
1

Fast Spectrogram Inversion using Multi-head
Convolutional Neural Networks

Sercan Ö. Arık∗, Heewoo Jun∗, Gregory Diamos

Abstract—We propose the multi-head convolutional neural
network (MCNN) for waveform synthesis from spectrograms.
Nonlinear interpolation in MCNN is employed with transposed
convolution layers in parallel heads. MCNN enables signifi-
cantly better utilization of modern multi-core processors than
commonly-used iterative algorithms like Griffin-Lim, and yields
very fast (more than 300x real-time) runtime. For training of
MCNN, we use a large-scale speech recognition dataset and
losses defined on waveforms that are related to perceptual audio
quality. We demonstrate that MCNN constitutes a very promising
approach for high-quality speech synthesis, without any iterative
algorithms or autoregression in computations.

Index Terms—Phase reconstruction, deep learning, convolu-
tional neural networks, short-time Fourier transform, spectro-
gram, time-frequency signal processing, speech synthesis.

I. INTRODUCTION

A spectrogram contains intensity information of time-
varying spectrum of a waveform. Waveform to spectrogram
conversion is fundamentally lossy, because the magnitude
calculation removes the phase from the short-time Fourier
transform (STFT). Spectrogram inversion has been studied
widely in literature. Yet, there is no known algorithm that
guarantees a globally optimal solution at a low computational
complexity. A fundamental challenge is the non-convexity of
intensity constraints with an unknown phase.

The most popular technique for spectrogram inversion is
the Griffin-Lim (GL) algorithm [1]. GL is based on itera-
tively estimating the unknown phases by repeatedly converting
between frequency and time domain using the STFT and
its inverse, substituting the magnitude of each frequency
component to the predicted magnitude at each step. Although
the simplicity of GL is appealing, it can be slow due to the
sequentiality of operations. In [2], a fast variant is studied
by modifying its update step with a term that depends on
the magnitude of the previous update step. In [3], the single-
pass spectrogram inversion (SPSI) algorithm is introduced,
which can synthesize waveforms in a single fully deterministic
pass and can be further improved with extra GL iterations.
SPSI estimates the instantaneous frequency of each frame by
peak-picking and quadratic interpolation. In [4], another non-
iterative spectrogram inversion technique is proposed, based
on the partial derivatives with respect to a Gaussian window,
which allows analytical derivations. In [5], a convex relaxation
is applied to express spectrogram inversion as a semidefinite
program with a convergence guarantee, at the expense of the
increased dimensionality. Overall, one common drawback for

Baidu Silicon Valley Artificial Intelligence Lab 1195 Bordeaux Dr. Sunny-
vale, CA 94089.

∗Equal contribution
Manuscript received August, 2018.

these generic spectrogram inversion techniques is their fixed
objectives, rendering them inflexible to adapt for a particular
domain like human speech.

One common use case of spectrograms is the audio domain,
which is also the focus of this paper. Autoregressive modeling
of waveforms, in particular for audio, is a common approach.
State-of-the-art results in generative speech modeling use neu-
ral networks [6][7] that employ autoregression at the sample
rate. Yet, these models bring challenges for deployment, as
they need to run inference ∼16k-24k times every second. One
approach is to approximate autoregression with an inference-
efficient model which can be trained by learning an inverse-
autoregressive flow using distillation [6]. Recently, autoregres-
sive neural networks have also been adapted for spectrogram
inversion. [8] uses the WaveNet architecture [9], which is com-
posed of stacked dilated convolution layers with spectrogram
frames as external conditioner. But autoregression at sample
rate is employed, resulting in slow synthesis. A fundamental
question is whether high quality synthesis necessitates explicit
autoregressive modeling. Some generative models, e.g. [10],
[11], synthesize audio by applying autoregression at the rate
of spectrogram timeframes (100s of samples), and still does
not yield a noticeable decrease in audio quality.

We propose the multi-head convolutional neural network
(MCNN) that employs non-autoregressive modeling for the
perennial spectrogram inversion problem. Our study is mainly
motivated by two trends. Firstly, modern multi-core proces-
sors, such as GPUs or TPUs [12], achieve their peak perfor-
mance for algorithms with high compute intensity [13]. Com-
pute intensity (also known as operational intensity) is defined
as the average number of operations per data access. Secondly,
many recent generative audio models, such as text-to-speech
[10][11], audio style transfer [14], or speech enhancement
[15], output spectrograms (that are typically converted to
waveforms using GL), and can potentially benefit from direct
waveform synthesis by integrating trainable models into their
end-to-end frameworks. MCNN achieves very high audio qual-
ity (quantified by human raters and conventional metrics like
spectral convergence (SC) and speaker classification accuracy),
while achieving more than 300x real-time synthesis, and has
the potential to be integrated with end-to-end training in audio
processing.

II. MULTI-HEAD CONVOLUTIONAL NEURAL NETWORK

We assume the STFT-magnitude input for the waveform
s, |STFT(s)|, has a dimension of Tspec × Fspec and the
corresponding waveform has a dimension of Twave, where
Tspec is the number of spectrogram timeframes, Fspec is the

ar
X

iv
:1

80
8.

06
71

9v
2

 [
cs

.S
D

]
 6

 N
ov

 2
01

8

2

number of frequency channels, and Twave is the number of
waveform samples. The ratio Twave/Tspec is determined by
the spectrogram parameters, the hop length and the window
length. We assume these parameters are known a priori.

Transposed convolution layer 1
(width: w1, stride: s1, # filters: c1)

...

Spectrogram
(Tspec x Fspec)

Waveform
(Twave x 1)

Hidden
(s1Tspec x c1)

Transposed convolution layer 2
(width: w2, stride: s2, # filters: c2)

Transposed convolution layer L
(width: wL, stride: sL, # filters: 1)

Hidden
(∏ "#$%&

#'& Tspec x cL-1)

Head 1 Head n...

+

Head i

Head i ...

× × ×

Scaled softsign:) * = ,*/(1 + |2*|)

4& 4# 45

ELU

ELU

ELU

Fig. 1. Proposed MCNN architecture for spectrogram inversion.

To synthesize a waveform from the spectrogram, a function
parameterized by a neural network needs to perform nonlinear
upsampling in time domain, while utilizing the spectral infor-
mation in different channels. Typically, the window length is
much longer than the hop length, and it is important to utilize
this extra information in neighboring time frames. For fast
inference, we need a neural network architecture that achieves
a high compute intensity by repeatedly applied computations
with the same kernel.

Based on these motivations, we propose the multi-head
convolutional neural network (MCNN) architecture. MCNN
has multiple heads that use the same types of layers but
with different weights and initialization, and they learn to
cooperate as a form of ensemble learning. By using multiple
heads, we allow each model to allocate different upsampling
kernels to different components of the waveform which is
analyzed further in Appendix B. Each head is composed of L
transposed convolution layers (please see [16] for more details
about transposed convolutional layers), as shown in Fig. 1.
Each transposed convolution layer consists of a 1-D temporal
convolution operation, followed by an exponential linear unit
[17]1. For the lth layer, wl is the filter width, sl is the stride,
and cl is the number of output filters (channels). Striding in
convolutions determines the amount of temporal upsampling,
and should be chosen to satisfy

∏L
l=1 sl ·Tspec = Twave. Filter

widths control the amount of local neighborhood information
used while upsampling. The number of filters determine the

1It was empirically found to produce superior audio quality than other
nonlinearities we tried, such as ReLU and softsign.

number of frequency channels in the processed representation,
and should be gradually reduced to 1 to produce the time-
domain waveform. As the convolutional filters are shared
in channel dimension for different timesteps, MCNN can
input a spectrogram with an arbitrary duration. A trainable
scalar is multiplied to the output of each head to match the
overall scaling of inverse STFT operation and to determine
the relative weights of different heads. Lastly, all head outputs
are summed and passed through a scaled softsign nonlinearity,
f(x) = ax/(1 + |bx|), where a and b are trainable scalars, to
bound the output waveform.

III. AUDIO LOSSES

Loss functions that are correlated with the perceptual quality
should be used to train generative models. We consider a linear
combination of the below loss terms between the estimated
waveform ŝ and the ground truth waveform s, presented in
the order of observed empirical significance:
(i) Spectral convergence (SC):

‖|STFT(s)| − |STFT(ŝ)|‖F /‖|STFT(s)|‖F , (1)

where ‖·‖F is the Frobenius norm over time and frequency. SC
loss emphasizes highly on large spectral components, which
helps especially in early phases of training.
(ii) Log-scale STFT-magnitude loss:

‖ log(|STFT(s)|+ ε)− log(|STFT(ŝ)|+ ε)‖1, (2)

where ‖ · ‖1 is the L1 norm and ε is a small number. The goal
with log-scale STFT-magnitude loss is to accurately fit small-
amplitude components (as opposed to the SC), which tends to
be more important towards the later phases of training.
(iii) Instantaneous frequency loss:∥∥∥∥ ∂∂tφ(STFT(s))− ∂

∂t
φ(STFT(ŝ))

∥∥∥∥
1

, (3)

where φ(·) is the phase argument function. The time derivative
∂
∂t is estimated with finite difference ∂f

∂t = f(t+∆t)−f(t)
∆t .

Spectral phase is highly unstructured along either time or
frequency domain, so fitting raw phase values is very chal-
lenging and does not improve training. Instead, instantaneous
frequency is a smooth phase-dependent metric, which can be
more accurately fit.
(iv) Weighted phase loss:

‖|STFT(s)| � |STFT(ŝ)| − <{STFT(s)} � <{STFT(ŝ)}
− ={STFT(s)} � ={STFT(ŝ)}‖1, (4)

where � is element-wise product, < is the real part and =
is the imaginary part. When a circular normal distribution is
assumed for the phase, the log-likelihood function is propor-
tional to L(s, ŝ) = cos(φ(STFT(s))− φ(STFT(ŝ))) [18]. We
can correspondingly define a loss as W (s, ŝ) = 1 − L(s, ŝ),
which is minimized (W (s, ŝ) = 0) when φ(STFT(s)) =
φ(STFT(ŝ)). To focus on the high-amplitude components
more and for better numerical stability, we further modify
W (s, ŝ) by scaling it with |STFT(s)|�|STFT(ŝ)|, which yields
Eq. 4 after L1 norm.

3

IV. EXPERIMENTAL RESULTS

A. Experimental setup

We use the LibriSpeech dataset [19], after a preprocessing
pipeline, composed of segmentation and denoising, similar
to [10]. LibriSpeech contains 960 hours of public-domain
audiobooks from 2484 speakers sampled at 16 KHz. It is
originally constructed for automatic speech recognition and
the audio quality is thus lower compared to speech synthesis
datasets.

As the spectrogram parameters, a hop length of 256 (16 ms
duration), a Hanning window with a length of 1024 (64 ms
duration), and an FFT size of 2048 are assumed. MCNN has 8
transposed convolution layers, with (si, wi, ci) = (2, 13, 28−i)
for 1 ≤ i ≤ 8, i.e. halving in the number of channels is
balanced with temporal upsampling by a factor of two. The
coefficients of the loss functions in Sec. III are chosen as 1,
6, 10 and 1 respectively, optimized for the audio quality by
employing a random grid search. The model is trained using
the Adam optimizer [20]. The initial learning rate of 0.0005 is
annealed at a rate of 0.94 every 5000 iterations. The model is
trained for ∼600k iterations with a batch size of 16 distributed
across 4 GPUs with synchronous updates. We compare our
results to conventional implementations of GL [1] and SPSI
[3] with and without extra GL iterations.
B. Synthesized audio waveform quality

A synthesized audio waveform is exemplified in Fig. 2. We
observe that complicated patterns can be fit, and there is a
small phase error between relevant high-amplitude spectral
components (the amount of shift between the peaks is low).

Fig. 2. Comparison of the waveform (entire utterance and a zoomed portion)
and its spectrogram, for the ground truth (left) and MCNN-generated (right).

We evaluate the quality of synthesis on the held-out Lib-
riSpeech samples (Table I) using mean opinion score (MOS)2,
SC, and classification accuracy (we use the speaker classifier
model from [21]) to measure the distinguishability of 2484
speakers.3

2Human ratings are collected via Amazon Mechanical Turk framework
independently for each evaluation, as in [21]. Multiple votes on the same
sample are aggregated by a majority voting rule.

3Audio samples can be found in https://mcnnaudiodemos.github.io/.

Fig. 3. Log-STFT of synthesized sample for MCNN trained with only SC
loss (top) and all losses (bottom).

According to the subjective human ratings (MOS), MCNN
outperforms GL, even with a high number of iterations and
SPSI initialization. When trained only on spectral convergence
(SC), MCNN is on par with GL. Indeed, merely having SC
loss as the training objective yields even slightly better SC
for test samples. Yet, with only SC loss, lower audio quality
is observed for some samples due to generated background
noise and less clear high frequency harmonics, as exemplified
in Fig. 3. To further improve the audio quality, flexibility of
MCNN for integration of other losses is beneficial, as seen
from Table I. Ablation studies also show sufficiently large filter
width and sufficiently high number of heads are important.
Transposed convolutions tend to produce checkerboard-like
patterns [22], and a single-head may not be able to generate
all frequencies efficiently. In an ensemble, however, different
heads cooperate to cancel out artifacts and cover different
frequency bands, as further elaborated in Appendix B. Lastly,
high speaker classification accuracy shows that MCNN can
efficiently preserve the characteristics of speakers (e.g. pitch,
accent, etc.) without any conditioning, showing potential for
direct integration into training for applications like voice
cloning.

C. Generalization and optimization to a particular speaker

The audio quality is maintained even when the MCNN
trained on LibriSpeech is used for an unseen speaker (from
a high-quality text-to-speech dataset [23]), as shown in Table
II. To evaluate how much the quality can be improved, we
also train a separate MCNN model using only that particular
speaker’s audio data, with reoptimized hyperparameters.4 The
single-speaker MCNN model yields a very small quality gap
with the ground truth.

D. Representation learning of the frequency basis

MCNN is trained only with human speech, which is com-
posed of time-varying signals at many frequencies. Inter-
estingly, MCNN learns the Fourier basis representation in

4Filter width is increased to 19 to improve the resolution for modeling
of more clear high frequency components. Lower learning rate and more
aggressive annealing are applied due to the small size of the dataset, which is
∼20 hours in total. Loss coefficient of Eq. 2 is increased because the dataset
is higher in quality and yields lower SC.

https://mcnnaudiodemos.github.io/

4

TABLE I
MOS WITH 95% CONFIDENCE INTERVAL, AVERAGE SPECTRAL CONVERGENCE AND SPEAKER CLASSIFICATION ACCURACY FOR LIBRISPEECH TEST

SAMPLES.

Model MOS (out of 5) Spectral convergence (dB) Classification accuracy (%)
MCNN (filter width of 13, 8 heads, all losses) 3.50 ± 0.18 −12.9 76.8

MCNN (filter width of 9) 3.26 ± 0.18 −11.9 73.2
MCNN (2 heads) 2.78 ± 0.17 −10.7 71.4

MCNN (loss: Eq. (1)) 3.32 ± 0.16 −13.3 69.6
MCNN (loss: Eq. (1) & Eq. (2)) 3.35 ± 0.18 −12.6 73.2

GL (3 iterations) 2.55 ± 0.26 −5.9 76.8
GL (50 iterations) 3.28 ± 0.24 −10.1 78.6
GL (150 iterations) 3.41 ± 0.21 −13.6 82.1

SPSI 2.52 ± 0.28 −4.9 75.0
SPSI + GL (3 iterations) 3.18 ± 0.23 −8.7 78.6

SPSI + GL (50 iterations) 3.41 ± 0.19 −11.8 78.6
Ground truth 4.20 ± 0.16 −∞ 85.7

TABLE II
MOS WITH 95% CONFIDENCE INTERVAL FOR SINGLE-SPEAKER SAMPLES

(FROM AN INTERNAL DATASET [23]).

Model MOS (out of 5)
MCNN (trained on LibriSpeech) 3.55 ± 0.17

MCNN (trained on single-speaker 3.91 ± 0.17
GL (150 iterations) 3.84 ± 0.16

SPSI + GL (50 iterations) 3.69 ± 0.17
Ground truth 4.28 ± 0.14

Fig. 4. Synthesized waveforms by MCNN (trained on LibriSpeech), for
spectrogram inputs corresponding to sinusoids at 500, 1000 and 2000 Hz,
and for a spectrogram input of superposed sinusoids at 1000 and 2000 Hz.

the spectral range of human speech, as shown in Fig. 4
(representations get poorer for higher frequencies beyond
human speech, due to the increased train-test mismatch). When
the input spectrograms correspond to constant frequencies,
sinusoidal waveforms at those frequencies are synthesized.
When the input spectrograms correspond to a few frequency
bands, the synthesized waveforms are superpositions of pure
sinusoids of constituent frequencies. For all cases, phase
coherence over a long time window is observed.

E. Deployment considerations

We evaluate the inference complexity and compute intensity
(based on the assumptions presented in Appendix A) and

benchmark runtime on a Nvidia Tesla P100 GPU.5 The
baseline MCNN model from Table 1 (the one in bold font)
can generate ∼5.2M samples/sec, yielding ∼330 times faster-
than-real-time waveform synthesis. Compared to MCNN, the
runtime of GL is ∼20 times slower for 50 iterations, and ∼60
times slower for 150 iterations. The computational complexity
of MCNN is ∼2.2 GFLOPs/sec, and indeed is slightly higher
than the complexity of 150 GL iterations. However, much
shorter runtime is due to the properties of the neural network
architecture that render it very well suited for modern multi-
core processors like GPUs or TPUs. First and foremost,
MCNN requires much less DRAM bandwidth (in byte/s) - the
compute intensity of MCNN, 61 FLOPs/byte, is more than an
order of magnitude higher than that of GL, 1.9 FLOPs/byte.
In addition, MCNN has a shorter critical path of dependent
operations in its compute graph compared to GL, yielding
parallelization and utilization. Efficient inference with such
a highly-specialized model is enabled by learning from large-
scale training data, which is not possible for signal processing
algorithms like GL.

V. CONCLUSIONS

We propose the MCNN architecture for the spectrogram
inversion problem. MCNN achieves very fast waveform syn-
thesis without noticeably sacrificing the perceptual quality.
MCNN is trained on a large-scale speech dataset and can
generalize well to unseen speech or speakers. MCNN and
its variants will benefit even more from future hardware in
ways that autoregressive neural network models and traditional
iterative signal processing techniques like GL cannot take
advantage of. In addition, they will benefit from larger scale
audio datasets, which are expected to close the gap in quality
with ground truth. An important future direction is to integrate
MCNN into end-to-end training of other generative audio
models, such as text-to-speech or audio style transfer systems.

5We consider the Tensorflow implementation of operations without specific
kernel optimizations, which can yield to further improvements specific to the
hardware. For a fair comparison, we consider the GPU implementation of GL
using Tensorflow FFT/inverse FFT operations.

5

REFERENCES

[1] D. Griffin and J. Lim, “Signal estimation from modified short-time
fourier transform,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 2, pp. 236–243, Apr 1984.

[2] N. Perraudin, P. Balazs, and P. L. Sndergaard, “A fast griffin-lim algo-
rithm,” in 2013 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, Oct 2013, pp. 1–4.

[3] G. T. Beauregard, M. Harish, and L. Wyse, “Single pass spectrogram
inversion,” in 2015 IEEE International Conference on Digital Signal
Processing (DSP), July 2015, pp. 427–431.

[4] Z. Prusa, P. Balazs, and P. L. Sondergaard, “A noniterative method for
reconstruction of phase from stft magnitude,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 25, no. 5, pp. 1154–
1164, May 2017.

[5] D. L. Sun and J. O. Smith, III, “Estimating a Signal from a Magnitude
Spectrogram via Convex Optimization,” arXiv: 1209.2076, 2012.

[6] A. van den Oord, Y. Li, I. Babuschkin, Simonyan et al., “Parallel
WaveNet: Fast High-Fidelity Speech Synthesis,” arXiv:1711.10433, Nov.
2017.

[7] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerry-Ryan et al., “Natural tts synthesis by
conditioning wavenet on mel spectrogram predictions,” arXiv preprint
arXiv:1712.05884, 2017.

[8] S. Ö. Arik, G. F. Diamos, A. Gibiansky et al., “Deep voice 2: Multi-
speaker neural text-to-speech,” arXiv: 1705.08947, 2017.

[9] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A gnerative model for raw audio,” arXiv:1609.03499, 2016.

[10] W. Ping, K. Peng, A. Gibiansky et al., “Deep voice 3: 2000-speaker
neural text-to-speech,” arXiv: 1710.07654, 2017.

[11] Y. Wang, R. J. Skerry-Ryan, D. Stanton et al., “Tacotron: A fully end-
to-end text-to-speech synthesis model,” arXiv: 1703.10135, 2017.

[12] N. P. Jouppi, C. Young, N. Patil et al., “In-datacenter performance
analysis of a tensor processing unit,” SIGARCH Comput. Archit. News,
vol. 45, no. 2, pp. 1–12, Jun. 2017.

[13] H. Jia, Y. Zhang, G. Long, J. Xu, S. Yan, and Y. Li, “Gpuroofline:
A model for guiding performance optimizations on gpus,” in Euro-Par
2012 Parallel Processing, C. Kaklamanis, T. Papatheodorou, and P. G.
Spirakis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[14] E. Grinstein, N. Q. K. Duong, A. Ozerov, and P. Pérez, “Audio style
transfer,” arXiv: 1710.11385, 2017.

[15] C. Donahue, B. Li, and R. Prabhavalkar, “Exploring speech enhancement
with generative adversarial networks for robust speech recognition,”
arXiv: 1711.05747, 2017.

[16] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv: 1603.07285, 2016.

[17] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units,” arXiv: 1511.07289, 2015.

[18] J. Engel, C. Resnick, A. Roberts et al., “Neural audio synthesis of
musical notes with wavenet autoencoders,” arXiv: 1704.01279, 2017.

[19] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
ASR corpus based on public domain audio books,” in Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference
on. IEEE, 2015, pp. 5206–5210.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv: 1412.6980, vol. abs/1412.6980, 2014.

[21] S. O. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou, “Neural Voice
Cloning with a Few Samples,” arXiv: 1802.06006, 2018.

[22] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, 2016. [Online]. Available: http://distill.pub/2016/
deconv-checkerboard

[23] S. Ö. Arik, M. Chrzanowski, A. Coates et al., “Deep voice: Real-time
neural text-to-speech,” arXiv: 1702.07825, 2017.

[24] “Fft benchmark methodology,” http://www.fftw.org/speed/method.html,
accessed: 2018-07-30.

[25] “Tensorflow profiler and advisor,” https://github.com/tensorflow/
tensorflow/blob/master/tensorflow/core/profiler/README.md, accessed:
2018-07-30.

APPENDIX

A. Complexity modeling

Computational complexity of operations is represented by
the total number of algorithmic FLOPs without consider-
ing hardware-specific logic-level implementations. (Such a
complexity metric also has limitations of representing some
major sources of power consumption, such as loading and
storing data.) We count all point-wise operations (including
nonlinearities) as 1 FLOP, which is motivated with the trend
of implementing most mathematical operations as a single
instruction. We ignore the complexities of register memory-
move operations. We assume that a matrix-matrix multiply,
between W , an m × n matrix and X , an n × p matrix takes
2mnp FLOPs. Similar expression is generalized for multi-
dimensional tensors, that are used in convolutional layers.
For real-valued fast Fourier transform (FFT), we assume the
complexity of 2.5N log2(N) FLOPs for a vector of length
N [24]. For most operations used in this paper, Tensorflow
profiling tool [25] includes FLOP counts, which we directly
adapted.

B. Analysis of contributions of multiple heads

Fig. 5 shows the outputs of individual heads along with the
overall waveform. We observe that multiple heads focus on
different portions of the waveform in time, and also on differ-
ent frequency bands. For example, head 2 mostly focuses on
low-frequency components. While training, individual heads
are not constrained for such a behavior. In fact, different heads
share the same architecture, but initial random weights of the
heads determine which portions of the waveform they will
focus on in the later phases of training. The structure of the
network promotes cooperation with the end-to-end objective.
Hence, initialization with the same weights would nullify the
benefit of the multi-head architecture. Although intelligibility
of individual waveform outputs is very low (we also note
that a nonlinear combination of these waveforms can also
generate new frequencies that do not exist in these individual
outputs.), their combination can yield highly natural-sounding
waveforms.

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
http://www.fftw.org/speed/method.html
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/profiler/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/profiler/README.md

6

Fig. 5. Top row: An example synthesized waveform and its log-STFT. Bottom 8 rows: Outputs of the waveforms of each of the constituent heads. For better
visualization, waveforms are normalized in each head and small-amplitude components in STFTs are discarded after applying a threshold.

	I Introduction
	II Multi-head Convolutional Neural Network
	III Audio Losses
	IV Experimental Results
	IV-A Experimental setup
	IV-B Synthesized audio waveform quality
	IV-C Generalization and optimization to a particular speaker
	IV-D Representation learning of the frequency basis
	IV-E Deployment considerations

	V Conclusions
	References
	Appendix
	A Complexity modeling
	B Analysis of contributions of multiple heads

