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Abstract—In this work, we consider the problem of recovering
analysis-sparse signals from under-sampled measurements when
some prior information about the support is available. We incor-
porate such information in the recovery stage by suitably tuning
the weights in a weighted `1 analysis optimization problem. In-
deed, we try to set the weights such that the method succeeds with
minimum number of measurements. For this purpose, we exploit
the upper-bound on the statistical dimension of a certain cone
to determine the weights. Our numerical simulations confirm
that the introduced method with tuned weights outperforms the
standard `1 analysis technique.

Index Terms—`1 analysis, prior information, conic integral
geometry.

I. INTRODUCTION

COMPRESSED sensing (CS), initiated by [1], [2], has
been the focus of many research works for more than

a decade. Briefly, CS, in its general form, investigates the
reconstruction of a sparse vector x P Rn from m ! n noisy
linear measurements

y “ Ax` ε P Rm (1)

where A P Rmˆn is a known matrix and ε is an `2 bounded
noise term, i.e. }ε}2 ď η for some η ě 0. In many scenarios,
x is sparse after the application of some analysis operator Ω.
Specifically, we say x is s-analysis-sparse with support S in
the analysis domain Ω P Rpˆn if Ωx is s-sparse with support
S. Then, the following optimization problem called `1 analysis
is often used (See [3], [4], and [5]) to recover x:

Pη : min
zPRn

}Ωz}1 s.t. }y ´Az}2 ď η (2)

In many applications, there is some additional information in
the analysis domain. For instance, consider the line spectral
estimation where the signal of interest is sparse after applying
the Discrete Fourier Transform. In some applications, one
might a priori know the probability with which a set in
the spectral domain contributes to the true line spectra. The
extra information about the probability of contribution of
certain subsets could be beneficial in the recovery of x. For
example, for channel estimation in communication systems or
in remote sensing, the availability of previous estimates builds
a history that can specify the intersection probability of any
given set with the true support. Also, natural images often
tend to have larger values in lower frequencies after applying
Fourier or wavelet transforms; therefore, subsets composed of
low-frequencies have higher probabilities of appearing in the
support. In these cases, we intend to exploit these additional
information. This work analyses possible benefits of this extra

information to reduce the required number of measurements of
P0 for successful recovery and to improve the reconstruction
error in Pη for robust and stable recovery. For this purpose, a
common way is to use weighted `1 analysis as follows:

Pwη :

min
zPRn

}Ωz}1,w :“
p
ÿ

i“1

wi|Ωz|i s.t. }y ´Az}2 ď η, (3)

where wi represents the weight associated with the i’th ele-
ment of the coefficient vector in the analysis domain. In this
work, we assume that the available prior information is about
the subsets tPiuLi“1 that partition t1, ..., pu. Thus, the elements
of Pi are all assigned the same weight (ωi). Moreover, we
define

w “
L
ÿ

i“1

ωi1Pi
, αi “

|Pi X S|
|Pi|

, ρi “
|Pi|
p
, (4)

where | ¨ | denotes the cardinality of a set and 1E is the
indicator function of the set E . The parameters αi and ρi
are commonly called the accuracy and the normalized size
of the subsets, respectively. Alternatively, tPiuLi“1 can be
considered as L analysis support estimators with different
accuracies tαiuLi“1. Our goal is to find the weights that
minimize the required number of measurements. To this end,
we first find an upper-bound for the required number of
measurements in Proposition 1. Then, we minimize the upper-
bound with respect to the weights. Since the bound is not tight
(especially in redundant and coherent dictionaries), we can not
claim optimality of the weights. However, with the obtained
weights, we almost achieve the optimal phase transition curve
of `1 analysis problem in low-redundant analysis operators
in numerical simulations. The paper is organized as follows:
a brief overview of convex geometry is given in Section II.
We explain our main contribution in Section III followed by
numerical experiments in Section IV. Indeed, the experiments
confirm the theoretical results.

Throughout the paper, scalars are denoted by lowercase
letters, vectors by lowercase boldface letters, and matrices by
uppercase boldface letters. The ith element of a vector x is
shown either by xpiq or xi. p¨q: denotes the pseudo inverse
operator. We reserve the calligraphic uppercase letters for sets
(e.g. S). The cardinality of a set S is denoted by |S|. C˝
represents the polar of a cone C. Given a vector x P Rn and
a set C Ď Rn, xd C denotes the set C which is scaled by the
elements of x. In this work, 1E denotes the indicator of the set
E . paq` stands for maxta, 0u for a scalar a. Null space and
range of linear operators are denoted by nullp¨q, and rangep¨q,
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respectively. For a matrix A, the operator norm is defined as
}A}pÑq “ sup

}x}pď1

}Ax}q . We denote i.i.d standard Gaussian

random vector by g. Lastly, } ¨ }8 returns the maximum
absolute value of the elements of a vector or matrix.

II. CONVEX GEOMETRY

In this section, basic concepts of conic integral geometry
are reviewed.

A. Descent Cones and Statistical dimension

The descent cone of a proper convex function f : Rn Ñ
RYt˘8u at point x P Rn is the set of directions from x that
do not increase f :

Dpf,xq “
ď

tě0

tz P Rn : fpx` tzq ď fpxqu¨ (5)

The descent cone of a convex function is a convex set. There
is a famous duality [6, Ch. 23] between decent cone and
subdifferential of a convex function given by:

D˝pf,xq “ conepBfpxqq :“
ď

tě0

t.Bfpxq. (6)

Definition 1. Statistical Dimension [7]: Let C Ď Rn be a
convex closed cone. Statistical dimension of C is defined as:

δpCq :“ E}PCpgq}
2
2 “ Edist

2
pg, C˝q, (7)

where g has i.i.d. standard normal distribution, and PCpxq is
the orthogonal projection of x P Rn onto the set C defined as:
PCpxq “ argmin

zPC
}z ´ x}2.

Statistical dimension specifies the boundary of success and
failure in random convex programs with affine constraints.

III. MAIN RESULTS

In this section, we first present an upper-bound for the
required number of Gaussian measurements for the case of a
redundant analysis operator Ω. A lower-bound is also derived
for non-singular Ω. The lower-bound is not new and was
previously reported in [8, Theorem A], but here we present
a simpler approach for the proof.

Proposition 1. Let x P Rn be a s-analysis sparse vector with
redundant analysis operator Ω P Rpˆn(p ě n). Then,

δpDp}Ω ¨ }1,w,xqq ď κ2pΩqδpDp} ¨ }1,w,Ωxqq. (8)

Moreover, if Ω is non-singular and p “ n,
1

κ2pΩq
δpDp} ¨ }1,w,Ωxqq ď δpDp}Ω ¨ }1,w,xqq ď

κ2pΩqδpDp} ¨ }1,w,Ωxqq (9)

Proof. See Appendix A.

Theorem 1. Let x P Rn. Let the entries of A P Rmˆn be
a random matrix with entries drawn from an i.i.d. standard
normal distribution. If y “ Ax P Rm, and

m ą

ˆ

κpΩq
b

δpDp} ¨ }1,w,Ωxq ` tq
˙2

` 1, (10)

for a given t ą 0, then, Pw0 recovers x with probability at
least 1 ´ e´

t2

2 . Also, if y “ Ax ` ε and Ωxap is the best
s̃-term approximation of the s- sparse vector Ωx (s ě s̃), then
any solution px of Pwη satisfies

}px´ x}2 ď
2η

`?
m´ 1´ κpΩq

a

δpDp} ¨ }1,w,Ωxapqq ´ t
˘

`

,

(11)

with probability at least 1´ e´
t2

2 .

Proof. See Appendix B.
In the exact recovery case, we determine the suitable

weights by minimizing the right-hand side of (10). In the
noisy setting, for stable and robust recovery, we determine the
weights by minimizing the reconstruction error (the right-hand
side of 11):

ω˚ “ argmin
νPRL

`

Edist2pg, pDνq d B} ¨ }1pΩxqq, (12)

where D :“ r1P1 , ...,1PL
s P RpˆL. The latter optimization

problem is very similar to the one in weighted `1 minimization.
With the same approach as in [9], one can show that (12)
reduces to solving the following equations simultaneously [9,
Corollary 11]:

αiω
˚
i “ p1´ αiq

c

2

π

ż 8

ω˚i

pu´ ω˚i qe
´u2

2 du : i “ 1, ..., L.

(13)

It is not obvious whether the inequality (8) in Proposition 1
is tight for highly redundant and coherent analysis operators.
However, numerical evidence suggests that the obtained bound
is close to the `1 analysis phase transition curve for low-
redundancy regime (See Figure 1).

In practice, one may encounter some inaccuracies in de-
termining α P RL. The study of the sensitivity of weights
to the inaccuracies in α were previously considered in [10].
Fortunately, small changes in α are shown to have insignificant
impact on the derived weights.

IV. SIMULATION RESULTS

In this section, we numerically study the effect of weights
obtained by (13) on the number of required measurements.
First, we consider the scaling of the required number of mea-
surements for successful recovery of (2) with analysis sparsity.
The heatmap in Figure 1 shows the empirical probability of
success. Indeed, the results are consistent with (8). In the
second experiment, we generate a s “ 10-analysis sparse
random vector x P R55 in two different analysis operators
with κpΩq “ 1.1 and κpΩq “ 230. We consider two random
sets P1 and P2 that partition the analysis domain t1, ..., pu
with α1 “

7
10 and α2 “

3
50 . The suitable weights are obtained

via equation (13) by MATLAB function fzero. Figures 2 and
3 show the success rate of Pw

˚

0 averaged over 50 Monte
Carlo simulations. It is evident that the weighted `1 analysis
with suitable weights needs less number of measurements than
regular `1 analysis.
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Fig. 1. Empirical probability that problem (2) recovers x P R55 that has s
non-zero entries after applying a redundant analysis operator with κpΩq “
1.1. The black line shows the number of measurements obtained by (8).

In a separate scenario, we repeat the second experiment
for redundant Fourier analysis operator which is widely used
in line spectral and direction of arrival estimation. In this
experiment, the measurements are contaminated with additive
noise (SNR “ 30 dB). For the recovery, both Pη and Pw

˚

η

are implemented. Also, the random analysis support estimates
P1 and P2 are such made that α1 “

8
10 and α2 “

2
45 . The

normalized mean square error

NMSE “
}x̂´ x}2
}x}2

, (14)

is averaged out of 50 trials. From Figure 5, it is clear that
weighted `1 analysis with suitable weights obtained from (13)
needs less measurements than regular `1 analysis in a fixed
NMSE.

In the last experiment, we investigate a more practical
scenario where a Shepp-Logan image ( denoted by X of
size n1 ˆ n2 pixels) is under-sampled with a fat random
Gaussian matrix (of size m ˆ n1n2) and passed through
an additive noise with SNR=10 dB. Figure 4 illustrates the
recovery of this image (n1 “ n2 “ 128) by solving 2 and 3
when Ω P R114688ˆ16384 is a redundant wavelet matrix from
daubechies family (the weights in (3) are obtained via 13) and
in case of m “ 6554. The recovery problems (2) and (3) are
carried out using TFOCS algorithm [11]. The quality of each
method is reported in terms of the Peak SNR (PSNR) given
by:

PSNRpX,xXq :“ 20 log10

˜

}X}8
?
n1n2

}X ´ xX}F

¸

. (15)

We assume 11 disjoint support estimators in the analysis
domain with known level of contributing (tαiu11i“1 in (4)) with
top 10% (specifying s̃ in Theorem 1) of wavelet coefficients.
As shown by Figure 4, while Pw

˚

η has an acceptable perfor-
mance with PSNR=18.53 dB, Pη clearly fails with a poor
performance PSNR=10.2 dB.

APPENDIX

A. Proof of Proposition 1

Proof. In the following, we relate Dp}Ω ¨ }1,xq to Dp} ¨
}1,Ωxq.

Dp}Ω ¨ }1,xq
˝˝ “ closurepDp}Ω ¨ }1,xqq

Dp}Ω ¨ }1,xq “ cone˝pΩT B} ¨ }1pΩxqq

tw P Rn : xw,ΩTvy ď 0 : @v P conepB} ¨ }1pΩxqqu “

Fig. 2. The probability that (2) and (3) succeed to recover x P R55 from
Gaussian linear measurements. p “ 60, n “ 55, s “ 10, κpΩq “ 1.1.
Suitable weights used in (3), are obtained from (13).

Fig. 3. The probability that (2) and (3) succeed to recover x P R55 from
Gaussian linear measurements. p “ 60, n “ 55, s “ 10, κpΩq “ 230.
Suitable weights used in (3), are obtained from (13).

tw P Rn : Ωw P cone˝pB} ¨ }1pΩxqqu “

tw P Rn : Ωw P Dp} ¨ }1,Ωxqu. (16)

Therefore,

ΩDp}Ω ¨ }1,xq Ă Dp} ¨ }1,Ωxq. (17)

In particular, if Ω is non-singular and p “ n,

ΩDp}Ω ¨ }1,xq “ Dp} ¨ }1,Ωxq, (18)

where in the last line of (16), we used the fact that Dp}Ω¨}1,xq
is a closed convex set. In the following, we state Sudakov-
Fernique inequality which helps to control the supremum of
a random process by that of a simpler random process and is
used to find an upper-bound for δpDp}Ω ¨ }1,xqq.

Theorem 2. (Sudakov-Fernique inequality). Let T be a set
and X “ pXtqtPT and Y “ pYtqtPT be Gaussian processes
satisfying ErXts “ ErYts : @t P T and E|Xt ´ Xs|

2 ď

E|Yt ´ Ys|
2 : @s, t P T , then

E sup
tPT

X2
t ď E sup

tPT
Y 2
t . (19)

δpDp}Ω ¨ }1,xqq :“ E

ˆ

sup
wPDp}Ω¨}1,xq
}w}2ď1

xg,wy

˙2

ď }Ω}22Ñ2

E

ˆ

sup
wPDp}Ω¨}1,xq
}Ω}2Ñ2}v}2ď1

xg,vy

˙2

ď }Ω}22Ñ2}Ω
:}22Ñ2

E

ˆ

sup
wPDp}Ω¨}1,xq
}Ω}2Ñ2}v}2ď1

xh,Ωvy

˙2

κ2pΩqE

ˆ

sup
wPDp}Ω¨}1,xq
}Ωv}2ď1

xh,Ωvy

˙2

ď κ2pΩqE

ˆ

sup
zPΩDp}Ω¨}1,xq

}z}2ď1

xh, zy

˙2

ď
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(a) (b) (c)

Fig. 4. Effect of suitable weights in analysis sparse recovery with prior information. The associated parameters are n1 “ n2 “ 128, and m “ 6554. (a)
Ground truth image (PSNR=8 dB). (b)Recovered image via `1 analysis (PSNR=10.2 dB) (c) Recovered image with weighted `1 analysis with suitable
weights (PSNR=18.53 dB).

Fig. 5. NMSE versus number of required measurements in problems (2) and
(3) in the case that the ground truth signal x P R50 is sparse after applying
Fourier analysis operator Ω P C55ˆ50. NMSE is computed out of 50 Monte
Carlo simulations.

κ2pΩqE

ˆ

sup
zPDp}¨}1,Ωxq
}z}2ď1

xh, zy

˙2

“ κ2pΩqδpDp} ¨ }1,Ωxqq,

(20)

where in (20), h P Rp is a standard normal vector with i.i.d
components. In the first inequality of (20), we used the change
of variable v “ }Ω}´1

2Ñ2w. The second inequality comes from
Theorem 2 with Xv “ xg,vy and Yv “ }Ω:}2Ñ2xh,Ωvy and
the fact that:

E|Xv ´Xw|
2 “ }v ´w}22 ď }Ω

:}22Ñ2}Ωpv ´wq}
2
2 “

“ E|Yv ´ Yw|
2 : @v,w P Rn. (21)

The last inequality comes from (17). In the special case p “ n
and Ω is non-singular we have:

δpDp}Ω ¨ }1,xqq :“ E

ˆ

sup
wPDp}Ω¨}1,xq
}w}2ď1

xg,wy

˙2

“

E

ˆ

sup
vPDp}¨}1,Ωxq
}Ω:v}2ď1

xg,Ω:vy

˙2

ě

}Ω}´2
2Ñ2E

ˆ

sup
vPDp}¨}1,Ωxq
}Ω:v}2ď1

xh,vy

˙2

ě

}Ω}´2
2Ñ2E

ˆ

sup
vPDp}¨}1,Ωxq
}v}2ď}Ω

:
}
´1
2Ñ2

xh,vy

˙2

“
1

κ2pΩq
δpDp} ¨ }1,Ωxqq,

(22)

where the first inequality comes from Ω:Ω “ I and (18). The
second inequality comes from Theorem 2 with Xv “ xg,Ω

:vy
and Yv “ }Ω}´1

2Ñ2xh,vy and the fact that

E|Xv ´Xw|
2 “ }Ω:pv ´wq}22 ě }Ω}

´2
2Ñ2}v ´w}

2
2 “

“ E|Yv ´ Yw|
2 : @v,w P Rn, (23)

where the last inequality is a result of norm properties. �

B. Proof of theorem 1

Let T0 be the index set of s̃ largest analysis coefficients.
Then, it holds that,

}Ωxap}1 :“ }pΩxqT0
}1 ě

s̃}Ωx}1
s

, (24)

and as a result, we have, Dp}Ω ¨ }1,xq Ď Dp}Ω ¨ }1,
s
s̃xq

and thus δpDp}Ω ¨ }1,xqq ď δpDp}Ω ¨ }1,
s
s̃xqq. The result in

theorem 1 follows from [12, Corollary 3.5], Proposition 1, and
the fact that δpDp} ¨ }1,Ωxqq only depends on the support of
Ωx.
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