, which simultaneously generates and merges
multi-level saliency maps and boundary prediction maps to
obtain accurate saliency maps.

Our framework has two streams for saliency prediction.
In the main stream, we predict saliency maps with the in-
corporated features maps at different resolutions, and these
predicted saliency maps are recursively sent to the refinement
stage as the inputs. In another stream, boundary features
are extracted through a boundary extraction structure. To
utilize the boundary information, we propose an attention-
based feature fusion module to integrate two-stream features.

Our main contributions are as follows:
• We propose a boundary-guided feature aggregation net-

work, termed as BFANet, to utilize multi-level convolu-
tional features and boundary cues for salient object detec-
tion. The BFANet first extracts multi-level features, then
integrates them into multiple resolutions. The boundary
information fusion is performed to enhance these features
to generate finer saliency maps.

• We propose a boundary extraction network as a branch
of the BFANet, which generates boundary feature maps
under the supervision of boundary ground truth. Besides,
we also introduce an attention-based feature fusion mod-
ule to produce saliency maps with robust boundary.

• Extensive experiments on four large-scale benchmarks
have shown that our approach performs favorably against
other state-of-the-art methods.

II. OUR PROPOSED METHOD

Our method is mainly motivated by the following facts.
First, previous methods usually focus on precisely localizing
salient objects, which more or less neglect the sharpness of
boundary areas. To enhance the boundary, we propose a two-
steam structure to generate saliency maps with accurate object
boundaries. Secondly, features of variant scales contribute
differently to detection. However, there still exist questions in
how to effectively utilize these features. Therefore, we make
a feasible attempt and propose an effective attention-based
structure to perform the multi-level feature fusion.

As shown in Fig. 1, our proposed framework is composed
of three components: Aggregating Feature Extraction Network
(AFEN), Boundary Prediction Network (BPN) and Attention-
based Feature Fusion Module (AFFM). In the following sub-
sections, we will elaborate these components in detail.

A. Aggregating Feature Extraction Network

The residual networks (ResNet) [14] have shown excellent
performances in many computer vision tasks. Our feature
extraction network is based on the ResNet-101, which extracts
multi-level feature maps from raw RGB images for feature
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Fig. 1. The overall architecture of our proposed BFANet. The upper stream represents the reproduced Amulet [13], which is used to extract multi-level
convolutional features. The details of Amulet are described in Section II-A. In another stream, Boundary Prediction Network (BPN) can progressively enlarge
the resolution and refine the details of boundary predictions through a cascaded of residual convolution unit (RCU). Attention-based feature fusion module
(AFFM) is employed to integrate multi-level features and boundary cues. After that, we obtain multi-level fused feature maps by parallel fused prediction
modules (FPM). The final saliency map is produced with the fused feature maps.

integration and saliency prediction. We modify the ResNet-
101 and reduce the resolution of features by a factor of
16 comparing to the input image, as shown in the Fig. 1.
The feature maps are extracted from specified convolutional
layers. For the balance of resolution, we adopt the resolution-
based feature combination structure (RFC) [13] to integrate
multi-level convolutional features. The RFC structure unifies
convolutional features through shrink and extend operations.
More specifically, given an input image I, the integrated
feature maps of scale τ ∈ [1, .., 5] are computed by

Fτ = C 4
m=1 (R

τ
m(Fm(I);ψm)), (1)

where Rτm(·;ψm) represents the reshape operator that expands
or shrinks the feature maps by a factor of ψm. Fm denotes
the m-level feature maps. C is the concatenation operation
in channel-wise. The resolution of generated feature maps
Fτ is [W2τ ,

H
2τ ]. Besides, to enhance the feature interaction,

we adopt the bidirectional information streams [13], which
integrate multi-level features in both bottom-up and top-down
directions. Although multi-level features have been extracted
and fused in this effective way, there still exists a large gap
between predicted saliency maps and ground truth. Due to the
defects of down-sampling operations, the predicted saliency
maps are blurred or occluded on boundary areas.

B. Boundary Prediction Network

To resolve the blurry boundary problem, we introduce
the BPNet, which generates boundary predictions to guide
saliency prediction. To generate the boundary labels, we apply
the open-source “Canny” algorithm [15] to the binary saliency
labels, which usually provide in public saliency benchmarks.
An example is shown in Fig. 2. The detailed structure of our
BPNet is shown at the bottom of Fig. 1. We adopt five con-
volutional blocks of the VGG-16 model [16] to extract multi-
scale boundary features. Given an input image, our BPNet first
extracts five scale feature maps Bτ

f . To progressively merge
multi-scale features and enlarge the boundary prediction map,
we cascade several Residual Convolution Units (RCU) [17] on
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Fig. 2. Illustration of boundary ground truth and boundary prediction maps.
Bτ

p (τ = 1,2, ...,5) represents the prediction results of level τ . Note that we
rescale the predictions to the same size for better visualization.

the side-output feature maps. In the scale τ , BPNet generates
boundary feature maps Bτ by

Bτ =

{
((Wτ?sB

τ+1)⊕ RCU (Bτ
f )), 1 ≤ τ < 5

RCU (Bτ
f ), τ = 5

(2)

where Bτ and Bτ
f represent boundary feature maps and

corresponding convolutional feature maps respectively. ?s de-
notes the deconvolution with a stride s to ensure the same
resolution. ⊕ is the element-wise addition. Then we apply a
1× 1 convolution operation on the boundary feature maps of
each scale to generate the boundary prediction map Bτ

p . The
comparison of boundary prediction maps is shown in Fig. 2.

C. Attention-based Feature Fusion Module

To efficiently utilize the boundary information and refine
saliency maps, we introduce the attention-based feature fusion
module (AFFM), which exploits multiple attention cues [18].
More specifically, we first reduce the channels of saliency
features to the same size of boundary features by shrink
dimension. Then we perform a global average pooling on
the saliency and boundary features to obtain a feature vector
v = [v1, v2, ..., vn] (n is the channel dimension of layers). A
spatial softmax operator is applied on the feature vector to
generate a normalized weight vector of the feature maps:

wi =
evi∑n
i=1 e

vi
, (3)
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TABLE I
QUANTITATIVE COMPARISON ON FOUR LARGE-SCALE DATASETS. THE BEST TWO RESULTS ARE SHOWN IN RED AND BLUE, RESPECTIVELY.

Dataset Metric Ours Amulet UCF DHS NLDF RFCN DS DCL ELD LEGS MDF DRFI BSCA

ECSSD
Fβ ↑ 0.882 0.867 0.839 0.872 0.878 0.834 0.825 0.829 0.810 0.785 0.807 0.733 0.705
MAE ↓ 0.051 0.059 0.078 0.059 0.063 0.107 0.122 0.088 0.079 0.118 0.105 0.164 0.182

DUT-OMRON
Fβ ↑ 0.721 0.669 0.613 / 0.683 0.626 0.603 0.684 0.611 0.591 0.644 0.550 0.509
MAE ↓ 0.060 0.090 0.132 / 0.079 0.111 0.120 0.097 0.092 0.133 0.092 0.139 0.190

DUTS-TE
Fβ ↑ 0.763 0.709 0.629 0.724 0.743 0.712 0.632 0.714 0.628 0.585 0.673 0.541 0.499
MAE ↓ 0.050 0.080 0.117 0.067 0.065 0.091 0.090 0.088 0.093 0.138 0.094 0.175 0.197

HKU-IS
Fβ ↑ 0.887 0.861 0.808 0.855 0.873 0.835 0.785 0.853 0.769 0.723 0.801 0.722 0.654
MAE ↓ 0.043 0.053 0.074 0.053 0.048 0.089 0.078 0.072 0.074 0.119 0.089 0.144 0.175

where wi is the weight of channel i and
∑n
i=1 wi = 1.

Subsequently, the fused feature maps Fτfused is generated by

Fτfused = (wτ
F ⊗ Fτ )⊕ (wB ⊗B), (4)

where ⊗ is channel-wise product. B denotes the boundary
feature maps with the resolution of 256 × 256, which are in
accordance with the aggregated saliency feature maps. wτ

F

and wB represents the attention weights for saliency features
and boundary features respectively. With the fused feature, five
paralleled fused prediction modules (FPM) (each of which is
composed of a 3 × 3 convolutional layer and an upsampling
layer) are used to predict stage-wise prediction maps. With
the stage-wise prediction maps, we add another convolutional
layer with a 1× 1 kernel to predict the final prediction map.

III. EXPERIMENTS

A. Training and Testing Datasets

In the training process, the DUTS-TR [12] dataset is chosen
as our training dataset, which includes 10, 553 images with
accurate pixel-wise annotations. We implement our proposed
model based on the Caffe toolbox [19]. We train and test our
method with an NVIDIA 1080 GPU (with 8G memory). The
input image is uniformly resized into 256 × 256 × 3 pixels
and subtracted the ImageNet mean [20]. We find our model
with this resolution achieves both effectiveness and efficiency.
We adopt the sigmoid cross entropy as the loss function for
both saliency and boundary prediction. Following previous
works [13], [21], [22], we train the model until its training
loss converges. The weights of FCN backbones are initialized
from the VGG-16 [16] and ResNet-101 [14] models. For
other layers, we initialize the weights by the “msra” method.
We follow the parameters in [13] and use the standard SGD
method with a batch size 8, momentum 0.9 and weight decay
0.0005. We set the learning rate to 1×e−8 and decrease it
by 10% after every 10 epoch. Our model has a size of 410
MB and runs around 10 fps for saliency inference, which is
comparable even faster than most of methods.

We evaluate the performance of our method on four large-
scale datasets described as follows. ECSSD [23] is composed
of 1000 images with random objects of different scales. HKU-
IS [24] includes 4447 images with fine pixel-wise annotations.
Images of this dataset are well chosen to include multiple dis-
connected salient objects or objects touching the image bound-
ary. DUTS-TE [12] has 5019 images with accurate pixel-wise
annotations. All images are picked from the ImageNet DET
test set and the SUN dataset [25]. DUT-OMRON [23] has a
total of 5168 high-quality images.
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Fig. 3. The PR curves of different state-of-the-art methods.

B. Evaluation Metrics.

To evaluate the performance, we adopt three main metrics,
i.e., the PR curves, mean F-measure score and mean abso-
lute error (MAE) [26]. Precision-recall (PR) curves can be
computed by binarizing the saliency map with a threshold
in [0, 255] and then comparing the binary maps with the
ground truth. In many occasions, both precision and recall are
important to measure methods. Therefore, F-measure, which
is averaged with precision and recall, is proposed to achieve
the overall performance evaluation,

Fβ =
(1 + β2)× Precision×Recall
β2 × Precision×Recall

. (5)

We set β2 to 0.3 to weigh precision more than recall as
suggested in [2], [4], [27].

The above evaluations usually assign high saliency scores to
salient pixels, which can be unfair especially for the methods
which successfully detect non-salient regions, but miss the
detection of salient regions. Therefore, we also adopt the MAE
metric [26] to measure the average difference between the
saliency prediction and the ground truth.

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−G(x, y)|, (6)

where S is the predicted saliency map and G is the binary
ground truth mask. It indicates how similar a saliency map is
compared to the ground truth.

C. Comparison with Other Methods

We compared our method with other 12 algorithms, includ-
ing 10 deep learning based algorithms (Amulet [13], UCF [21],
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Image GT Ours Amulet UCF DHS NLDF RFCN DS DCL ELD LEGS MDF

Fig. 4. Comparisons of saliency maps with state-of-the-art methods. Due to the limitation of space, we do not show results of DRFI and BSCA methods.

NLDF [28], DHS [11], DS [29], DCL [30], ELD [10], RFCN
[9], LEGS [4], MDF [24]) and 2 conventional algorithms
(DRFI [31], BSCA [32]). We compute saliency maps with the
original implementations or use them provided by the authors.

Quantitative Results As shown in Tab. I and Fig. 3, our
model consistently outperforms other methods across all the
datasets in terms of all evaluation metrics, which convincingly
demonstrates the effectiveness of the proposed method.

Qualitative Results. Fig. 4 shows visual comparison be-
tween our method and other algorithms. As shown in the 1st
row, the foreground is very complex, while our method suc-
cessfully captures the main components against the competing
algorithms. The object in 2nd row is an unusual roof. Many
algorithms fail to capture the semantic structure, while our
method successfully highlights it. Our proposed method also
perform better on images with similar color distribution be-
tween foreground and background (3rd row). For disconnected
objects (last two rows), our method still performs well, while
other algorithms misjudge the interferences.

D. Ablation Studies

Effects of the boundary branch. We verify the effective-
ness of boundary branch in our framework. The compared
models include: (1) With the same ResNet-101, we construct
a baseline network, which is composed of encoder-decoder and
feature combination structure [13]. The multi-level features are
used to generate stage-wise prediction maps. The prediction
map is generated by merging stage-wise prediction maps. (2)
We add boundary-stream to the baseline network and use
concatenation operations to combine features of both branches
for saliency detection. The prediction scheme is similar with
baseline network. Different from (1), features of each level
incorporate both saliency and boundary information. We name
this setting as Boundary+. (3) To verify the effectiveness of
cascaded RCUs, we implement the boundary-stream approach
without RCUs, named Boundary− (4) Finally, AFFM is
added to fuse saliency and boundary features to generate
attentive features, resulting in our final model AFFM+.

We perform detailed experiments on two datasets, i.e.,
ECSSD and DUT-OMRON. The results are shown in Tab. II.
From quantitative evaluations and qualitative comparisons, one
can observe that our proposed components effectively enhance

Image GT
(a)

Baseline Boundary+ AFFM+

Fig. 5. Qualitative comparisons with different model settings.

saliency detection performance. Especially, the boundary pre-
diction module improves the MAE with 4%. Qualitative com-
parisons with different model settings are shown in Fig. 5.
Compared with the baseline, our boundary-guided prediction
is much better in predicting the boundary details. The proposed
method indeed produces saliency map with sharp boundaries.
The low MAE metric also verifies this fact.

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT SETTINGS. THE BEST
RESULTS ARE IN BOLD. THE VGG-16 [16] VERSION IS AFFM+•.

* ECSSD DUT-OMRON
Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

Baseline 0.8753 0.0568 0.7008 0.0761
Boundary− 0.8712 0.0576 0.6944 0.0779
Boundary+ 0.8797 0.0521 0.7083 0.0712
AFFM+ 0.8821 0.0509 0.7213 0.0601
AFFM+• 0.8756 0.0558 0.7141 0.0669

Effects of merging multi-scale predictions. To verify the
effects of the multi-scale FPM, we also perform a series
experiments on ECSSD dataset. Firstly, we evaluate the results
of a single FPM. Then we progressively add more FPMs to
obtain the merged multi-scale results. The quantitative results
are listed in Tab. III. The “12345” is our final model. From the
results, we can observe that adding more FPMs can integrate
more information, thus improving the performances.

TABLE III
QUANTITATIVE RESULTS OF MERGING MULTI-SCALE PREDICTIONS.

Metric 1 2 3 4 5 45 345 2345 12345
Fβ ↑ 0.839 0.863 0.872 0.876 0.879 0.877 0.879 0.881 0.882
MAE ↓ 0.060 0.057 0.054 0.053 0.052 0.053 0.052 0.051 0.051
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IV. CONCLUSION

In this paper, we propose a boundary-guided aggregating
feature fusion network for salient object detection. Different
from the methods directly introduce high-level features into
shallow layers, our method integrates feature maps into mul-
tiple resolutions. The proposed attention-based feature fusion
module can effectively refine the results with clear boundaries.
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