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Selective Light Field Refocusing for Camera Arrays
Using Bokeh Rendering and Superresolution

Yinggian Wang, Jungang Yang,

Abstract—Camera arrays provide spatial and angular infor-
mation within a single snapshot. With refocusing methods, focal
planes can be altered after exposure. In this letter, we propose a
light field refocusing method to improve the imaging quality of
camera arrays. In our method, the disparity is first estimated.
Then, the unfocused region (bokeh) is rendered by using a depth-
based anisotropic filter. Finally, the refocused image is produced
by a reconstruction-based super-resolution approach where the
bokeh image is used as a regularization term. Our method can se-
lectively refocus images with focused region being super-resolved
and bokeh being aesthetically rendered. Our method also enables
post-adjustment of depth of field. We conduct experiments on
both public and self-developed datasets. Our method achieves
superior visual performance with acceptable computational cost
as compared to other state-of-the-art methods. Code is available
at https://github.com/Yingqian Wang/Selective- LF-Refocusing,

Index Terms—Bokeh, camera array, depth of field (DoF), light
field (LF), refocusing, super-resolution (SR).

I. INTRODUCTION

LTHOUGH miniature cameras (e.g., smartphone cam-

eras) have become increasingly popular in recent years,
professional photographers still prefer traditional digital single
lens reflex (DSLR) to generate aesthetical photographs. Due
to the large-size image sensors and large-aperture lens, images
produced by DSLRs are high in resolution, high in signal-
to-noise ratio (SNR), and can be shallow in depth of field
(DoF). That is, only a limited range of depths are in focus,
leaving objects in other depths suffering from varying degrees
of blurs (termed as bokeh). Using bokeh effect properly can
blur out non-essential elements in foreground or background,
and guide the visual attention of audiences to major objects
in a photograph.

However, most professional DSLRs tend to be bulk and
expensive due to their high-quality lenses and sensors. Re-
cently, with the rapid development of light field (LF) imaging
[1]-[3], it becomes possible to use low-cost cameras to take
photographs with a high quality as DSLRs. Several designs
[4]-[11] have been proposed to capture LF. Among them,
plenoptic cameras [5]] place an array of microlens between
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main lens and image sensors to capture the angular information
of a scene. However, due to the limitation of sensor resolution,
one can only opt for a dense angular sampling [5]], or a dense
spatial sampling [6]]. In contrast, camera arrays [7]-[10] set
several independent cameras in a regular grid, and therefore
have an improved image resolution. Wu et al. [12] claim
that although early camera array systems [7]-[9] are bulk
and hardware-intensive, these LF acquisition systems have a
bright prospective with camera miniaturization being exploited
and small-size camera arrays [10], [11] being developed.
Compared to plenoptic cameras, camera arrays have wider
baselines and sparser angular samplings. Consequently, tradi-
tional refocusing methods [8]], [9]], [13]] face aliasing problems
in the bokeh regions.

LF reconstruction methods [2f], [[14]], [[15]] are widely used
to address the aliasing problem. These methods interpolate
novel views between existing views, and use the synthetic
LF to refocus sub-images. Specifically, methods [2f], [14],
[15] can simultaneously increase the number of viewpoints
and image resolution. Since there is a trade-off between the
density of views and computational cost, methods [2f, [14],
[15] either suffer from a high computational burden, or remain
aliasing artifacts to some degree. Bokeh rendering methods
[16]-[20] provide novel paradigms. Methods [16], [[17] map
source pixels onto circles of confusion (CoC) [16] using the
estimated depth information, and blend CoC in the order of
depth. Although [16], [17] can eliminate aliasing artifact, the
required depth sorting process is costly . Methods [18]-[20]
filter images according to the CoC size, and achieve a compro-
mise between computational cost and bokeh performance. In
summary, methods [[16]—[20] can improve bokeh performance,
but cannot increase image resolution.

In this paper, we propose an LF refocusing method to
improve the imaging quality of camera arrays. The outline of
our method is illustrated in Fig. 1. The main contributions of
this paper can be summarized as follows: (1) Bokeh rendering
and super-resolution (SR) are selectively integrated into one
scheme, i.e., our method can simultaneously improve bokeh
performance and increase image resolution. (2) DoF can be
adjusted in a post-processing mode, which is important for
producing aesthetical photographs on different scenes, and it
cannot be achieved by DSLRs or previous refocusing methods.
(3) We conducted experiments on a self-developed dataset.
Images generated by our method are more similar to those
generated by a DSLR than existing methods.
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Figure 1. Outline of our method. The disparity map is first estimated. The

bokeh is then rendered on the extracted center-view sub-image. Finally, the
refocused image is generated by a reconstruction-based SR approach where
the rendered bokeh image is used as a regularization term.

II. RECONSTRUCTION-BASED SR MODEL

Sub-images captured by camera arrays suffer from shear-
ing shifts (caused by parallax), blurring (caused by optical
distortions), and down-sampling (caused by low-resolution
image sensors). Considering these factors, we formulate the
degradation model [21]] of a camera array as

Yy, = DHF, .z + ny, (D

where x, y,,, and n;; denote high-resolution (HR) image, sub-
image captured by the k*" camera, and noise of the k*" sub-
image, respectively. N represents the number of cameras in
the array, and n represents depth resolution (i.e., total number
of depth layers). H, D, and F';; denote optical blurring,
down-sampling, and shifts (dependent of depth 7 and viewpoint
k), respectively. Since the main task of SR reconstruction is
to estimate ax to suit the degradation model in Eq. (1), we
formulate the SR model as a task to minimize the following
function:
N
& = argmin{ Y [|(1 - wy) @ (y -
x k=1

+ XNy () + Xgrvdprv ()},

The first term in Eq. (2) denotes the distance between
observations and an ideal HR image. Jj, (z) is the bokeh
regularization term and Jpry () is the bilateral total variation
(BTV) regularization term. Readers are referred to [21]] for
more details of BTV regularization. A\, and Agyy are regular-
ization weights. 1 denotes a vector with all elements equal
to 1, and ® denotes element-wise multiplication. wy is a
depth-based and spatial-variant weight vector where unfocused
regions share larger values. J, () can be expressed as

Ty (@) = l|lwp @ (2 — @)3. 3)

where x; represents the bokeh image. More details on
and wy, will be presented in Section III. We use the gradient
descend approach [21] to approximate the optimal solution.
The settings of step size and number of iterations (Nol) will
be introduced in Section IV. Readers can refer to [22] for the
convergence issue of SR process.

DHF, )2 ()

i=1,2,-,n

III. BOKEH RENDERING

As described in Section II, the key step of our method is to
generate the bokeh image x;. Assuming that point p is out of

Figure 2. An illustration of the bokeh rendering process. To calculate the
intensity at Q, contributions from the surrounding CoC have to be combined.

focus and corresponds to a CoC in the image, the radius of
CoC can be calculated as

fz('Vf_'Yp)
2Fy, (vp = f)

where v, and +, represent the depth of focus and the depth
of p, respectively. f is the focal length, F' is the F-number
of the lens. From the LF model presented in [23]], the depth
can be expressed as v = fB/d, where B is the length of the
baseline, and d represents the disparity. Consequently, we can
rewrite Eq. (4) as

. “4)

f(dy — dy)

Note that, the radius of CoC is proportion to the absolute
disparity difference between point p and the focus. Since f,
F, B, and d; are constant during a bokeh rendering process,
we consider K = f/2F (B —dy) as bokeh intensity which
represents the overall degree of bokeh and reflects DoF. A
large K corresponds to a strong bokeh and accordingly, a
shallow DoF.

We attribute bokeh rendering to anisotropic filtering. As
shown in Fig. 2, @ is surrounded by four CoC centered
at P; to P4. Since intensities in a CoC are uniformly dis-
tributed, the contribution from P; to () can be calculated as
Ip, g = Ir;/nr}., (pp,@ < Tp;), Where rp, is the radius of
CoC centered at P;, Ip, is the intensity at P; before bokeh
rendering, ¢p, represents the distance between P; and Q.
Note that, P; has an impact on ) only if () is within the CoC
of P, ie., ¢p,g < rp,. To calculate the intensity at (), the
contributions of surrounding points have to be combined:

Io= Y wplp_q (6)
PiEQQ

where 2g = {Pil¢pr,0 < rmas} represents the set of points
around @, 74z 18 the maximum radius of CoC in the image.
Note that, some points in {2g may have no contribution to @,
e.g., point P, in Fig. 2. Taken this into consideration, weight
wp, is calculated as

1/...2
_ /WTP“
wp, =

0,

An anisotropic filter can be used to render the extracted
center view based on Egs. (6) and (7). By using bicubic
interpolation, the bokeh image x; is generated by up-sampling
the rendered center view to the target resolution.

YrQ <TP 7
Tp; S PPrP;Q S T"max
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Another significant step is to calculate w; used in Egs. (2)
and (3). Since the blurring degree in an image is determined
by the radius of CoC, we calculate w; in two steps.

Step 1: Normalize the radius to interval [0,1] by 1, =
(rp=Tmin)/(rmaz—"min)s Where 'y, is the minimum radius of
CoC in the image.

Step 2: To divide 7, into two parts (focus and bokeh)
appropriately, we use sigmoid function to transform 7, into w,,
according to wy = 1/(1+ezp{—a(n,—b)}), where a is a decaying
factor, and b is the threshold. Finally, w; can be obtained by
traversing all pixels and re-ordering w,, into a vector.

IV. EXPERIMENTS

Extensive experiments are conducted on both public and
self-developed LF datasets. The 3x3 sub-images of the Stan-
ford LF dataset [24]] were first down-sampled by a factor of
2 and then used to test different methods. We compared our
method with a refocusing method [9], an LF reconstruction
method [14], and a bokeh rendering method [20]. For method
[14], the 3x3 LF input was angularly rendered to 5x5 views
and spatially super-resolved to the original resolution. To
achieve fair comparison between method [20]] and our method,
we used the disparity estimation approach proposed in [23].
We consider the HR center-view sub-image as the groundtruth
and quantitatively evaluate the SR performance by calculating
PSNRs of focused regions between the results of each method
and the groundtruth. Since there is no groundtruth for the
bokeh, we follow the existing bokeh rendering methods [16]—
[20], and use visual inspection for evaluation.

For the self-developed LF dataset, we adopted a scanning
scheme since view-by-view scanning in static occasion is
equivalent to a single shot by a camera array [[12]]. We installed
an iPhone 6S camera (with a 4.8mm x 3.6mm image sensor
and an F' = 2.2, f = 29mm lens) on a gantry. Similar to
the approach proposed in [25], we shifted the camera to 9
intersections of a 2x 2 grid (the size of each grid is 5 x 5mm?),
and scanned scenes in our laboratory. The captured images
are calibrated by using the method in [26]]. We then used
a Canon EOS 5D Mark IV DSLR (with a 36mm x 24mm
image sensor and an F' = 2.2, f = 50mm lens) to provide
“groundtruth” images.

The parameter setting of our method is listed in Table I.
All the listed parameters are tuned through experiments to
achieve good performance. Specifically, the performance of
our method can be improved gradually as Nol increases.
To achieve a compromise between visual performance and
computational cost, we set Nol to 10 in our implementation.
Additionally, we adopted the same settings of Jgry () as in
[21]. We observed through experiments that the final result
was insensitive to these parameters except b, since b has a
dominant influence on the classification of focus and bokeh.

All algorithms were implemented in MATLAB on a PC with
a 2.40 GHz CPU (Intel Core i7-5500U) and a 12 GB RAM.

A. Visual Performance Comparison

From Figs. 3 and 4, we can observe that obvious alias-
ing artifacts are produced by [9]] although shallow DoF is

PSNR=25.23 PSNR':28.56 PSNR=25.95 PSNR=31.58
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PSNR=33.09 PSNR=38.57
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Figure 3. Results achieved on scenes Knights (top), Cards (middle), and Chess
(bottom) in the Stanford LF dataset [24]. (a) Vaish et al. |9], (b) Farrugia et al.
[14], (c) Liu et al. [20], (d) ours (K=2). Note that, sharpness of the focused
region (images in red boxes) is evaluated quantitatively using PSNR.

Table 1
PARAMETER SETTING
Parameters b ABTV Step Size Nol a b
Values 5 0.2 0.1 10 15 0.3

achieved. Farrugia et al. [14] improve the image resolution
and approximate the real bokeh to a certain extent. That is,
the aliasing artifact is alleviated but not eliminated. Liu et al.
[20] address the aliasing problem but do not improve image
resolution, leading to blurring in focused region. Compared
to [9], [[14], and [20]], our method achieves the highest PSNR
in focused regions and promising performance in the bokeh.
Note that, the bokeh rendered by our method (Fig. 4(f)) is
similar to that generated by the DSLR (Fig. 4(e)). Although
the focused region in Fig. 4(f) is not as sharp as that in Fig.
4(e), the natural gap caused by unideal low-cost cameras is
partially filled by using our method.

B. Adjustable DoF

We use our method to refocus images to different depths
with different settings of K. As shown in Fig. 5, we can
change both the depth in focus and DoF in a post-processing
mode. Note that, DoF post-adjustment is unavailable for
DSLRs, traditional refocusing methods [8]], [9], [[13]], and LF
reconstruction methods [2], [[14], [15]].

C. Influence of Errors in Disparity Estimation

We compared the visual performance of our method using
the disparity estimated by [23|] to that using the groundtruth
disparity (provided by the HCI LF dataset [27]). Results
show that the visual performance of our method is partially
influenced by the errors in disparity estimation. As shown in
Fig. 6, disparity errors on the boundary of the focused region
lead to some artifacts. In contrast, our method is robust to
minor disparity errors both in bokeh and in focus.
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(a) Center view (b) Vaish et al. [9]

(c) Farrugia et al.

Figure 5. Adjustable DoF achieved by our method on scene Knights. Note
that, the middle knights are in focus in the top three images and the side
knights are in focus in the bottom three images

(a)

Figure 6. Influence of inaccurate disparity estimation on scene Box (top) and
Sideboard (bottom) in the HCI LF dataset . (a) Groundtruth disparity, (b)
disparity estimated by the method in 23], (c) results achieved by our method
using the groundtruth disparity, (d) results achieved by our method using the
estimated disparity in (b).

D. Execution Time

It can be observed from Table II that the shortest running
time is achieved by [9] since no depth estimation, pixel map-
ping or filtering is required. In contrast, is the most time-
consuming method, and its running time increases dramatically
as image resolution increases. Method in [20] also achieve a
relative short execution time because it does not require view
rendering or SR, but the resolution is consequently limited.
Since an efficient bokeh rendering scheme is adopted in our

(e) Canon DSLR

(d) Liu et al.

(f) Ours (K=3)
Figure 4. Results achieved on scene Dolls in the self-developed LF dataset. Note that, the photograph taken by a Canon DSLR is used as the “groundtruth”.

Table II
COMPARISON OF EXECUTION TIME

Vaish et Farrugia Liu et Ours

al. I|§|| et al. [Iﬂ[] al. m (K=2)
Knights (512 x 512) 1.469 s 2518 s 42.59 s 165.5 s
Cards (512 x 512) 1.446 s 1732's 38.27 s 174.0 s
Chess (700 x 400) 1.902 s 2238 s 48.74 s 184.0 s
Dolls (1024 x 1024) 6.218 s 9548 s 1535 s 655.8 s
Average of dataset [24] 1.789 s 2381 s 46.83 s 1852 s
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Figure 7. Execution time of our method achieved on scene Knights with
different settings of K and Nol.

method, the execution time of our method is only 5% to 10%
of that of [14].

As the execution time of our method may depend on K
(which determines the size of the filter kernel) and Nol, we fur-
ther investigate the execution time of our method with different
settings of K and Nol. As shown in Fig. 7, Nol has much more
influence on the overall execution time than K because the
adopted bokeh rendering approach is computationally efficient.
Since a too large bokeh (i.e., too shallow DoF) will destroy
the esthetic value of a photograph, we need to determine the
DoF empirically based on the scenario. Generally, a shallow
DoF (e.g., K=3) is preferred for close-shot photographs (e.g.,
scene Knights), and a deep DoF (e.g., K=1) is suggested for
distant scenes (e.g., landscape photograph).

V. CONCLUSION

In this paper, we propose a method to refocus images cap-
tured by a camera array. We formulate an SR model and design
an anisotropic filter to increase the image resolution and render
the bokeh. The superiority of our method is demonstrated
by experiments on both public and self-developed datasets.
Our method enables camera arrays to produce aesthetical
photographs with acceptable computational cost.
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