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Abstract

We present a theoretical analysis of the average performance of OMP for sparse approx-
imation. For signals that are generated from a dictionary with K atoms and coherence
1 and coefficients corresponding to a geometric sequence with parameter o < 1, we show
that OMP is successful with high probability as long as the sparsity level S scales as
Sp?log K <1 — «. This improves by an order of magnitude over worst case results and
shows that OMP and its famous competitor Basis Pursuit outperform each other depending
on the setting.
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1. Introduction

In sparse approximation the goal is to approximate a given signal y € R¢ by a linear
combination of a small number S < d of elements ¢; € RY, called atoms, out of a given
larger set, such as basis or a frame, called the dictionary. Storing the normalised atoms
as columns in the dictionary matrix ® = (¢1...,¢k), and denoting the restriction to the
columns indexed by a set I by ®;, we can write informally,

find y=~ oo PRTE = Ox; st |I|=S<d (1)

Finding the smallest error for a given sparsity level S and the corresponding support set
I, which determines x; via x; = @J}y, where (Iﬁ is the Moore-Penrose pseudo inverse,
becomes an NP-hard problem in general unless the dictionary is an orthonormal system.
In this case thresholding, meaning choosing as I the indices of the atoms having the S-
largest inner products with the signal in magnitude, will succeed. For all other cases, one
had to find algorithms which are more efficient, if less optimal than an exhaustive search
through all possible supports sets I with subsequent projection P(®j)y := ® ICIJ}y. The two
most investigated directions are greedy methods and convex relaxation techniques - the two
golden classics being Orthogonal Matching Pursuit (OMP), [13], and Basis Pursuit (BP),
[3], respectively.

OMP finds the support iteratively, adding the index of the atom which has the largest
absolute inner product with the residual and updating the residual. So initialising ro = vy,



Jo =10, it

finds j = argmaxy, |(r;, pr)| and
updates Jip1 = J;U{j} resp. rip1=y—P(®s,,)y,

until a stopping criterion is met, such as reaching the desired number of iterations or the
size of the residual/largest inner product being sufficiently small.

The Basis Pursuit principle, on the other hand, prescribes finding the minimiser of the
convex programme

z= argminx:y:@m ||.1‘||1, (2)

and choosing I as the index set of the S-largest entries of Z in magnitude.

The interesting question concerning both schemes is when they are successful. So assuming
that the signal y is known to be S-sparse, meaning y = ®;x; with |I| = S, when can they
recover the support I. It was first studied in [I5, [7] and for dictionaries with coherence
p = maxjz, [(¢;, px)| a sufficient condition for both schemes to succeed is that 25u < 1,
which is relaxed in comparison to the sufficient condition for thresholding 25u < %,
but still quite restrictive, especially considering the much better performance in practice.
This led to the investigation of the average performance when modelling the signals as

y= dek%@p(k)’ (3)

where (o1)x is a Rademacher sequence, the coefficient sequence ¢ is non-increasing, ¢ >
cgr1 > 0, and ¢ = 0 for k£ > S and p is some permutation such that the support
I={p(1),...,p(S)}) satisfies 6; := || ®5®; —I4|[2,2 < 3, where for a matrix A the transpose
is denoted by A*.

It was shown that BP recovers the true support except with probability 2K 2™ as long as
16425 - mlog K < 1,[16]EL and that thresholding succeeds except with probability 2K 2™

as long as 32425 -mlog K < %f‘xk", [14] The fact that for OMP a similar result could

— maXger |k
only be found in a multi-signal scenario, [9

weaker than BP.

This was further increased by the advent of Compressed Sensing (CS), [4], which can be
seen as sparse approximation with design freedom for the dictionary. While for BP-type
schemes in combination with randomly chosen dictionaries strong results appeared very
early, [2l, [I], comparable results for OMP and its variants took longer to develop and are
weaker in general, [8, [12]. Still, thanks to its computational advantages and flexibility, e.g.
concerning the stopping criteria, OMP remained popular in signal processing - the only
difference being that users had a defensive statement a la ’of course BP will perform even
better’ ready at all times.

Contribution: Here we will provide the long missing analysis of the average performance
of OMP and show that on average neither BP nor OMP are stronger, but confirm folklore

started to give OMP the reputation of being

1. The theorem actually considers Steinhaus instead of Rademacher sequences. However, the proof for
Rademacher sequences is exactly the same; simply use Hoeffding’s inequality instead of the complex
Bernstein inequality. Also beware the buggy support condition in model M1.

2. The improved constant presented here is due to the fact that also for Rademacher sequences ¢y = =
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wisdom, that OMP works better for signals with decaying coefficients while BP is better
for equally sized coefficients. The idea that the performance of OMP improves for decaying
coefficients has already been used in [10] and the simplified result states that if the sorted
absolute coefficients form a geometric sequence with decay a < %, then OMP is guaranteed
to succeed for all sparsity levels S with Su < 1. Replacing certainty with high probability
we will relax this bound by an order of magnitude to Sp?yIog K <1 — a, for a < 1.
Organisation: We will first address full support recovery in the noiseless case and then
extend this result to partial support recovery in the noisy case. In Section [4] we will con-
duct two experiments showing that our theoretical results accurately predict the average
performance, before finally discussing our results and future work.

2. Noiseless Case

We start with the simple case of signals following the model in . Note that from [16] we
know that for a randomly chosen subset I (permutation p) the condition 67 < 3 is satisfied

2
with high probability as long as ;2Slog K < 1.

Theorem 1 Assume that the signals follow the model in and that for i < S the coef-
ficients satisfy ciyi/c; <1 — % for t,\ > 0. Then, except with probability 2SK'~2™, OMP

will recover the full support as long as

S mtS log K 5 1
t|— — +1 < —. 4
({)\-‘%—\/ ) +>SM_13 )

Before presenting the proof, we want to provide some background information on the ideas
used for proving success of OMP and the difficulties associated with an average case analysis.
A necessary and sufficient condition for a step of OMP to succeed is that for the current
(correct) sub-support J C I we have

max | (i, r7)| > max ST )

o (7] > mae () 5)
Thus a sufficient condition for OMP to fully recover the support is, that for all possible
sub-supports J the missing atom which has the largest coefficient ¢;, satisfies

iy, )| > max (o> )] (6)

If the coefficients have random signs then for all k, J the inner products should concentrate
around their expectation,

i) >~ D i, [la — P(@))pn) e ~ ¢ £ pllers 113, (7)
kel/J

so a condition of the form Su? < 1 should ensure success with high probability. The prob-
lem is that there are 25 sub-supports J for which we need to have this concentration. So
taking a union bound for the probability of not enough concentration over all sub-supports,
we get back the worst case condition but with a non-zero failure probability. The imme-
diate conclusion is that in order to get a useful average case result, we have to reduce the



number of intermediate supports that we need to control. For equally sized coefficients this
is impossible, since the random signs determine the order of the absolute inner products.
However, if the coefficients exhibit some decay, there is a natural order and it is more likely
that atoms with large coefficients are picked first. For instance, with sufficient decay it
might happen that the atom with the second largest coefficient is picked before that with
the largest, but very unlikely that the atom with the smallest coefficient is picked first. The
idea of the proof is that OMP will only pick ’sensible’ sub-supports, so we only need to
ensure concentration for a much smaller number of them. The amount of concentration
needed can then be further reduced by pooling ’sensible’ supports of the same type and
combining probabilistic and deterministic bounds.

Proof We use the following short hands Q(®;) =1; — P(®y) as well as r; = Q(® )y for
the residual based on an index set J and x for the signed coefficients, x := cxop. In order
to better understand the various bounds of terms involving ®;, we recommend a quick
familiarisation with Lemma 6.2, [9]. Further we will assume w.l.o.g., that is, by reordering
the dictionary matrix, that I = {1,...,S} =: S. We now define the following disjoint sets
for ¢ < S and a parameter 1" > 0, which we set to the optimal value later,

Alz{ll—l} with A1:®, (8)
M;={i+1,...,i+T—-1}nNS, (9)
Zi={i+T,..., K} US". (10)

We call a sub-support J C S admissible if there exist ¢ < .S, corresponding to the index of
the missing atom with largest coefficient in magnitude, and B C M; such that J = A; U B.
We write B¢ := M;/B. Note that an admissible sub-support J = A; U B contains the
indices of the atoms with the first ¢ — 1 largest coefficients in magnitude, does not contain
the index 7, may contain indices in the support corresponding to atoms with coefficients
large enough that they are likely to be picked before i and is not allowed to contain any
indices corresponding to atoms with too small coefficients or outside the support.

A sufficient condition for OMP to succeed is that it only picks admissible sub-supports.
Assuming J is admissible, OMP picks another admissible support if (suff. cond.)

(@i, m5)| > max [{op, 75)], (11)
keZz;

which ensures that the either ¢ or some k& € B¢ is chosen. Since J is admissible the residual
has the form

r;=Q(®s)y = Q(Py)(zipi + Ppewpe + Pz,27,), (12)

and we have for ¢, the index of the largest missing coefficient,

(i, 1) = 2| QD) pill3 + (i, QD) Ppexpe) + (i, Q(® 1) P22 7,)
= 2| Q(®1)pill3 + (@i, Q(R1)Ppewpe) + (@i, Pz,w2,) — (i, P(2))Pz2z,). (13)

For k € Z; we define ZF := Z;/{k} and can rewrite as

ry =Q(®)y = Q(PJ)(wipi + Ppewpe + Thok + Py r),



which leads to

(> 1) = iR, Q(R1)pi) + (Pr: Q) Lpewpe)
+ 2%+ (r, Prag8) — (P, P(P1)Pz22,). (14)
We first bound the terms in (13|/|14)) involving Q(® ;). So for all k € Z; U {i} we have

1Q(®)prllz =1~ |P(®))ekl3
=1 — (D5pp, (P5P ) %)

>1— @ 50) oz - [5nlla = 1 — 171
> 1—[|®Grll2 - [[(@FPs) 2.2 - |1PTprll2 >

1—46,’

(15)

where we have used the bound [|(®%® ;) 22 < (1—-6,) ! from Lemma 6.2 in [9]. Similarly
for all k € Z; we have

{0k, QD) i) = [k, i) — (Do, (5D )~ DFps)]|

_ J|p?
< ut 1 ¥5onllz - @52 0) Mo - 1950ille <+ ST (1)

1—-46y

and again for all k € Z; U {i},

[(or, Q(P7)Pewpe)| < [{@r, Prepe)| + [(pr, P(P7)Ppexpe)|
<[ ®Be@klloo - lzBellt + | 2B P(P1)pklloo - [|2Be |1

< llegels - </~L+maX\<<Pj7P(‘I’J)SDk>’>
jeEB®

J 2
1-46y

The terms involving P(® ;) can be bounded for all k € Z; U {i} as

(o, P(®))Pz,22,)| = (P5pr, (P5D,) ' 5P 22,
< [ @5¢kllz - 1(@5Ps) a2 - |25 z,22,]l2

||
KBy 2y,
<13, [RARFEAP
|| |J
m L Dyas)| < ‘m Dys).
<1, jea}!%, zlwzz>|_1_5j jgl@ga 2,%7,)]

From the bound above we can see that the only terms we still need to control are |(¢;, ®z,xz7,)|
for j ¢ Z; and [{pr, @ rx4r)| for k € Z;. Note that for j ¢ Z; we have Z] = Z;, meaning
via Hoeffding’s inequality we can estimate compactly for all &,

P (!<90k,¢z;cl’z§>\ > 9k> = P(‘Zjezf<‘PkaSpj>chj‘ > 9k>

03 03
< 2exp <2exp| —5—"— .
23 jezx (ow, 05) S 242 |e g 13




Setting 0 = 20p]|cz, ||2 and using a union bound, we get
P (38 [{pr, @gra )] = Wpllez,|2) < 2K, (18)

Combining all our estimates we get that except with probability 2K e 2% for all k € Z;

2|J |1 J|u?
K@i, r)| = Ker,ra)| = ¢ (1—M— 1’_|§J) — ¢ — 2|lege| <M+ Il >

1—-46y

|J| 2
—40||cz. — .
llez; ll2 <u+ 1-3,

We now determine the sets M; and Z; by choosing 7" := ¢ - (%1 to get the following bounds.
For all k € Z; we have

T/t S/A
e < ¢ (1 — >\> <g¢ <1 — A) < ¢ie L. (19)

We also have ||cpel|l1 < ||eag |1 < et [%W To bound ||cz,||2 we note that at worst ¢z, consists
of t interleaved geometric sequences with initial value c;e~! and decay factor a = 1 — \/S,

S0 we get
. " 1/2 L (tS 1/2
o <cieT" | ————+= <ce | — .
e <™ () <o (5)

Using 07 < d;7 < % and setting 0 := \/mlog K, we get that except with probability 2/ 2™
for all k € Z;,

A

_1 [mtSlog K
e 1,/%(,#2\{]1”2) (20)
tSlog K
>0.63—2<t {ﬂ ﬂ/mS;gH) (1 +25p2) .

_ _ S
e (i) = omrn)) 21— p— 4T — et — 21 H (1 + 217122)

In case 25u < 1 the deterministic analysis holds and the theorem is trivially true. If
conversely 25y > 1, then u + 2Sp? < 4Sp? and so implies that the last expression
above is larger than zero, which further implies that OMP will pick another admissible
sub-support. Taking a union bound over all possible sets A; we get that OMP will succeed
with probability at least 1 — 25K !'2™ as long as holds. |

First note that the theorem only improves over the worst case analysis when A > ¢. However,
if conversely A < ¢, then the ratio between largest and smallest coefficient is of the order
~ e~!, so thresholding should still have a good success probability.

To get a better feeling for the quality of the theorem, we next specialise it to the case t = 1,
where the coefficients form a sub-geometric sequence with parameter «, meaning c¢;11/c¢; <
a < 1. In this case the theorem essentially says that OMP will recover the support except



with probability 2S K'~?™ as long as Su? < 1—a and Sp?y/mlog K < /1 — a. Comparing
this to the condition for BP, Su?mlog K < 1, for failure probability 2K'~2", we see that
OMP has the advantage that the admissible sparsity level has a milder dependence on the
dictionary size and success probability while BP has the advantage of being independent of
the coefficient decay. This means that each algorithm can outperform the other depending
on the setting. Before confirming this in the numerical simulation in Section [4] we first have
a look at the performance of OMP in a noisy setting.

3. Noisy Case

We next study partial support recovery, when the sparse signals are contaminated with
noise and are modelled as

G=y+n=) okcrep(r) + 1, (21)

with y as in the previous section and n a sub-Gaussian noise vector with parameter p. This
means that E(n) = 0 and that for all unit vectors v and 6 > 0 the marginals (v,n) satisfy
E () < ¢870%/2,

For Gaussian noise the parameter p corresponds to the standard deviation and so for nor-
malised coefficient sequences ||c||2 = 1 the signal to noise ratio (SNR) is d17. Similar bounds
also hold in the general case, [11]. In the noisy setting we clearly cannot recover coefficients
below the noise level so with more decay there will be a trade off between allowing to recover
more atoms and decreasing the coefficients faster.

Theorem 2 Assume that the signals follow the model in and that for i < S the
coefficients satisfy cit¢/c;i < 1 — %, t,A > 0. Then OMP will recover an atom from the
support in the first s steps, except with probability 4sK1=>™ as long as,

S [mtSlog K 9 1

— - =2 < —
(t {)\-‘nL \ +1> (1 +2sp%) < 10 (22)
and cs > 14py/mlog K. (23)

Proof We use the same approach as before, assuming w.l.o.g. I =S, but take into account
the new expression for the residuals

7y =Q(P)y=Q(Ps)(y+n)=r;+Q(P,)n (24)

and inner products (pg,7s) = (@K, 77) + (pr, Q(Ps)n). If J is an admissible sub-support,
J = A; UB for B C M;, then in analogy to (11)) a sufficient condition for OMP to pick
another admissible support in the noisy case is that

[{pi, 7y)| > max [(pr, 75)| (25)
keZz;

Since we have |(pi,7)| > [(pi, )| — [{0i, Q(Ps)n)| as well as [(pr, 7s)| < [{@r,7s)] +
|{¢r, Q(®)n)| for all k € Z; the condition in is implied by having for all k € Z;

(@i, 7 )| = Kews o)l > [{pi Q(@1)m | + [k, Q(P1)m)|- (26)



This means that we need to bound [{(pg, Q(®s)n)| for all k ¢ J. Using the decomposition
J = A; U B we can rewrite

(@r, Q(P)N) = (Pr, Q(P1)[P(P4,) + Q(Pa,)]M)
= (kg — P(2.1)]Q(Pa,)n)
= @k, Q(Pa,)n) — (pr, P(P1)Q(P4,)m)
= (o1, Q(Pa,)n) — ((B5P 1) ®Npp, P5Q(P A, )7). (27)

Since (@;, Q(P4,)n) = 0 for all j € A; this yields for all & ¢ J

[{en, Q@) < [, Q(@a )] + [1(255) 22 - @5 pnll2 - [@BQ(R 4, )2

J
< ok, Q(Pa,)n)| + u\/|> “V|B| - maXIsoy, (@a,)m)|

< max (Q(@ ), ) (1 n ’“‘1‘_’5J'B‘> . (28)

To bound [(Q(®4,)pk,n)| for all k ¢ A; with high probability, we use the sub-Gaussian
property of 7 for the marginals (v;x, n), with vy, = Q(®4,)pr. For s < S this leads to
02

P(3i < s,k : [(Q(Pa,) ok, m)| > 0,) < 25K exp <_2;72> ’

where we have used that ||vk|l2 < 1. We substitute this bound into to get, that except
with probability 2sKe %/2) for all k ¢ J

or. Q@) < 0, (1 g ”1f'5J'B’> - 29)

Using the intermediate bound in the noiseless case from (20]) as well as the estimate above
with |B| < t( W and 0, = 2py/mlog K we get, except Wlth probability 4sK'=2™ for all
J = A; UB with |J| < s and all k € Z; that

_ _ - S mtS log K
o7 — sl > 0.63 — 2 <t 5] 4 miien K 1) o+ 20%s)
4
—C—p mlog K <1+2,u st [i’-D (30)

Finally, observe that the condition in guarantees that 4u°st [%] < % Thus, in order
for the right hand side above to be larger than zero, which implies recovery of a correct
atom in the first s steps, it suffices that

4 1
2P Jmlog K (1 + \/;> <0.43 (31)
Cs

which is guaranteed by . |
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Figure 1: Percentage of correctly recovered supports for noiseless signals with various spar-
sity and coefficient decay parameters via BP (a,d), OMP (b,e) and thresholding
(¢,f) in the Dirac-DCT dictionary (a,b,c) and the Dirac-DCT-random dictionary
(d,e,f).
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4. Numerical Simulations

To see how well our results predict the performance of OMP, we conduct recovery exper-
iments both with noisy and noiseless signals in R? for d = 128. The signals follow the
model in (3) resp. . The permutation p is chosen uniformly at random and the sparse
coefficients form a geometric series with parameter a, meaning ¢; = Bga’ for i < S and
zero else, with g a constant ensuring |c[l2 = 1. We vary a between 0.75 and 1 and the
sparsity level S between 2 and 48. In case of noise, we choose 7; i.i.d Gaussian with variance
p? = TIM and p? = chv corresponding to signal to noise ratios (SNR) of 256 and 16. As
dictionaries we use the union of the Dirac and DCT bases (coherence p = 0.125) and the
Dirac-DCT dictionary with additional 2d vectors choosing uniformly at random from the
sphere (1 = 0.366).

In the first experiment we draw N = 1000 permutations p and sign sequences o and for
each pair (S, «) count how often BP, OMP and thresholding can recover the full support
from the corresponding signals. From the results in Figure [I] we can see that the success
region of OMP is indeed a union of two areas, one derived from the worst case analysis,
Su < 1, and one from the average case analysis Su?log K < 1—a. In particular, we can see
the linear dependence of the breakdown sparsity level on the parameter o. We can also see
that the success of BP is not influenced by the coefficient decay and that, as indicated by
theory, neither BP nor OMP is better in general but that each of them is better in a certain
region. Finally, observe that the price you have to pay for the computational lightness of
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Figure 2: Percentage of correctly recovered atoms before recovery of first wrong atom via
OMP for signals with various sparsity levels and coefficient decay parameter con-
taminated with no noise (a,d) or Gaussian noise corresponding to SNR = 256
(b,e) and SNR = 16 (c,f) in the Dirac-DCT dictionary (a,b,c) and the Dirac-
DCT-random dictionary (d,e,f), as well as the percentage of correctly recoverable
atoms for SNR = 256 and SNR = 16 (g,h).

thresholding is the very limited range of parameters, where it is performing well.

In the second experiment we additionally draw N noise-vectors to create the signals. For
each signal we count how many atoms OMP identifies correctly before recovering the first
incorrect atom. Figure [2 shows the average over all N realisations divided by the correct
sparsity level for both dictionaries and three noise levels, as well as the relative number of
recoverable atoms for the two non-zero noise levels (g, h), meaning the number of coeffi-
cients above the noise level ¢ > 2p? log K. Comparing to the success rates in the noiseless
case, we can clearly see the overlay of the two effects; for small coefficient decay we recover
as many atoms as in the noiseless case, while for large decay we recover all atoms with
coefficients above the noise level.
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5. Discussion

We have shown that OMP is successful with high probability if the coefficients exhibit decay
and in such settings can even outperform BP. In particular, for geometric sequences with
parameter a < 1 the admissible sparsity level scales as Su?log K < (1 — ). Our next
goal is to extend the results to OMP using a perturbed dictionary, which is a necessary
step to help tackle dictionary learning algorithms like K-SVD theoretically. We are also
interested in deriving average case results for other algorithms such as stagewise OMP,
[5], which picks more than one atom in each round, or Hard Thresholding Pursuit, [6], an
iterative thresholding scheme. Both these algorithms can be computationally more efficient
due to using less iterations and a theoretical analysis might allow the design of hybrids that
automatically adapt to the decay, retain computational efficiency and allow for multiple
stopping criteria.
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