
ar
X

iv
:1

81
2.

00
15

6v
1 

 [
ee

ss
.S

P]
  1

 D
ec

 2
01

8
1

M -Channel Critically Sampled Spectral Graph

Filter Banks With Symmetric Structure
Akie Sakiyama, Kana Watanabe, and Yuichi Tanaka

Abstract—This paper proposes a class of M -channel spectral
graph filter banks with a symmetric structure, that is, the
transform has sampling operations and spectral graph filters
on both the analysis and synthesis sides. The filter banks
achieve maximum decimation, perfect recovery, and orthogonal-
ity. Conventional spectral graph transforms with decimation have
significant limitations with regard to the number of channels,
the structures of the underlying graph, and their filter design.
The proposed transform uses sampling in the graph frequency
domain. This enables us to use any variation operators and apply
the transforms to arbitrary graphs even when the filter banks
have symmetric structures. We clarify the perfect reconstruction

conditions and show design examples. An experiment on graph
signal denoising conducted to examine the performance of the
proposed filter bank is described.

Index Terms—Graph signal processing, spectral graph filter
bank, critically sampled design, spectral domain sampling

I. INTRODUCTION

A. Motivation

Signal processing on graphs has been developed to allow

traditional signal processing techniques to be utilized on data

with irregular complex structures. The data are processed

while considering their structures, defined through graphs, and

can be applied to many practical applications, such as social

networks [1], images/videos [2], [3], traffic [4], and sensor

networks [5], [6].

Wavelets and filter banks with decimation are important

techniques for processing or analyzing graph signals [7], as

well as regular signals [8]–[11]. Although there are some

approaches for M -channel graph filter banks with (maximum)

decimation [12]–[14], they have a significant limitation in

terms of the graph structure or filter design, or require a

complex interpolation on the synthesis side for ensuring a

perfect reconstruction. Popular approaches include critically

sampled spectral graph wavelets [15], [16] and M -channel

oversampled spectral graph filter banks [17], [18]. Although

such techniques have relatively fewer restrictions than other

conventional methods, they are applicable solely to the bipar-

tite graphs and can only use normalized graph Laplacians as

a variation operator.

All of these approaches utilize sampling operations in the

vertex domain, which selects maintained vertices and samples
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according to the graph structure or applications. The vertex do-

main sampling corresponds to the sampling in the time/spatial

domain for regular signals. In traditional signal processing,

sampling in the time/spatial domain can also be represented

in the frequency domain, and both sampling results are the

same [19]. Unfortunately, graph signal processing does not

inherit this property, i.e., relationships between the spectra of

the original and downsampled signals are not clarified for the

vertex domain sampling, except for a bipartite case. Hence, a

downsampled signal occasionally has a significantly different

spectrum from that of the original signal.

This paper proposes the use of M -channel critically sampled

spectral graph filter banks with a symmetric structure. This is

a generalized version of our work [20], [21] from two- to M -

channel structures. It uses down- and upsampling operations

in the graph frequency domain [22], and therefore, the de-

composed signal keeps the spectral information of the original

graph signal. The proposed filter banks can be applied to any

graph signals regardless of the structure of the underlying

graph and can use any variation operators, such as a com-

binatorial/normalized graph Laplacian and graph adjacency

matrix. We clarify the perfect reconstruction conditions, which

are fortunately similar to those of regular signals. We also

demonstrate that any filter sets of M -channel real-valued

linear phase filter banks for regular signals can also be used

to that for graph signals with perfect recovery. We provide

filter design examples and apply the proposed method to the

denoising of a graph signal.

B. Notation

A graph G is represented as G = (V , E), where V and E
denote sets of vertices and edges, respectively. The (m,n)-
th element of an adjacency matrix A is amn > 0 if the

mth and nth vertices are connected, or zero otherwise, where

amn denotes the weight of the edge between m and n. The

degree matrix D is a diagonal matrix, and its mth diagonal

element is dmm =
∑

n amn. Combinatorial and symmetric

normalized graph Laplacians are defined as L := D − A

and L := D
−1/2

LD
−1/2, respectively. Because L (or L)

is a real symmetric matrix, L is always decomposed into

L = UΛU
⊤, where U = [u0, . . . ,uN−1] is an orthonor-

mal eigenvector matrix; Λ = diag(λ0, λ1, . . . , λN−1) =
diag(Λ0,Λ1, . . . ,ΛM−1) is a diagonal eigenvalue matrix

in which the eigenvalue is the graph frequency, Λi =
diag(λNi/M , . . . , λN(i+1)/M−1); and ·⊤ represents the trans-

pose of a matrix or vector. For simplicity, we assume that the
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Fig. 1. Downsampling of graph signals. The signal is downsampled by 2 and
bandlimited. The shaded areas represent different signals: (a) original graph
signal, (b) vertex domain downsampling, and (c) graph frequency domain
downsampling.

eigenvalues λi have the following order:

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1 = λmax. (1)

Here, f ∈ R
N is a graph signal, where the nth sample f [n]

is assumed to be located on the nth vertex of the graph. The

graph Fourier transform (GFT) is defined as f̃ = U
⊤f , and

the inverse GFT is f = Uf̃ . The graph spectral filtering can

be represented as fout = UH(Λ)U⊤fin with a filter kernel,

H(·).

II. SAMPLING OF GRAPH SIGNALS

In this section, we introduce the sampling of graph signals

in graph frequency domain [22]. Its relationship with the

sampling in vertex domain is illustrated in Fig. 1.

Definition 1 (Downsampling of graph signals in graph fre-

quency domain). Let L0 ∈ R
N×N and L1 ∈ R

N/M×N/M

be the graph Laplacians for the original graph and for

the reduced-size graph1, respectively, and assume that their

eigendecompositions are given by L0 = U0Λ0U
⊤
0 and

L1 = U1Λ1U
⊤
1 . The downsampled graph signal fd ∈ R

N/M

in the graph frequency domain from the signal f ∈ R
N is

defined as

fd = U1SdU
⊤

0 f , (2)

where Sd = [IN/M JN/M . . . IN/M JN/M ], in which IN

is an N × N identity matrix and JN is an N × N counter

identity matrix.

Definition 2 (Upsampling of graph signals in the graph

frequency domain). Let L1 ∈ R
N/M×N/M and L0 ∈ R

N×N

be the graph Laplacians for the original graph and the graph

with increased size, respectively. The upsampled graph signal

fu ∈ R
N in the graph frequency domain is defined as

fu = U0SuU
⊤

1 fd, (3)

where Su = S
⊤

d .

1
M is assumed to be a divisor of N for the sake of simplicity.

Analysis bank Synthesis bank

Fig. 2. Scheme of M -channel spectral graph filter bank.

III. M -CHANNEL SPECTRAL GRAPH FILTER BANKS

A. Framework

The structure of the proposed M -channel spectral graph

filter bank is shown in Fig. 2. It is clear that it has a

symmetrical structure similar to that of regular signals [24].

Here, Hm(Λ) and Gm(Λ) (m = 0, . . . ,M − 1) are analysis

and synthesis filters, respectively. We use slightly modified

sampling matrices from (2) and (3), which are defined as

S̃d,m =





[
IN/M JN/M . . .

]
for even m,[

IN/M −JN/M . . .
]

for odd m,
(4)

where S̃u,m = S̃
⊤

d,m for all m.

The mth subband signals after the analysis and synthesis

transforms are represented respectively as follows.

fm = U1,mS̃d,mHm(Λ)U⊤

0 f

f̂m = U0Gm(Λ)S̃u,mU
⊤

1,mfm,
(5)

where U1,m is an arbitrary eigenvector matrix for the mth

subband.

B. Perfect Reconstruction Condition

The following theorem describes the perfect reconstruction

condition for the proposed scheme.

Theorem 1. Assume that k and p are integers within the range

of k ∈ [0, N ] and p ∈ (−⌊kM/N⌋, (M − 1) − ⌊kM/N⌋]
(p 6= 0), respectively. The M -channel spectral graph filter

bank defined in the previous subsection is a perfect recon-

struction transform, i.e., f̂ = c2f , where c is an arbitrary real

number, if the graph spectral responses of the filters satisfy the

following relationships for all k and p.

M−1∑

m=0

Gm(λk)Hm(λk) = c2,

M−1∑

m=0

Gm(λk)Hm(λk+Np/M ) = 0 for even p,

M−1∑

m=0

(−1)mGm(λk)Hm(λ(2p+1)N/M−k) = 0 for odd p.

(6)
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Proof. The reconstructed signal of the M -channel spectral

graph filter bank is represented as follows:

f̂ = U

(
M−1∑

m=0

Gm(Λ)S̃u,mS̃d,mHm(Λ)

)
U

⊤f

:= U

M−1∑

m=0

TmU
⊤f ,

(7)

where Tm is represented as follows:

Tm =




Tm(0, 0) · · · Tm(0,M − 1)
...

. . .
...

Tm(M − 1, 0) · · · Tm(M − 1,M − 1)


 . (8)

Each block in Tm is represented as

Tm(k, k + p) =



Gm(Λk)Hm(Λk+p) for any m and even p

Gm(Λk)JN/MHm(Λk+p) for even m and odd p.

−Gm(Λk)JN/MHm(Λk) for odd m and odd p.

(9)

If the filter set satisfies (6),
∑M−1

m=0 Tm(k, k + p) becomes

M−1∑

m=0

Tm(k, k) =
M−1∑

m=0

Gm(Λk)Hm(Λk) = IN/M ,

M−1∑

m=0

Tm(k, k + p) =





∑M−1
m=0 Gm(Λk)Hm(Λk+p) = 0N/M

for even p (p 6= 0),∑M−1
m=0 (−1)mGm(Λk)JN/MHm(Λk+p) = 0N/M

for odd p.

(10)

Then, (7) becomes

f̂ = U

M−1∑

m=0

TmU
⊤f = UINU

⊤f = f . (11)

(11) indicates that the the input signal can perfectly be

recovered from the decomposed signals.

C. Filter Design

We use filter sets obtained from M -channel real-valued

linear phase filter banks applied in traditional signal processing

by using the design method introduced in [7]. Let Hm(ω)
and Gm(ω) for m = 0, . . . ,M − 1 be arbitrary analysis and

synthesis filters in the frequency domain, respectively. We

assume that M is even and the filter length is L = MK ,

where K is an arbitrary integer. Furthermore, the even-indexed

filters are symmetric, and the odd-indexed filters are anti-

symmetric, which are well-accepted assumptions in traditional

signal processing, as described in [8], [23]. The filter Hm(ω)
can be represented as

Hm(ω) =

{
e−j L−1

2
ωℜ(Hm(ω)) for even m,

je−j L−1

2
ωℜ(Hm(ω)) for odd m.

(12)
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Fig. 3. Original signals.

Then, the converted filters in the graph frequency domain can

be expressed as

Hm(λ) =

{
ej

L−1

2
α(λ)

Hm(α(λ)) for even m,

−jej
L−1

2
α(λ)

Hm(α(λ)) for odd m,
(13)

where α(·) is a function mapping from λ ∈ [0, λmax] to

ω ∈ [−π, π]. The filters have the same filter characteristics

as the corresponding classical filter bank in the frequency do-

main. The filter sets in traditional signal processing satisfy the

following perfect reconstruction condition for any ωk ∈ [0, 2π]
and integer (−⌊Mω/(2π)⌋, (M − 1) − ⌊Mω/(2π)⌋] (p 6= 0)

[24]:

M−1∑

m=0

G
∗

m(ωk)Hm(ωk) = c2, (14)

M−1∑

m=0

G
∗

m(ωk)Hm(ωk + 2πp/M) = 0. (15)

The following theorem can then be stated.

Theorem 2. The spectral graph filters obtained from (13)

satisfy the perfect reconstruction conditions of Theorem 1 if

α(·) satisfies the following condition:

α(λk+pN/M ) =

{
πλk/λmax for p = 0,

α(λk) + 2πp/M for even p,

α(λ(2p+1)N/M−k) = 2π − (α(λk) + 2πp/M)

for odd p,

(16)

for k = 0, . . . , N/M − 1 and p = 0, . . . ,M − 1.

Proof. The proof is described in Appendix.
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Fig. 4. Filter sets obtained using the eigenvalue distribution of each graph.
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Fig. 5. Decomposition results in the vertex and graph frequency domains.

IV. EXPERIMENTAL RESULTS

Hereafter, we abbreviate the proposed filter bank as M -

graphSS, where SS refers to the spectral sampling, and the

filter bank using vertex sampling [15], [16] is abbreviated as

graphVS, where VS refers to vertex sampling.

TABLE I
DENOISED RESULTS: SNR (DB)

σ 1 1/2 1/4 1/8 1/16 1/32

Random Sensor Network Graph

GFT 6.44 9.40 13.92 19.22 25.06 30.86
GraphBior 4.45 8.46 13.57 19.02 24.97 30.82
GraphVS-I 4.43 8.54 13.58 19.00 24.98 30.82
2-GraphSS-I 3.36 9.13 14.44 19.66 25.29 30.95
8-GraphSS-I 4.71 10.13 15.60 20.39 25.68 31.11

noisy 0.69 6.78 12.83 18.76 24.88 30.80

Minnesota Traffic Graph

GFT -1.71 7.63 11.80 16.92 22.64 28.53
GraphBior 2.10 6.13 11.08 16.58 22.51 28.48
GraphVS-I 2.24 6.21 11.10 16.60 22.51 28.48
2-GraphSS-I 0.19 5.66 11.12 16.72 22.58 28.51
8-GraphSS-I 3.47 7.94 12.36 17.27 22.79 28.58

noisy -1.71 4.35 10.32 16.32 22.42 28.45

A. Signal Decomposition

The graph signals shown in Fig. 3 are decomposed through

4-GraphSS with lapped orthogonal transform (LOT) based

filters (denoted as 4-GraphSS-L) [25], as shown in Figs. 4

(a) and (b). The filters are orthogonal, and therefore, we can

use the same filter sets on the synthesis side. The decomposed

results are shown in Fig. 5. The vertices maintained in each

subband are selected according to the vertex indices. We can

see that the decomposed signals contain the characteristics of

the spectrum in the original signal, and the transform divides

the original signal into different frequency ranges.

B. Denoising

To evaluate the performance of the proposed spectral graph

filter bank, the denoising is performed. We used 8-GraphSS

with ideal filters (denoted as 8-GraphSS-I), as shown in Figs. 4

(c) and (d), which is compared with the GFT, graphBior [16],

2-GraphVS with an ideal filter [15] (denoted as GraphVS-

I), and 2-GraphSS-I [20]. For a fair comparison, two-channel

GFBs use 7-level octave decompositions, i.e., they also have

eight subbands. The input signal is corrupted by additive white

Gaussian noise. For denoising, the coefficients in the Y th

subband are thresholded [26] as follows:

T = σ2/
√
max(σ2

Y − σ2, 0), (17)

where σ is the standard deviation of the noise, and σY is

the variance of coefficients in the Y th subband. The input

signals are shown in Fig. 3, and the denoising results are shown

in Table I. The proposed method shows better results than

conventional methods in most cases.

V. CONCLUSION

In this paper, M -channel spectral graph filter banks using

sampling in the graph frequency domain are proposed. They

can be applied to any graph signals and can use any variation

operators. We demonstrated perfect reconstruction conditions

and filter design methods. The proposed graph filter bank

can decompose the signals while maintaining the spectrum of

the original graph signal, and in an experiment on denoising

showed better results than a conventional transform with

maximum decimation.
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APPENDIX

We assume that ωk = α(λk) for k = 0, . . . , N/M−1. If m
is even and k < N/M , from (13) and (16), Gm(λk)Hm(λk)
can be rewritten as

Gm(λk)Hm(λk)

= ej
L−1

2
α(λk)Gm(α(λk))e

j L−1

2
α(λk)Hm(α(λk))

= e−j L−1

2
α(λk)ej

L−1

2
α(λk)ℜ(Gm(α(λk)))

× ej
L−1

2
α(λk)e−j L−1

2
α(λk)ℜ(Hm(α(λk)))

= G
∗

m(ωk)Hm(ωk).

(18)

If m and p are even, from (12), (13) and (16),

Gm(λk)Hm(λ(2p+1)N/M−k) can be rewritten as

Gm(λk)Hm(λ(2p+1)N/M−k)

= −jej
L−1

2
α(λk)Gm(α(λk))(−j)ej

L−1

2
(2π−(α(λk)+2πp/M))

× Hm(2π − (α(λk) + 2πp/M))

= −jej
L−1

2
ωkGm(ωk)(−j)ej

L−1

2
(2π−(ωk+2πp/M))

× H
∗

m(ωk + 2πp/M)

= −jej
L−1

2
ωkje−j L−1

2
ωkℜ(Gm(ωk))

× (−j)ej
L−1

2
(2π−(ωk+2πp/M))(−j)ej

L−1

2
(ωk+2πp/M)

×ℜ(Hm(ωk + 2πp/M))

= ej
L−1

2
(2πp/M)

G
∗

m(ωk)Hm(ωk + 2πp/M)
(19)

for any k. By using similar approach, the following equations

are derived:

Gm(λk)Hm(λk) = G
∗

m(ωk)Hm(ωk) (20)

for any k and m,

Gm(λk)Hm(λk+pN/M ) = ej
L−1

M
pπ
G
∗

m(ωk)Hm(ωk + 2πp/M)
(21)

for any k and m, and even p, and

Gm(λk)Hm(λ(2p+1)N/M−k) ={
ej

L−1

2
(2πp/M)

G
∗
m(ωk)Hm(ωk + 2πp/M) if m is even,

−ej
L−1

2
(2πp/M)

G
∗
m(ωk)Hm(ωk + 2πp/M) if m is odd,

(22)

for any k and m, and odd p. Then, the following relationships

are satisfied:
M−1∑

m=0

Gm(λk)Hm(λk) =

M−1∑

m=0

G
∗

m(ωk)Hm(ωk) = c2, (23)

M−1∑

m=0

Gm(λk)Hm(λk+2pN/M )

= ej
L−1

M
pπ

M−1∑

m=0

G
∗

m(ωk)Hm(ωk + 2πp/M) = 0, (24)

M−1∑

m=0

(−1)mGm(λk)Hm(λ(2p+1)N/M−k)

= ej
L−1

2
(2πp/M)

M−1∑

m=0

G
∗

m(ωk)Hm(ωk + 2πp/M) = 0 (25)

They coincide with (6).
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