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Abstract—We investigate the benefits of known partial support
for the recovery of joint-sparse signals and demonstrate that
it is advantageous in terms of recovery performance for both
rank-blind and rank-aware algorithms. We suggest extensions
of several joint-sparse recovery algorithms, e.g. simultaneous
normalized iterative hard thresholding, subspace greedy methods
and subspace-augmented multiple signal classification (MUSIC)
techniques. We describe a direct application of the proposed
methods for compressive multiplexing of ultrasound (US) signals.
The technique exploits the compressive multiplexer architecture
for signal compression and relies on joint-sparsity of US signals
in the frequency domain for signal reconstruction. We validate
the proposed algorithms on numerical experiments and show
their superiority against state-of-the-art approaches in rank-
defective cases. We also demonstrate that the techniques lead to a
significant increase of the image quality on in vivo carotid images
compared to reconstruction without partially known support. The
supporting code is available on https://github.com/AdriBesson/
spl2018_joint_sparse.

Index Terms—Compressed Sensing, Ultrasound, Greedy Algo-
rithms, Joint Sparsity, MUSIC,

I. INTRODUCTION

OMPRESSED SENSING (CS) [1], [2] aims at solving

a single measurement vector (SMV) problem where
one would like to retrieve a k-sparse vector x € X; from
measurements y = Ax € K" where A € K™, %, =
{x € K" | |supp(x)| < k} and supp (x) denotes the support of
x.

Distributed CS extends CS to the multiple measurement
vectors (MMV) problem [3], [4] whose purpose is to recover
multiple sparse vectors X = [x1,Xx2,...,xy] € K™V from
measurements ¥ = AX € K™V [5]. Under the assumption
that the signals x;,i = 1,..., N, share the same support (JSM-
2 model in [5]), the MMV problem can be written as

min || X|lorow Subject to Y = AX, (D
XeKnXN

where || X||oow counts the number of non-zero rows of X.
Many techniques have been introduced to tackle the MMV
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problem. A first group exploits the multiple signal classi-
fication (MUSIC) algorithm, popular in array signal pro-
cessing. Indeed, Feng and Bresler [6] demonstrate that X
can be retrieved using a singular value decomposition of
Y in the full-rank case. Extensions of the MUSIC algo-
rithm to rank-defective cases have been proposed such as
subspace-augmented MUSIC (SA-MUSIC) [7], compressive
MUSIC (CS-MUSIC) [8] and semi-supervised MUSIC [9].
The second group of techniques extend algorithms developed
for standard CS to the MMV case. Mixed-norm algorithms ex-
ploit extensions of £;-minimization algorithms [10], [11], [12].
Several greedy algorithms have also been extended leading to
simultaneous orthogonal matching pursuit [13], [14], simulta-
neous normalized hard thresholding pursuit [15], [16], simulta-
neous compressive sampling matching pursuit [16] and simul-
taneous normalized iterative hard thresholding (SNIHT) [16].
In [17], Davies and Eldar introduce rank-aware orthogonal
recursive matching pursuit (RA-ORMP), a greedy method
which exploits the rank information of X. Lee et al. [7]
propose the orthogonal subspace matching pursuit (OSMP),
very similar to RA-ORMP.

CS with partially known support consists in injecting a
prior knowledge of the support of the unknown signal into
the CS problem resulting in fewer necessary measurements
than standard CS. The concept has been developed for the
SMV problem by Vaswani and Lu [18] and extended by
Jacques [19]. Carrillo er al. [20], [21] have also suggested
extensions of various greedy algorithms.

In this work, we propose to study the benefits of known
partial support on the performance of joint-sparse recovery
algorithms. In Section II, we present uniqueness conditions
for the solution of Problem (1) in case of partially known
support. We also propose extensions of several algorithms, i.e.
SNIHT, RA-ORMP, OSMP and subspace augmented MUSIC
methods. In Section III, we show an application of the pro-
posed algorithms to the recovery of ultrasound (US) signals
from multiplexed measurements. The proposed methods are
validated through numerical experiments and applied on in
vivo carotid US images in Section IV. Concluding remarks
are given in Section V.

II. JOINT SPARSITY WITH PARTIALLY KNOWN SUPPORT
A. Notation

Symbol K denotes a scalar field, e.g. R or C. Given a
space 7 ¢ KN, dim (7) designates its dimension, P and Pj.
define the projectors onto 7 and its orthogonal complement


https://github.com/AdriBesson/spl2018_joint_sparse
https://github.com/AdriBesson/spl2018_joint_sparse

I+, Similarly, given a set of integers J c {1,...,n}, J =
{1,...,n} \ J denotes its complement and |J| its cardinality.
The Hermitian transpose of a matrix X is denoted by X*
and the Moore pseudo-inverse by X'. || X|| is the Frobenius
norm of X. Xy, (resp. Xjz,) is the sub-matrix formed by the
restriction of X to the rows (resp. the columns) indexed by
Jo. The space spanned by the columns of X is defined by
R (X). The rank of X is designated by rank (X) and spark (X)
defines its spark i.e. the smallest number of columns from
X that are linearly dependent. We use supp (X) as the row-
support of X and E](C"’N as the set of k-row-sparse matrices of
K"™N_ We also refer the reader to the definition of the upper
and lower asymmetric restricted isometry (ARIP) constants of
order k [16], denoted as Uy and L; and whose definitions
are given in supplementary material of this work. In the
remainder, we are interested in recovering X € E,(C"’N) such
that supp (X) = J = JoU Jy, with Jy c {1,...,n} and J; C Jy,
from measurements ¥ = AX, with A € K™, We assume that
Jo is known a priori.

B. Uniqueness of the {y-norm Minimization

In this section, we extend the uniqueness condition derived
by Vaswani and Lu [18] to the MMV problem. The objective
is to establish guarantees of uniqueness of the solutions in the
case of MMV problems with partially known support that are
weaker than the ones for standard MMV problems [3], [4].
In order to do that, we reformulate the problem with partially
known support as:

Xgllii,le"X(ﬁ))”(’»mW subject to Y = AX. )
The following theorem gives an upper bound on the sparsity

for the MMV problem with partially known support in the
general case.

Theorem 1. The matrix X, with supp (X) = JyUJy, Jy known,
will be the unique solution of (2), if Y = AX and

- spark (A) + |Jo|
3 )

Proof. Define X! € K™ and X2 € K™V such that X' #
X2 and both are solutions of (2). Consider that the rows of
X! (resp. X?) are supported on Jo U A; (resp. Jo U A;) such
that |A;| = |Az| = u. Thus, the rows of X' — X? are supported
on JyUA; UA; and we can write the following equivalence

k 3)

AJQUA]UAz(Xl - Xz)(J()UAIUAz) = O < X] = X27 (4)

if spark (A) > |Jo| +2u > |Jo U A; U Az|. Using the fact that
k = |Jo| + u, (3) holds. O

Theorem 1 is an extension to the MMV problem of Propo-
sition 1 of [18] and the upper bound is the same as for the
SMYV problem. At this point, it would be beneficial to combine
the information on rank (Y) and the partially known support
to relax the uniqueness condition provided for rank-aware
algorithms [3], [6], [17]. To do so, we remind the following
lemma.

Lemma 1 (Theorem 2.4 of [3]). The matrix X will be the
unique solution of (1), if Y = AX and
spark (A) + rank (Y) — 1
> .
We can now state the main claim of the section:

k <

&)

Theorem 2. The matrix X, with supp (X) = JoUJy, Jy known,
will be the unique solution of (1), if Y = AX and
- spark (A) + rank (Y,) — 1

k b
2

(6)
where Y, = [Y, AJO].

Proof. Consider Y, = [Y, A JO]. We define the augmented
signal matrix X, = [X, IJO] , where I, € R™<Mol i the identity
with columns restricted to Jy, such that Y, = AX,. We can see
that supp (X,) = supp (X). Thus, by applying Lemma 1 and
if (6) holds, X, is the unique solution of the augmented MMV
problem and X is therefore the unique solution of (1). m}

Theorem 2 can be interpreted in terms of subspace augmen-
tation discussed in Proposition 5.6 of [7]. Indeed, the partially
known support Jy is used to augment the signal subspace
R (Y) with basis vectors of R(Ay,). Thus, it is advantageous
when some of the basis vectors of R(A,) are orthogonal to
R (Y). Now that we have established uniqueness conditions,
we propose extensions of existing joint sparse algorithms to
partially known support.

C. Greedy Methods With Partially Known Support

1) RA-ORMP and OSMP: RA-ORMP and OSMP are very
similar as explained in [7] and the argument detailed below
may be applied to both algorithms. For conciseness, we focus
on RA-ORMP in the remainder. The partially known support
can be exploited in the initialization step of the RA-ORMP
algorithm [17]. The idea is to consider Jy as the initial support
in the algorithm and perform the following initialization:

0 _ plL
R =P, ¥ ™
D= PJRE(AJO)A, D, = ®,/||®y|}, V1 ¢ Jo, )

where the notations ® and ®, are used to be consistent
with [17]. The RA-ORMP procedure initalized with the above
steps is denoted as RA-ORMP-PKS. The remaining steps of
RA-RORMP-PKS are the same as RA-ORMP (Algorithm 3
of [17]) and aim at recovering the unknown support J;. Re-
garding the recovery, RA-ORMP-PKS is guaranteed to recover
X from Y in the noiseless case provided that rank (Y,) = k (by
application of Theorem 6 of [17] to the augmented matrix Y,,).
2) SNIHT: SNIHT proposes an extension of the iterative
hard thresholding (IHT) algorithm [22] to the MMV prob-
lem [16]. Based on the extension of IHT to partially known
support [21], we suggest SNIHT-PKS in which steps 7 — 9 of
SNIHT (Algorithm 1 in [16]) are replaced by the following:

X' =H (X + w(ATRTY), ©

where w € R and the non-linear operator W,;’ (.) is defined for
Jc{l,...,n} as

H (X) = Xy + He(X (7)), (10)



where Hj (X) is the hard-thresholding operator which selects
the k rows of X with largest row-£>-norm. We state the main
result of this section, which provides an upper bound on
the discrepancy between the output of SNIHT-PKS and the
optimal row-sparse approximation of the solution.

Theorem 3 (Simultaneous Sparse Approximation with Par-
tially Known Support). Consider that Y = AXj,us,) +E. If A
satisfies the following ARIP conditions: 2Ucp +2Lcr + Ly < 1
where ¢ € N is such that ck > 3k — 2|Jy|, then the error of
SNIHT-PKS at iteration i is bounded by:

IX" = Xllr < @' 11X llF + IE]IF,

Y

1-a

where a = 2%, B = 2—‘}:5‘“ and d € N is such that
k k

dk > 2k — |Jy|.

The proof is given in the supplementary material of the
proposed work. It can be seen that the results are closed to
the one obtained by Carillo ef al. [21] for the SMV case, in
which the matrix A has to meet the RIP property of order 3k —
2|Jp|. In addition, the ARIP conditions provided by Theorem 3
are weaker than the ones of SNIHT, which can be translated
into fewer measurements necessary to fulfill (11). Howver,
compared to the bound established in Theorem 1, SNIHT-PKS
requires A to be ck-RIP which is stronger than spark (A) >
2k = |Jol.

D. MUSIC-based Methods with Partially Known Support

MUSIC-based algorithms exploit additional information
provided by the signal subspace to help the recovery of
X [6]. In the case of partially known support, we rely on
the augmented measurement matrix Y, rather than ¥ and we
use the following criterion to identify supp(X): Vj € Jo,
j € Ji if and only if Q;A; = 0 and rank(Y,) = k, where
0. € R™m=k) is an orthonormal basis of R (Y,)*.

In the rank-defective case where rank (Y,) < k, we first
identify k — rank (Y') components of supp (X) using a greedy
algorithm initialized with the partially known support. The
remaining rank (Y) components either come from the sig-
nal subspace (SA-MUSIC [7]) or are identified based on a
generalized MUSIC criterion (CS-MUSIC [8]). We use the
partially known support to initialize the greedy algorithm since
the success of subspace augmented methods relies on the
successful partial support recovery of the greedy algorithm
and it is known that forward selection approaches perform far
better when smaller subsets have to be recovered [7].

III. MULTIPLEXING OF ULTRASOUND SIGNALS

High-quality 3D US imaging necessitates a US probe of
more than thousands of transducer elements and the ability
to perform electronic focusing would require as many coaxial
cables connecting the probe to the back-end system resulting in
very cumbersome equipments. In order to reduce the amount
of cables, sparse array techniques where a subset of transducer
elements are used for imaging have been widely studied [23].
Many different strategies have been designed such as random
sparse arrays [24], [25], Vernier arrays [26], row-column

addressed arrays [27], [28], [29] and free-hand [30] or motor-
ized [31] 1D arrays. Alternatively, pre-beamforming methods,
where part of the imaging process is achieved in the head
of the probe [32], and time multiplexing techniques have
been investigated for both dense and sparse arrays [32], [33],
[34]. While proposing a drastic reduction on the number of
transducer elements, such methods have a significant impact
either on the image quality [23] or on the frame rate.

In this section, we describe a direct application of the
proposed algorithms for compressive multiplexing of US sig-
nals. More precisely, we propose to exploit the compressive
multiplexer (CMUX) [35] architecture to reduce both the
number of analog cables connecting the US probe to the
back-end system and the number of analog-to-digital convert-
ers (ADC). We consider a US probe made of N transducer
elements which receive signals as backscattered echoes from
a previously insonified medium, at a rate Q during a time
T. The set of those signals is denoted as element raw-data
and stored as M € R™N where n = TQ. In the proposed
architecture, described in Figure 1, we equip the head of the
probe with N, CMUX, each of which working at Q and
compressing N; signals, with N = N,N.. Thus, one may
require only N. <« N coaxial cables connecting the probe
to the back-end system and only N, < N ADC. Formally,
the measurements have the following form: ¥ = A (M) + E,
where A : R™Nt — R™Ne ig the linear operator associated
with the CMUX architecture [35] and E € C™™Ne ig the noise.

CMUX 1
rate Q

1|:|\
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Ny +1[0—

2N, [

CMUX 2
rate Q

vV
Y. Y2, ..

"ch] =Y

N —=N; + 1 [}
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Transducer elements

CMUX N,
rate Q

Fig. 1. Ultrasound Compressive Multiplexer Architecture.

US signals are known to have a relatively sparse spec-
trum [36], [37] due to the piezo-electric properties of trans-
ducer elements and the high sampling frequency required for
delay resolution of delay-and-sum beamforming [38]. In addi-
tion, we usually have a partial knowledge of such a spectrum
which is measured by probe manufacturers. Thus, we are in
a scenario where joint sparse algorithms with partially known
support can be leveraged. Puts formally, we introduce the 1D
discrete Fourier transform F € C™" and the associated Fourier
coefficients M = FM such that supp(M ) = Jo U Jp, where Jy
is the known part of the spectrum, |supp(M)| < n, and we
solve the following joint-sparse regularization problem:

min ||M|loow Subject to Y = A(F*M)+E.  (12)
MEC”XN



IV. EXPERIMENTS
A. Numerical Experiments

We explore the empirical performance of SA-MUSIC-PKS,
RA-ORMP-PKS and SNIHT-PKS in a noiseless situation and
under additive Gaussian noise with a signal-to-noise ratio of
30dB. We consider a Gaussian random measurement matrix
A e R™" with A;; ~ N(0,1), such that ||A;]l, = 1 and n is
fixed to 128. The signal matrix X € R™¥ is built as a random
matrix, with N = k = 30. 1000 random trials of the algorithms
are run for each experiment and the recovery probability is
computed as the rate of successful support recovery.

The impact of the partially known support is first analyzed
by comparing the recovery probability of SA-MUSIC-PKS for
a fixed rank (s = 10), for a number of measurements ranging
between 30 and 90, when 0 %, 25 %, 50 % and 75 % of the
support is known a priori. Then, we compare the methods with
their counterpart without known support on two experiments:
fixed rank (s = 10) for a number of measurements ranging
between 30 and 90 and fixed number of measurements (m =
51) for a rank varying between 1 and 30. For both experiments,
75 % of the support is assumed to be known.
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Fig. 2. (a) and (d) Recovery probability of SA-MUSIC-PKS for varying
number of measurements and size of the known support. (b)-(c)-(e)-(f) Recov-
ery probability of SA-MUSIC-PKS, RA-ORMP-PKS and SNIHT-PKS against
SA-MUSIC, RA-ORMP and SNIHT for varying number of measurements ((b)
and (e)) and varying ranks ((c) and (f)) in a noiseless ((b) and (c)) and in a
noisy scenario ((e) and (f)).

On Figs 2a and 2d, we can see that SA-MUSIC-PKS is
more accurate when larger part of the support is known
for both the noiseless and the noisy cases, as expected. On
Fig. 2b, we observe that the methods with partially known
support achieve significantly better reconstruction than their
counterpart without known support in a noiseless scenario
which validates the main results of Section II. On Fig. 2e,
we see that the conclusions drawn for the noiseless scenario
extend to the noisy scenario for SA-MUSIC and SNIHT.
Regarding RA-ORMP, we observe that the results in the noisy
scenario are significantly lower than in the noiseless scenario
due to the fact that the additive noise has a drastic impact
on the correlation step involved in RA-ORMP (widely studied
in the SMV problem [39]). In this case, RA-ORMP-PKS is
only slightly better than RA-ORMP since the algorithm fails to
recover the unknown part of the support. Figs. 2c and 2f show
the benefits of partially known support in terms of the minimal

value of s for perfect support recovery. As for Fig. 2b and 2e,
we notice that the partially known support significantly helps
the recovery of the different algorithms except for RA-ORMP
in the noisy case.

Further experiments dedicated to the empirical validation of
Theorem 2 are described in the supplementary material.

B. In vivo Ultrasound Signals

US signals from in vivo carotids have been acquired using a
Verasonics US scanner (Redmond, WA, USA) equipped with
the ATL-L7-4 probe, operating at 5.2 MHz with 60 % band-
width and 128 transducer elements. The CMUX architecture
is simulated off-line using Python and works at 62.5 MHz,
with a multiplexing ratio 1/8. On the reconstruction side,
we use SNIHT-PKS with 500 iterations. The reasons for the
choice of SNIHT-PKS are three-fold. First, the high rank-
deficiency (N < n) motivates the use of rank-blind algorithms.
In addition, SNIHT-PKS has been theoretically proved to be
robust to noise (Theorem 3). Finally, the data are complex-
valued and relatively high dimensional which prevents the use
of pseudo-inverse or EVD, necessary for RA-ORMP and SA-
MUSIC. We assume that Jy contains the indices of the frequen-
cies lying between 2.9MHz and 6 MHz which corresponds
to 85 % of the signal energy. Delay-and-sum beamforming is
applied on the recovered US signals followed by envelope
detection, normalization and log-compression. The reference
log-compressed B-mode image is displayed in Fig. 3a. The
images corresponding to the reconstructions with SNIHT-PKS
and SNIHT are given in Figs. 3b and 3c.
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Both visual assessment and values of the peak-signal-to-
noise-ratio (PSNR), computed on the B-mode image and
reported in the caption of Fig. 3, show the superior quality
of the reconstruction with SNIHT-PKS compared to SNIHT.

V. CONCLUSION

In this work, we investigate the recovery of jointly sparse
vectors when partial support is known. We quantify the ben-
efits of the known support in terms of a higher upper bound
on the row-sparsity than standard MMV problems. We also
suggest adaptations of greedy algorithms as well as MUSIC-
based methods to incorporate the additional information. We
apply the proposed algorithms to the recovery of ultrasound
signals from compressed measurements, where the objective
is to multiplex signals in order to reduce the number of
coaxial cables and ADCs. By exploiting the prior knowledge
on the frequency support of the signals, we demonstrate that
the proposed algorithms significantly outperform the standard
MMV ones.
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