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 

Abstract—The frequency-domain Kalman filter (FKF) has 

been utilized in many audio signal processing applications due to 

its fast convergence speed and robustness. However, the 

performance of the FKF in under-modeling situations has not 

been investigated. This paper presents an analysis of the 

steady-state behavior of the commonly used diagonalized FKF 

and reveals that it suffers from a biased solution in 

under-modeling scenarios. Two efficient improvements of the 

FKF are proposed, both having the benefits of the guaranteed 

optimal steady-state behavior at the cost of a very limited increase 

of the computational burden. The convergence behavior of the 

proposed algorithms is also compared analytically. Computer 

simulations are conducted to validate the improved performance 

of the proposed methods. 

 
Index Terms—Adaptive filter, Kalman filter, Acoustic echo 

cancellation  

 

I. INTRODUCTION 

HE Kalman filter has been widely used in many practical 

applications, such as spacecraft navigation, robot control 

and econometrics [1][2]. The frequency-domain Kalman filter 

(FKF) for acoustic echo cancelation (AEC) was developed in 

[3], utilizing a stochastic state-space model of the acoustic echo 

path formulated in the frequency-domain entirely. The FKF 

was further developed [4]-[7] and its application has been 

extended to dereverberation and acoustic feedback cancellation 

[8]-[9]. 

Compared with the normally used frequency-domain 

adaptive filters (FDAF) [10], the FKF does not require 

additional regularization or control mechanisms and is 

computationally efficient and inherently robust [3]. It is 

generally assumed that the adaptive filter is of sufficient filter 

length [3]-[7]. However, in many practical applications, the 

impulse response of the system can be extremely long [11]-[14], 

resulting in under-modeling situations. Therefore, it is 

meaningful to investigate the performance of the FKF when the 

filter is of deficient length. 

It has been noticed that the Kalman filter provides a unifying 

framework for different types of adaptive transversal filters [15] 

and it is indicated in [16] that the optimal solution of the 
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Kalman filter is the same as the Wiener solution with white 

observation noise, finite-dimensional signal model and 

stationary process. In this paper, the steady-state behavior of 

the FKF is analyzed by investigating the optimal solution of the 

equivalent weight vector in time-domain. It is found that the 

FKF converges to a biased steady-state solution when the filter 

is of deficient length and the performance might deteriorate 

considerably. The FKF can be understood as a variable 

step-size FDAF [3] which also suffers from similar problems 

[13]-[19]. To resolve performance deterioration, two efficient 

improvements of the FKF are proposed, leading to guaranteed 

optimal steady-state behavior. Convergence behavior of both 

methods are compared, and simulations are carried out to verify 

their performance. Throughout this paper, lowercase letters are 

used for time-domain signals, uppercase letters mostly for 

frequency-domain signals with a few annotated exceptions, and 

bold letters for vectors or matrices. 

II. ANALYSIS OF THE STEADY-STATE BEHAVIOR 

The basic structure of the FKF [3] is briefly revisited. Let 

w(k)=[w0(k), …, wN-1(k)]T be the filter coefficients of length N, 

where k denotes the frame index, and the superscript T denotes 

the transpose operation. Similarly, let d(k)=[d(kN–N+1), …, 

d(kN)]T be the desired signal vector, s(k)=[s(kN–N+1), …, 

s(kN)]T be the observation noise vector (the near-end signal in 

AEC), and x(k)=[x(kN–M+1), …, x(kN)]T be the reference 

signal vector, where M denotes the frame size and M=2N. 

The reference signal matrix in the frequency-domain can be 

denoted as X(k)=diag{Fx(k)}, where F represents the Fourier 

transform matrix of size M×M and diag{·} creates a diagonal 

matrix from its input. Let W(k)=[W0(k), …, WM-1(k)]T=F[wT(k), 

01×N]T be the frequency-domain filter coefficients, where 01×N is 

an all-zero vector of size 1×N, then the desired signal vector can 

be expressed in the frequency-domain as 

   0, ( ) ( ) ( ),Nk k k k D G X W S  (1) 

where D(k)=F[01×N, dT(k)]T is the frequency-domain desired 

signal vector, S(k)=F[01×N, sT(k)]T is the frequency-domain 

observation noise, and 
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0, .
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 

0 0
G F F
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 A first order statistical Markov model is used to describe the 

time-varying property of the unknown system [15]: 

  1 ( ) ( ),k A k k   W W W  (3) 

where A is the transition parameter in the range 0<A≤1 and 

ΔW(k) is the process noise vector with covariance matrix 
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ΨΔΔ(k)=diag{[ΨΔΔ,0(k), …, ΨΔΔ,M-1(k)]T}. The state-space 

model for Kalman filter is formed by (1) and (3), which are 

respectively the observation equation and the state equation. 

In order to decrease the computational complexity, the 

diagonalized version of the FKF was proposed in [3] as: 

   ,01 ( ) ( ) ( ) ,Nk A k k k    W W G K E  (4) 

 
 

 

H

1
H
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1 ( ) ( )
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k k k

k k k M k
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  

   

K P X

X P X
 (5) 

 
   

 

2

ΔΔ

1 ( / ) ( ) ( ) ( )

diag ( ) ,

M Mk A N M k k k

M k

  

 

P I K X P
 (6) 

where E(k) is the frequency-domain error vector, K(k) is the 

Kalman gain, the superscript H represents the conjugate 

transpose operation, ΦΔΔ(k) and ΦSS(k) are the power spectral 

density of the process noise and observation noise respectively, 

P(k)=diag{[P0(k), …, PM-1(k)]T} is the state estimation error 

covariance matrix based on Kalman filter theory [15][16], and 

GN,0 is the constraining matrix with the form: 
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,0
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N
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  

 

 
  

 

I 0
G F F

0 0
. (7) 

It is also demonstrated in [3] that there is a fundamental 

relationship between the diagonalized FKF and the FDAF. 

Consequently, the updating equation of the FKF can be written 

in a FDAF form with simple substitution: 

    ,01 ( ) diag ( ) ( ) ( ) ,Nk A k k k k     W W G X E  (8) 

where the step-size matrix of the FKF can be described as 

     
1

H

SSdiag ( ) ( ) ( ) ( ) ( ) diag ( ) .k k k k k M k 


    P X P X   (9) 

To analyze the FKF, multiplying both sides of (8) by F-1 

yields 
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 (10) 

where e(k)=[e(kN–N+1), …, e(kN)]T, 

  
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is a circulant matrix whose first row is x(k) and 

     1 21

2 1

( ) ( )
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k k
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k k
  

   
 
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M F F
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 (12) 

is also a circulant matrix whose first row is F-1μ(k). XC,1(k), 

XC,2(k), M1(k) and M2(k) are matrices with size N×N. 

Substitute (11) and (12) into (10), the time-domain update 

equation for the FKF can be described as 

1 C,2 2 C,1( 1) ( ) ( ) ( ) ( ) ( ) ( ),k A k A k k k k k     w w M X M X e  (13) 

where 

 T

C,2( ) ( ) ( ) ( ).k k k k e d X w  (14) 

To analyze the convergence behavior of the system, the 

reference signal and the filter coefficients are regarded 

independent, which is a common assumption in adaptive filter 

analysis [11]. Furthermore, the step-size vector μ(k), as well as 

its related matrix M(k), is assumed to be independent of the 

reference signal and the filter coefficients, since μ(k) varies 

slowly as the algorithm approaches the steady state [7]. Such 

assumption is widely adopted in the analysis of variable 

step-size adaptive algorithm [20]-[25]. The mean convergence 

behavior of the time-domain filter coefficients can be 

determined by taking expectation on both sides of (13) as 
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 
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 (15) 

with 
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 (16) 

where Rx represents the autocorrelation matrix of the reference 

signal and rxd represents the correlation vector between the 

reference signal and the desired signal. The steady-state 

solution of (15) can be obtained as 
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 (17) 

For the situation of a sufficient filter length, i.e. the length of 

the unknown system L≤N, the desired signal vector can be 

described as 

 
T

T

C,2 0 1 1 ( )( ) ( ) ,..., , ( ).L N Lk k w w k  
   d X 0 s  (18) 

It can be easily verified that 
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 (19) 

If the transition parameter A is set to be 1, the steady-state 

solution can be written as E{w(∞)}=[w0, …, wL-1, 01×(N-L)]T by 

substituting (19) into (17), which means that the FKF achieves 

a perfect match between the adaptive filter and the unknown 

system. 

However, when the adaptive filter is of deficient length, the 

term in (13), M2(k)XC,1(k), obstructs the filter convergence and 

E{w(∞)} in (17) cannot be simplified to the optimal solution, 

leading to performance deterioration of the FKF. Similar 

problems exist for the FBLMS algorithm, which has been 

addressed in [13]-[19]. 

III. PROPOSED METHODS 

A. The first modified FKF (MFKF1) 

To circumvent the unfavorable effect of M2(k)XC,1(k), the 

update equation can be revised by changing the position of the 

constraining matrix GN,0 as 

     H

,01 ( ) diag ( ) ( ) ( ) .Nk A k k k k    W W G X E  (20) 

Multiplying both sides of (20) by F-1 leads to 

1

C
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A k k
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 

         
         

        

w w I 0 0
M X

w w 0 0 e
 (21) 

where wwr(k) represents the part of filter coefficients that 

suffers from the wraparound effect of circular convolution. 

Focusing on the causal part of the filter coefficients, the 
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following update equation in time-domain can be obtained as 

 
1 C,2( 1) ( ) ( ) ( ) ( ).k A k A k k k  w w M X e  (22) 

Taking expectation on both sides of (22) yields 

      1 1E ( 1) ( ) E ( ) + ( ) ,N Nk A k k A k   w I R w r  (23) 

whose steady-state solution, E{w(∞)}=Rx
-1rxd, is the 

well-known optimal Wiener solution [11] when the transition 

parameter A is set to be 1. The parameter A depends on the 

variability of the unknown system and is usually a constant 

close to 1 in practical applications [3], where the steady-state 

behavior resembles the case when A is set to be 1. 

Comparing (8) with (20), the computational complexity of 

FKF and MFKF1 seems the same. However, extra constraints 

are needed to eliminate the influence of wwr(k) in the proposed 

algorithm when computing the output, resulting in a limited 

increase of the computational load with merely one extra pair of 

FFT/IFFT. 

B. The second modified FKF (MFKF2) 

Intuitively the FKF converges to the optimal solution if the 

transition parameter A is set to be 1 and the matrix M2 is an 

all-zero matrix. Therefore, another possible modification aims 

to transform the step-size matrix of the FKF into 

  diag ( )k  ( ) ,M Mk I  (24) 

with 

  
1

H

SS( ) min ( ) ( ) ( ) ( ) diag{ ( )} ,k k k k k M k


     P X P X  (25) 

where min{·} picks the minimum value from the diagonal 

elements of the input matrix. In this case, (12) is simplified as 

     1diag ( )k k  M F F ( ) .M Mk I  (26) 

Thus, the submatrix M2 is an all-zero matrix, resulting in 

time-domain update equation as 

 C,2( 1) ( ) ( ) ( ) ( ) .k A k k k k    w w X e  (27) 

By taking expectation on both sides of (27), it can be easily 

seen that 

        E ( 1) ( ) E ( ) + ( ) ,N Nk A E k k AE k    w I R w r   (28) 

whose steady-state solution is also E{w(∞)}=Rx
-1rxd with A=1. 

This modification is much simpler than the first approach, 

since it just requires an additional minimizing operation. 

Nevertheless, the lower computational complexity is at a cost 

of potentially slower convergence speed, which will be 

investigated subsequently. 

C. Analysis and comparisons of the proposed methods 

To analyze the convergence behavior of the MFKF1, it is 

assumed that the unknown system is of length N and the 

transition parameter A is 1. Define the frequency-domain filter 

coefficient error vector to be 

   o( ) ,k k V W W  (29) 

where Wo is the optimal solution. Substituting (29) into (20) 

yields 

 
   

 

H

,0 0,

H

,0 o

1 diag ( ) ( ) ( )

( ) diag ( ) ( ) ( ),

M M N N

N

k k k k

k k k k






    

 

V I G X G X

V G X E
 (30) 

where Eo(k) is the minimum error vector when W(k) is replaced 

by Wo. Taking expectation on both sides of (30) leads to 

       ,0 XFE 1 diag ( ) E ( ) ,M M Nk E k k
     V I G R V  (31) 

with 

  H

XF 0,E ( ) ( ) .Nk kR X G X  (32) 

Note that the independence between V(k) and X(k) and the 

orthogonality between X and Eo [11] are both assumed here. 

And the step-size vector μ(k) is assumed to be independent of 

V(k) and X(k) [20]-[25]. 

It has been shown in [26] that when the filter length N and the 

frame size M are sufficiently large, RXF can be approximated as 

 

2 0 2 ( 1)

XF xx,0 xx, -1diag ( ),..., ( ) ,
M

j j
M M

MN e e
    

    
 

R  (33) 

where Φxx is the power spectral density of the reference signal. 

Furthermore, the constraining matrix can be approximated as 

[27] 

 
,0 ( / ) .N M MN M G I  (34) 

Recalling that all the matrices in (9) are diagonal, it can be 

easily found that the step-size of the FKF for each frequency 

bin is 

 
2

SS,( ) 1/ ( ) ( ) / ( ) .i i i ik X k M k P k   
 

  (35) 

As mentioned in Sec. I, Pi(k) is the state estimation error 

covariance [3][16], therefore it is reasonable to assume that the 

value of Pi(k) is large at the early stage of convergence. Hence, 

the second term of (35) is relatively insignificant compared to 

|Xi(k)|2, leading to the following approximation: 

 
2 2 /

xx,( ) 1/ ( ) 1/ ( ) .j i M

i i ik X k M e    
  (36) 

Combining (33), (34) and (36), (31) can be simplified as 

     2E 1 1 ( / ) E ( ) ,k N M k     V V  (37) 

which indicates an exponentially fast convergence speed at the 

early stage of convergence. 

For the MFKF2, the following approximation can be 

obtained by substituting (36) into (25): 

    2 /

xx,( )=min ( ) 1/ max ( ) .j i M

i i
i i

k k M e     (38) 

Likewise, substituting (24), (29), (33), (34) and (38) into (8) 

and taking expectation on both sides of the equation yields 
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 
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2

2 2 /

xx,

2 0 2 ( 1)

xx,0 xx, -1

1
E 1

max ( )

diag ( ),..., ( ) E ( ) .

M M j i M

i
i

M
j j

M M
M

N
k

M e

e e k



  


  
 


 
    

 

V I

V



 

 (39) 

Since it is obvious that  

  2 / 2 /

xx, xx,( ) / max ( ) 1,j i M j i M

i i
i

e e     (40) 

it can be concluded that the convergence speed of the second 

proposed algorithm is slower than the first one at early stage of 

convergence by comparing (37) with (39). 

IV. COMPUTER SIMULATIONS 

Computer simulations are carried out to verify the theoretical 

results and demonstrate the efficacy of the proposed algorithms. 
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Firstly, the performance of the analyzed algorithms is verified 

with a simple system identification example, whose setups are 

the same as the simulation for under-modeling situations in [14]. 

Then the convergence behavior of the proposed algorithm with 

different transition parameters is compared. Eventually, a 

practical AEC situation is considered and simulated. To 

demonstrate the convergence of algorithms, the normalized 

misalignment of the filter coefficients (in dB) is defined as 

 
2T

10 o o o( ) 10log ( ( ) ) ( ( ) ) / ,m k k k   
 

w w w w w  (41) 

with wo is the optimal solution in time-domain, which is similar 

to the definition in [7]. 

A. An illustrating example 

In this case, the reference signal is generated by passing 

Gaussian white noise with unit variance through a 4-tap FIR 

filter. The desired signal is generated by passing the reference 

signal through a 16-tap FIR filter. The length of the adaptive 

filter N is 10 and the frame-length M is 20 accordingly. The 

transition parameter A is set to be 1. 

Fig. 1(a) depicts the misalignments of the FKF, MFKF1 and 

MFKF2 in this under-modelling situation. The FKF converges 

with the fastest speed but to a biased steady-state solution, 

whereas the misalignments of both MFKF1 and MFKF2 are 

significantly smaller than the FKF. It is noted that the 

misalignment curve of the FKF is much smoother than that of 

the proposed algorithms, since its fluctuation is masked by the 

comparatively large deviation of the steady-state solution in the 

logarithmic coordinate. As analyzed in section III, it can be 

clearly seen that the convergence speed of the MFKF1 is faster 

than the MFKF2 in such circumstances, since the MFKF2 

selects the smallest step-size conservatively. The steady-state 

filter coefficients are shown in Fig. 1(b). While the steady-state 

solution of the FKF differs from the Wiener solution, the 

proposed algorithms converge to the optimal solution perfectly. 

Fig. 2 shows the misalignment curves of the MFKF1 with 

different values of A in the under-modeling situation whose 

setup is the same as the above example. It has been pointed out 

that the parameter A has influence on the convergence rate, the 

tracking ability and the steady-state misalignment [3][7]. It can 

be seen from Fig. 2 that the steady-state misalignment of the 

MFKF1 increases as the parameter A decreases, but overall the 

MFKF1 with different values of A performs significantly better 

than the standard FKF in this situation. 

B. A practical AEC example 

Fig. 3 depicts the misalignment curves of the FKF and the 

MFKF in the actual AEC scenario. The echo signal is simulated 

by convolving the reference signal (clean speech) with a 

measured room impulse response in an office with a 

reverberation time of about 600 ms. The sampling rate is 16 

kHz. The length of the adaptive filter N is 512, which is 

significantly deficient for modeling the impulse response. The 

transition parameter A is also set to be 1. It can be seen from Fig. 

3 that the FKF converges faster at the initial stage, but the 

steady-state solution is obviously biased. The MFKF1 and 

MFKF2 both have a significantly better echo attenuation level, 

while the convergence speed of the MFKF1 is faster than the 

MFKF2, indicating a preferable performance in practical 

applications. 

V. CONCLUSIONS 

The steady-state behavior of the diagonalized 

frequency-domain Kalman filter has been investigated in this 

paper. It is found that the steady-state solution of the FKF is not 

optimal in the under-modeling situation. On the basis of the 

analysis, two methods are proposed to improve the steady-state 

performance of the FKF. Both methods can guarantee an 

optimal steady-state solution with limited extra computational 

load, while the MFKF1 has a comparatively faster convergence 

speed than the MFKF2. Simulations on a simple system 

identification and a practical AEC system validate the efficacy 

of the proposed algorithms. 

 
(a)                                        (b) 

Fig. 1. (a) Misalignments of the FKF, MFKF1 and MFKF2. (b) Steady-state 

solution of the filter coefficients in the under-modeling example. 
 

 
Fig. 2. Misalignments of FKF and MFKF1 with different transition parameters 

in the under-modeling example. 

 

 
Fig. 3. Misalignments of the FKF, MFKF1 and MFKF2 in the actual AEC 

scenario. 
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