
ar
X

iv
:1

81
1.

02
15

2v
1 

 [
cs

.I
T

] 
 6

 N
ov

 2
01

8
THIS MANUSCRIPT WAS SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS 1

A New Analysis for Support Recovery with Block

Orthogonal Matching Pursuit
Haifeng Li, Jinming Wen

Abstract—Compressed Sensing (CS) is a signal processing
technique which can accurately recover sparse signals from linear
measurements with far fewer number of measurements than
those required by the classical Shannon-Nyquist theorem. Block
sparse signals, i.e., the sparse signals whose nonzero coefficients
occur in few blocks, arise from many fields. Block orthogonal
matching pursuit (BOMP) is a popular greedy algorithm for
recovering block sparse signals due to its high efficiency and
effectiveness. By fully using the block sparsity of block sparse
signals, BOMP can achieve very good recovery performance. This
paper proposes a sufficient condition to ensure that BOMP can
exactly recover the support of block K-sparse signals under the
noisy case. This condition is better than existing ones.

Index Terms—Compressed sensing, sufficient condition, block
sparse signal, restricted isometry property.

I. INTRODUCTION

Compressed sensing (CS) [1–5] has attracted much attention

in recent years. Suppose that we have linear model y = Ax+
e, where y ∈ R

m is a measurement vector, A ∈ R
m×n is a

sensing matrix, x ∈ R
n is a K-sparse signal (i.e., |supp(x)| ≤

K , where supp(x) = {i : xi 6= 0} is the support of x and

|supp(x)| is the cardinality of supp(x)) and e represents the

measurement noise. Then under some conditions on A, CS

can accurately recover the support of x based on y and A.

In many fields [6, 7], such as DNA microarrays [8], mul-

tiple measurement vector problem [9] and direction of arrival

estimation [10], the nonzero entries of x occur in blocks (or

clusters). Such kind of signals are referred to as block sparse

signals and are denoted as xB in this paper.

To mathematically define xB , analogous to [11], we view

xB ∈ R
n as a concatenation of blocks xB[ℓ] ∈ R

d:

xB = [xT
B [1] xT

B [2] · · ·xT
B[M ]]T , (1)

where xB[ℓ] with ℓ ∈ Ω := {1, 2, · · · ,M} denotes the ℓth
block of xB . Then,

Definition 1. ([11]) A vector xB ∈ R
n is called block K-

sparse if xB [ℓ] is nonzero for at most K indices ℓ.

Denote

T = suppB(xB) := {ℓ|xB[ℓ] 6= 0d×1}. (2)
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Then, by Definition 1, we have |T | ≤ K and T ⊆ Ω.

Similar to xB , we also represent A as a concatenation of

column-blocks A[ℓ] of size m× d, ℓ ∈ Ω, i.e.,

A = [A[1] A[2] · · ·A[M ]]. (3)

Since block sparse signals arise from many fields [6], this

paper focus on study the recovery of xB from measurements

y = AxB + e. (4)

To this end, we introduce the definition of block restricted

isometry property (RIP).

Definition 2. ([11, 12]) A matrix A has block RIP with

parameter δB ∈ (0, 1) if

(1− δB)‖hB‖22 ≤ ‖AhB‖22 ≤ (1 + δB)‖hB‖22 (5)

holds for every block K-sparse hB ∈ R
n. The minimum δB

satisfying (5) is defined as the block RIP constant δBK .

To efficiently recover block sparse signals, the block OMP

(BOMP) algorithm, which is described in Algorithm 1, has

been proposed in [11]. Recently, using RIP, [13] investigated

some sufficient conditions for exact or stable recovery of

block sparse signals with BOMP. They also proved that their

sufficient conditions are sharp in the noiseless case.

Algorithm 1 The BOMP algorithm [11]

Input: A ∈ R
m×n, y,

Initialization: r0 ← y, k = 1, and Λ0 = ∅.
1: while “stopping criterion is not met” do

2: Choose the block index λk that satisfies

λk = argmax
ℓ∈Ω
‖A′[ℓ]rk−1‖2.

3: Let Λk = Λk−1
⋃{λk}, and calculate

xk
B = arg min

xB :suppB(xB)⊆Λk
‖y−AxB‖2.

4: rk = y − yk = y −Axk
B .

5: k ← k + 1.

6: end while

Output: xk
B and Λk.

In order to analyze the recoverability of BOMP in the noisy

case, we investigate the sufficient condition of the support

recovery of block sparse signals with K iterations of BOMP in

the noisy case. The condition reduces to that for the noiseless

case when e = 0 and it is the results presented in [13].

The rest of the paper is organized as follows. We present

our new sufficient conditions in Sections II and prove them in

Sections III. The paper is summarized in Section IV.

http://arxiv.org/abs/1811.02152v1
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II. MAIN RESULTS

Similar to [13], we define mixed ℓ2/ℓp-norm as

‖xB‖2,p = ‖w‖p, p = 1, 2,∞, (6)

where w ∈ R
M with wℓ = ‖xB[ℓ]‖2 (ℓ ∈ Ω). Then our

sufficient condition for the exact support recovery of block

K-sparse signals with BOMP is as follows:

Theorem 1. Suppose that in (4), ‖e‖2 ≤ ε and A satisfies

the block RIP of order K + 1 with

δBK+1 <
1√

K + 1
. (7)

Then BOMP with the stopping criterion ‖rk‖2 ≤ ε can exactly

recover T (see (2)) from (4) in K iterations provided that

min
i∈T
‖xB[i]‖2 >

ε
√

1− δBK+1

+
ε
√

1 + δBK+1

1−
√
K + 1δBK+1

. (8)

The proof of Theorem 1 will be given in Section III.

Remark 1. [13, Corollary 1] shows that if A and e in (4)

respectively satisfy the block RIP with δBK+1 satisfying (7) and

‖e‖2 ≤ ε, then BOMP with the stopping criterion ‖rk‖2 ≤ ε
exactly recovers T (see (2)) in K iterations provided that

min
i∈T
‖xB[i]‖2 >

2ε

1−
√
K + 1δBK+1

. (9)

In the following, we show that our condition (8) in Theorem

1 is less restrictive than (9). Equivalently, we need to show

that

2ε

1−
√
K + 1δBK+1

>
ε

√

1− δBK+1

+
ε
√

1 + δBK+1

1−
√
K + 1δBK+1

.

(10)

Equivalently, we need to show

(

2−
√

1 + δBK+1

)

√

1− δBK+1 > 1−
√
K + 1δBK+1. (11)

Since 1 − δBK+1 > 1 −
√
K + 1δBK+1, it is clear that (10)

holds if

(

2−
√

1 + δBK+1

)

√

1− δBK+1 > 1− δBK+1,

which is equivalent to

2−
√

1 + δBK+1 >
√

1− δBK+1. (12)

It is easy to see that (12) holds. Thus our condition is less

restrictive than [13].

To clearly show the improvement of Theorem 6 over [13,

Corollary 1], we display Z1(K) − Z2(K) versus δBK+1 for

several K in Figure 1, where Z1(K) and Z2(K) respectively

denote the right-hand sides of (8) and (9). From Figure 1, we

can see that the improvement of Theorem 6 over [13, Corollary

1] is significant.

Remark 2. We obtained a less restrictive sufficient condition

for the exact support recovery of K-block sparse signals with
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Fig. 1. The difference between Z1(K) and Z2(K).

the BOMP algorithm based on RIC. Since the weaker the

RIC bound is, the less number of measurements are needed.

The improved RIC results can be used in many CS-based

applications, see, e.g., [14].

In the following, we study the worst-case necessity con-

dition for the exact support recovery by BOMP. Recall that

BOMP may fail to recover the support of xB from y = AxB

if δBK+1 ≥ 1√
K+1

[13, Theorem 2]. Therefore, δBK+1 <
1√
K+1

naturally becomes a necessity for the noisy case.

Thus, we want to obtain the worst-case necessity condition

on min
i∈T
‖xB[i]‖2 when δBK+1 < 1√

K+1
.

Theorem 2. Given any ε > 0 and positive integer K . Let

0 < δ <
1√

K + 1
. (13)

Then, there always exist a matrix A satisfying the RIP with

δBK+1 = δ, a block K-sparse vector xB with

min
i∈T
‖xB[i]‖2 <

ε
√

1− (δBK+1)
2(
√

1− (δBK+1)
2 −
√
KδBK+1)

,

(14)

and a noise vector with ‖e‖2 ≤ ε, such that BOMP fails to

recover T (see (2)) from (4) in K iterations.

Proof. For any given positive integers d, K , and any real

number t0 > 0, ε > 0, we construct a matrix function A(d),
block K-sparse signal xB and a noise vector e. Let

A(d) =

(

Id 0d×(dK)

sE(dK)×d aIdK

)

d(K+1)×d(K+1)

, (15)

xB =











0d×1

t0e1
...

t0e1











d(K+1)×1

(16)

and

e =

(

εe1
0(dK)×1

)

d(K+1)×1

(17)
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where Id being the d×d identity matrix, 0d×(dK) ∈ R
d×(dK)

with all of its entries being 0,

E(dK)×d = (Id, · · · , Id)′ ∈ R
(dK)×d, (18)

s =
δ√
K

, a =
√

1− δ2, (19)

and e1 ∈ R
d is the first coordinate unit vector. So, xB is

supported on T = {2, 3, · · · ,K + 1}, T c = {1} and t0 =
mini∈T ‖xB[i]‖2.

By simple calculations we get

A′(d)A(d) =

(

(1 +Ks2) Id asE′
(dK)×d

asE(dK)×d a2IdK

)

. (20)

When d = 1 and K = 1, the eigenvalues {λi}2i=1 of

A′(1)A(1) are

λ1 = 1− δ, λ2 = 1 + δ. (21)

When d = 1 and K > 1, the eigenvalues {λi}K+1
i=1 of

A′(1)A(1) are

λi = 1− δ2 1 ≤ i ≤ K − 1,

λK = 1 + δ, λK+1 = 1− δ. (22)

Thus, the RIP constant of A(1) is δK+1 = δ for K ≥ 1.

In the following, we will show that the block RIP constant

of A(d) is δBK+1 = δ.

Given any block K-sparse vector wB ∈ R
d(K+1). Let u,

v ∈ R
K+1 with ui = vi = ‖w[i]‖2 for 2 ≤ i ≤ K + 1 and

u1 = −v1 = ‖wB[1]‖2. Then

w′
BA

′(d)A(d)wB = (1 +Ks2)w′
B [1]wB[1]

+ 2as

K+1
∑

i=2

w′
B[i]wB[1] + a2

K+1
∑

i=2

w′
B [i]wB[i]

≤ (1 +Ks2)‖wB[1]‖22 + 2as
K+1
∑

i=2

(‖wB[i]‖2‖wB[1]‖2)

+ a2
K+1
∑

i=2

‖wB[i]‖22

= (1 +Ks2)u2
1 + 2as

K+1
∑

i=2

(uiu1) + a2
K+1
∑

i=2

u2
i

= u′A′(1)A(1)u ≤ (1 + δ)‖u‖22 = (1 + δ)‖wB‖22. (23)

On the other hand, we have

w′
BA

′(d)A(d)wB = (1 +Ks2)w′
B [1]wB[1]

+ 2as

K+1
∑

i=2

w′
B[i]wB[1] + a2

K+1
∑

i=2

w′
B [i]wB[i]

≥ (1 +Ks2)‖wB[1]‖22 − 2as

K+1
∑

i=2

(‖wB[i]‖2‖wB[1]‖2)

+ a2
K+1
∑

i=2

‖wB[i]‖22

= (1 +Ks2)v21 + 2as

K+1
∑

i=2

(viv1) + a2
K+1
∑

i=2

v2i

= v′A′(1)A(1)v ≥ (1 − δ)‖v‖22 = (1− δ)‖wB‖22. (24)

Combining (23) and (24), the block RIP constant of A(d)
is

δBK+1 = δ. (25)

We now show that BOMP may fail to recover T from

y = A(d)xB + e =











εe1
at0e1
...

at0e1











d(K+1)×1

. (26)

Recall that the BOMP algorithm, in order to show this

Theorem, we only need to show

a2t0 = ‖a2t0e1‖2 = max
i∈T
‖(A(d)[i])′y‖2 <

max
j∈T c

‖(A(d)[j])′y‖2 = ‖(ε+Kast0)e1‖2 = ε+Kast0.

(27)

By (14), it is easy to see that (27) holds.

This completes the proof.

Remark 3. We may find the gap between the necessary con-

dition and the sufficient condition is small. So, our sufficient

condition is nearly optimal. In fact, for example, Let K = 10
and δBK+1 = 0.04. The upper bound of (14) is 1.1468ε, and

the lower bound of (8) is 2.1964ε. The gap is 1.0496ε.

III. PROOF OF THEOREM 1

By steps 3 and 4 of Algorithm 1, we have

rk = y − PΛky = P⊥
Λky

(a)
= P⊥

Λk(A[T ]xB [T ] + e)

= P⊥
ΛkA[T \ Λk]xB [T \ Λk] + P⊥

Λke, (28)

where (a) follows from (4) and suppB(xB) = T . The symbol

PΛk = A[Λk](A′[Λk]A[Λk])(−1)A′[Λk] denotes the orthogo-

nal projection ontoR(A[Λk]) that is the range space of A[Λk]
and P⊥

Λk = I− PΛk .

It is worth mentioning that the residual rk is orthogonal to

the columns of A[Λk], i.e.,

‖A′[i]rk‖2 = ‖A′[i]P⊥
Λky‖2 = 0, i ∈ Λk. (29)

A. Main Analysis

The proof of Theorem 1 is related to [15]. We will give a

brief sketch for the proof of Theorem 1. Our proof consists

of two steps. We show that BOMP chooses a correct index in

each iteration in the first step. In the second step, we show

that BOMP performs exactly K iterations.

We prove the first step by induction. If BOMP selects a

correct index at an iteration, we will say that BOMP makes

a success at the iteration. First, we present the condition

guaranteeing BOMP to make a success in the first iteration.

Then, suppose that BOMP has been successful in the first k
iterations, we show that BOMP also makes its success in the

(k + 1)th iteration. Here, we assume 1 ≤ k < K .

The proof for the first selection corresponds to the case of

k = 1. Clearly the induction hypothesis Λk−1 ⊆ T holds for

this case since Λk−1 = Λ0 = ∅.
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If BOMP has been successful for the previous k iterations,

then it means that Λk ⊆ T and |T ∩ Λk| = k, In this

sense, BOMP will make a success in the (k + 1)th iteration,

provided that λk+1 ∈ T (see Algorithm 1). Based on step 2

of Algorithm 1 and (29), in order to show that λk+1 ∈ T , in

the (k + 1)th iteration, we need to show

‖A′[T \ Λk]rk‖2,∞ = max
i∈T\Λk

‖A′[i]rk‖2

> max
j∈Ω\T

‖A′[j]rk‖2 = ‖A′[Ω \ T ]rk‖2,∞. (30)

From (30), for any j ∈ Ω \ T , it suffices to show

‖A′[T \ Λk]rk‖2,∞ − ‖A′[j]rk‖2 > 0. (31)

B. Proof of inequality (31)

In this subsection, we will show that (31) holds for 1 ≤
k < K when (7) and (8) hold.

Suppose that

PTy = A[T ]ξB[T ] (32)

with ξB ∈ R
Md and supp(ξB) = T . For simplicity, we denote

α = ξB [T \ Λk]. (33)

By (32), using the Cauchy-Schwarz inequality, we can have

‖A′[T \ Λk]rk‖2,∞ =
‖A′[T \ Λk]rk‖2,∞‖α‖2,1

‖α‖2,1

(a)

≥

∑

i∈T\Λk

‖A′[i]rk‖2‖ξB[i]‖2

‖α‖2,1
(b)

≥

〈

rk,
∑

i∈T\Λk

A[i]ξB[i]
〉

‖α‖2,1

=

〈

rk,P⊥
Λk(y − P⊥

T y)
〉

‖α‖2,1
(c)
=
‖rk‖22 −

〈

P⊥
Λky,P⊥

ΛkP⊥
T y

〉

‖α‖2,1
(d)
=
‖rk‖22 −

〈

y,P⊥
T y

〉

‖α‖2,1
=
‖rk‖22 − ‖P⊥

T e‖22
‖α‖2,1

, (34)

where (a) follows from (6), (b) follows from Cauchy-Schwarz

inequality, (c) is from rk = P⊥
Λky, (d) P⊥

ΛkP⊥
T = P⊥

T .

Now, we can present a lower bound for left-hand-side of

(31).

‖A′[T \ Λk]rk‖2,∞ − ‖A′[j]rk‖2

≥ ‖r
k‖22 − ‖P⊥

T e‖22
‖α‖2,1

− ‖A′[j]rk‖2 = η. (35)

So, to show (31), we only need to show η > 0.

Proposition 1. Define h ∈ R
d with

h =
A′[j]P⊥

Λky

‖A′[j]P⊥
Λky‖2

, (36)

for j ∈ Ω \ T . We have ‖h‖2 = 1. Define

B = P⊥
Λk [A[T \ Λk] A[j]], (37)

u =

[

α

0

]

∈ R
|T\Λk|d+d,v =

[

0

h

]

∈ R
|T\Λk|d+d, (38)

where α is defined in (33). For any t > 0, we have

η =
1

4t
‖B((t+

1

‖α‖2,1
)u− v)‖22

− 1

4t
‖B((t− 1

‖α‖2,1
)u+ v)‖22 − e′P⊥

T A[j]h, (39)

where η is defined in (35).

The proof of Proposition 1 will be given in Section V.

By the property of block RIP, it follows that

‖B((t+
1

‖α‖2,1
)u− v)‖22 − ‖B((t− 1

‖α‖2,1
)u+ v)‖22

(a)

≥ (1− δBK+1)‖(t+
1

‖α‖2,1
)u− v‖22

− (1 + δBK+1)‖(t−
1

‖α‖2,1
)u+ v‖22

(b)
=

4t‖α‖22,2
‖α‖2,1

− 2t2δBK+1‖α‖22,2 − 2
‖α‖22,2δBK+1

‖α‖22,1
− 2δBK+1

= 4t
(‖α‖22,2
‖α‖2,1

− δBK+1

2
(t‖α‖22,2 +

1

t

(‖α‖22,2
‖α‖22,1

+ 1)
)

)

, (40)

where (a) follows from [13, Lemma 3], (b) follows from (38).

Applying arithmetic-geometric mean inequality to (40),

‖B((t+
1

‖α‖2,1
)u− v)‖22 − ‖B((t− 1

‖α‖2,1
)u+ v)‖22

≥ max
t>0

{

4t
(‖α‖22,2
‖α‖2,1

− δBK+1

2
(t‖α‖22,2 +

1

t

(‖α‖22,2
‖α‖22,1

+ 1)
)

)}

= 4t‖α‖2,2
(‖α‖2,2
‖α‖2,1

− δBK+1

√

1 +
‖α‖22,2
‖α‖22,1

)

(41)

It follows from (35) and (39) that

‖A′[T \ Λk]rk‖2,∞ − ‖A′[j]rk‖2
≥ 1

4t
(‖B((t+

1

‖α‖2,1
)u− v)‖22 − ‖B((t− 1

‖α‖2,1
)u+ v)‖22)

− e′P⊥
T A[j]h

(a)

≥ ‖α‖2,2
(‖α‖2,2
‖α‖2,1

− δBK+1

√

1 +
‖α‖22,2
‖α‖22,1

−

√

1 + δBK+1‖e‖2
‖α‖2,2

)

(b)

≥ ‖α‖2,2
( 1√

K − k
− δBK+1

√

1 + (
1√

K − k
)2
)

− ‖α‖2,2

√

1 + δBK+1‖e‖2√
K − kmin

i∈T
‖ξB[i]‖2

(c)
>
‖α‖2,2√
K − k

(

δBK+1(
√
K + 1−

√
K − k + 1)

)

≥ 0, (42)

where (a) follows from (41), ‖h‖2 = 1 and [13, Lemma 3],

(b) follows from the function f(x) = x − δBK+1

√
1 + x2 is

monotonously increasing on the interval [0,∞),
‖α‖2,2

‖α‖2,1
≥

1√
K−k

and ‖α‖2,2 ≥
√
K − kmin

i∈T
‖ξB‖2, (c) follows from

Lemma 1 (presented in Section VI) and (8).

It remains to show that BOMP stops under the stopping rule

‖rk‖2 ≤ ε when it performs exactly K iterations. Hence, we

need to prove ‖rk‖2 > ε for 0 ≤ k < K and ‖rK‖2 ≤ ε.
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By (28), for 0 ≤ k < K , we have

‖rk‖2 = ‖P⊥
ΛkA[T \ Λk]xB [T \ Λk] + P⊥

Λke‖2
≥

√

1− δBK+1‖xB[T \ Λk]‖2 − ε

(a)

≥

√

1− δBK+1

√

1 + δBK+1ε

1−
√
K + 1δBK+1

≥ (1− δBK+1)ε

1−
√
K + 1δBK+1

≥ ε,

where (a) follows from (8).

Similarly, from (28),

‖rK‖2 = ‖P⊥
ΛKA[T \ ΛK ]xB [T \ ΛK ] + P⊥

ΛKe‖2
(a)
= ‖P⊥

ΛKe‖2 ≤ ε, (43)

where (a) is from ΛK = T . Thus, BOMP performs K
iteration.

IV. CONCLUSION

In this paper, in the noisy case, we have presented a

sufficient condition, which is weaker than existing ones, for

the exact support recovery of block K-sparse signals with K
iterations of BOMP.

V. PROOF OF PROPOSITION 1

Proof. Recall that (32) and (33), we have

(t+
1

‖α‖2,1
)P⊥

Λky − P⊥
ΛkA[j]h

= (t+
1

‖α‖2,1
)P⊥

Λk(PTy + P⊥
T y)− P⊥

ΛkA[j]h

= B((t+
1

‖α‖2,1
)u− v) + (t+

1

‖α‖2,1
)P⊥

T e (44)

and

(t− 1

‖α‖2,1
)P⊥

Λky + P⊥
ΛkA[j]h

= (t− 1

‖α‖2,1
)P⊥

Λk(PTy + P⊥
T y) + P⊥

ΛkA[j]h

= B((t− 1

‖α‖2,1
)u+ v) + (t− 1

‖α‖2,1
)P⊥

T e (45)

Using the property of norm and (36), we have

‖(t+ 1

‖α‖2,1
)P⊥

Λky − P⊥
ΛkA[j]h‖22

− ‖(t− 1

‖α‖2,1
)P⊥

Λky + P⊥
ΛkA[j]h‖22

=
4t

‖α‖2,1
‖rk‖22 − 4t‖A′[j]P⊥

Λky‖2. (46)

On the other hand, according to

(t+
1

‖α‖2,1
)(P⊥

T e)′B((t+
1

‖α‖2,1
)u− v)

= (t+
1

‖α‖2,1
)(e)′(P⊥

T )′B((t+
1

‖α‖2,1
)u− v)

= −(t+ 1

‖α‖2,1
)e′P⊥

T A[j]h (47)

and

(t− 1

‖α‖2,1
)(P⊥

T e)′B((t− 1

‖α‖2,1
)u+ v)

= (t− 1

‖α‖2,1
)e′P⊥

T A[j]h,

we obtain

‖B((t+
1

‖α‖2,1
)u− v) + (t+

1

‖α‖2,1
)P⊥

T e‖22

− ‖B((t− 1

‖α‖2,1
)u+ v) + (t− 1

‖α‖2,1
)P⊥

T e‖22

= ‖B((t+
1

‖α‖2,1
)u− v)‖22 − ‖B((t− 1

‖α‖2,1
)u+ v)‖22

+
4t

‖α‖2,1
‖P⊥

T e‖22 − 4te′P⊥
T A[j]h. (48)

By (44)-(46) and (48), it follows that

‖B((t+
1

‖α‖2,1
)u− v)‖22 − ‖B((t− 1

‖α‖2,1
)u+ v)‖22

+
4t

‖α‖2,1
‖P⊥

T e‖22 − 4te′P⊥
T A[j]h

=
4t

‖α‖2,1
‖rk‖22 − 4t‖A′[j]P⊥

Λky‖2.

After some manipulations, we can prove that (39) holds.

VI. PROOF OF LEMMA 1

Lemma 1. Consider (4) and (32). Suppose that ‖e‖2 ≤ ε.

Then we have

min
i∈T
‖ξB[i]‖2 ≥ min

i∈T
‖xB[i]‖2 −

ε
√

1− δBK+1

.

Proof. Define

PT e = A[T ](A′[T ]A[T ])(−1)A′[T ]e = A[T ]θB[T ]

with θB ∈ R
Md is a block K-sparse vector. Then, by using

block RIP, we have

‖PTe‖2 = ‖A[T ]θB[T ]‖2 ≥
√

1− δBK+1‖θB‖2.
On the other hand, we can obtain ‖PTe‖2 ≤ ‖e‖2 ≤ ε.

Then we can obtain

‖θB‖2 ≤
ε

√

1− δBK+1

(49)

From (32) and (4), we have

A[T ]ξB[T ] = PTy = PT (AxB + e)

= A[T ]xB[T ] + PTe = A[T ](xB[T ] + θB[T ]). (50)

So, we have ξB[T ] = xB [T ] + θB[T ].
Thus, we can obtain

min
i∈T
‖ξB[i]‖2 = min

i∈T
‖xB[i] + θB[i]‖2

≥ min
i∈T
‖xB[i]‖2 − ‖θB[T ]‖2

(a)

≥ min
i∈T
‖xB[i]‖2 −

ε
√

1− δBK+1

, (51)

where (a) follows from (49).
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