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Distributed Rate-Constrained LCMV Beamforming
Jie Zhang, Andreas I. Koutrouvelis, Richard Heusdens, and Richard C. Hendriks

Abstract—In this letter, we propose a decentralized frame-
work for rate-distributed linearly constrained minimum variance
(LCMV) beamforming in wireless acoustic sensor networks
(WASNs). To save the energy usage within the network, we
propose to minimize the transmission cost and put a constraint on
the noise reduction performance. Subsequently, we decentralize
the obtained LCMV filter structure by exploiting an imposed
block diagonal form of the noise correlation matrix. As a result,
the beamformer weights are calculated in a decentralized fashion
and each node can determine its quantization rate locally. Finally,
numerical results validate the proposed method.

Index Terms—Rate allocation, LCMV, noise reduction, energy
usage, distributed beamforming, acoustic sensor networks.

I. INTRODUCTION

RECENTLY, several beamforming algorithms for wire-
less acoustic sensor networks (WASNs) have been pro-

posed [1]–[9]. The calculations are done either in a centralized
way [1]–[4] or in a distributed way [5]–[9]. In the centralized
case, all the sensor nodes need to transmit their measurements
to a fusion center (FC), and the FC performs all computations.
There are several limitations on the centralized approach. First,
the amount of data that needs to be sent and saved in the
FC scales up with the network size. Moreover, with an FC,
all operations are performed in a single node, which, in case
of disconnection from the network, will cause full collapse
of the system. In contrast, the decentralized implementation
distributes calculations over the nodes in the WASN, which
could overcome the limitations of the centralized approaches.

In WASNs, usually the sensors are battery-powered with
a limited energy budget. To reduce the energy consumption
of beamforming algorithms, one could apply sensor selec-
tion [10]–[12] or rate allocation [13]–[16] to reduce the
amount of transmitted information. Rate allocation is more
general than sensor selection, as it allows for multiple deci-
sions on the status of sensors. However, sensor selection and
rate allocation methods typically work in a centralized fashion,
which is, as argued above, undesirable due to scalability and
instability issues. In this letter we therefore investigate a
decentralized solution for rate-distributed beamforming.

In [17], a distributed linearly constrained minimum variance
(LCMV) beamforming method for WASNs was proposed. This
method block-diagonalizes the noise/noisy correlation matrix
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using linear equality constraints, leading to an efficient dis-
tributed implementation for the LCMV beamformer. However,
this method does not take into account the quantization noise
introduced during the communication between the devices.
Nor does it take the energy usage due to transmission into ac-
count. The rate-distributed LCMV (RD-LCMV) beamformer
proposed in [15] is an effective method to reduce the trans-
mission costs over WASNs. It optimally distributes rates to
the sensors by minimizing the transmission power under a
constraint on the noise reduction performance. However, the
RD-LCMV method was derived in a centralized way. This is
less efficient with respect to transmission energy if the FC is
far away from the communicating sensor.

In this paper our contribution is twofold. First, we solve the
rate-allocation problem introduced in [15] for the distributed
beamformer proposed in [17]. As the beamformer output
highly depends on the quantization noise, we allocate the
rates between the devices such that the distributed LCMV
beamformer in [17] guarantees a pre-defined performance.
Secondly, we propose a distributed solution to the RD-LCMV
problem introduced in [15]. Experiments in a simulated WASN
validate the proposed decentralized method, i.e., the expected
noise reduction performance is achieved with a saving of trans-
mission costs compared to the centralized implementation.

II. FUNDAMENTALS

A. Signal model
We consider a connected WASN consisting of K nodes,

where each node k ∈ K = {1, ...,K}, with K the set of
node indices, has Mk, ∀k microphones. In total, we have
M =

∑K
k=1 Mk microphones that acquire the sound field

consisting of one target source degraded by acoustic back-
ground noise. Let E denote the set of edges of the network
and Nk the set of neighbouring nodes of node k. If and only
if (k,m) ∈ E , the kth and mth nodes can communicate with
each other directly. Let l and ω denote the index of time frame
and angular frequency, respectively. In the short-term Fourier
transform (STFT) domain, the noisy STFT coefficient at the
κth microphone, say Yκ(ω, l), ∀κ, is given by

Yκ(ω, l) = Xκ(ω, l) +Nκ(ω, l), (1)

where Xκ(ω, l) = aκ(ω)S(ω, l) with aκ(ω) the acoustic
transfer function (ATF) of the target signal with respect to
the κth microphone and S(ω, l) the STFT coefficient of the
target source signal at the source location. In reverberant en-
vironments, the ATF consists of early reverberation (typically
the first 50 ms) and late reverberation components [18], [19].
Only the early reflections of the target source are beneficial
for improving the speech intelligibility [19]. Therefore, in (1),
the total noise Nκ(ω, l) received by microphone κ is given by

Nκ(ω, l) = Zκ(ω, l) + Uκ(ω, l), (2)
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where Zκ(ω, l) denotes the correlated noise components in-
cluding the early reflections of all interfering sources, and
Uk(ω, l) the remaining noise components including the late
reverberation from all sources and the sensor noise. For nota-
tional brevity, the frequency variable ω and the frame index l
will be omitted now onwards. Using vector notation, the M
channel signals are stacked in a vector y = [Y1, ..., YM ]T ∈
CM . Similarly, we define M -dimensional vectors x,n, z,u,a
for the clean speech component, the total noise, the correlated
noise, remaining noise and ATF, respectively, such that the
signal model in (1) can compactly be written as

y = x+ n = x+ z+ u, (3)

where x = aS. To focus on the concept of rate-distributed
noise reduction, we assume in this work that the ATFs of
all sources are known. In a centralized setting, the RTF
can be estimated using covariance substraction or covariance
whitening method [20]. In the distributed setting this can be
estimated using [21]–[24]. Further, we assume that all sources
are mutually uncorrelated, and the early reflections and late
reverberation are also mutually uncorrelated (which is strictly
speaking true under the assumption that the STFT coefficients
S across time are uncorrelated), such that the second-order
statistics (SOS) of the noise components can be written as

Rn = E
[
|n|2

]
= Rz +Ru, (4)

where E{·} denotes the statistical expectation operation.

B. Centralized LCMV beamforming

The LCMV beamformer [25]–[28] is widely used in array
processing. The filter coefficients are designed to minimize the
output noise power subject to a set of linear constraints,

wLCMV = argmin
w

wHRnw, s.t. ΛHw = f . (5)

The closed-form solution to (5) is given by [25]–[28]

wLCMV = R−1
n Λ

(
ΛHR−1

n Λ
)−1

f . (6)

Notably, the linear constraints in (5) can be used to preserve
target sources, eliminate interfering sources [25]–[28], or
preserve the spatial cues of the sound field [16], [29], [30].

In general, the microphones within a single node are spa-
tially close, while the microphones at different nodes in a
WASN are typically more distant. In [17], it was argued that
the late reverberation is highly correlated in the first case,
while much less correlated in the latter case. Hence, it was
suggested that the SOS Ru can be approximated by a block-
diagonal matrix where each block corresponds to the SOS of
the late reverberation of one node only and the microphone
self-noise. By properly using the constraints in the LCMV
framework to cancel the early components contained in z
and leveraging the block-diagonal structure of the SOS, the
LCMV beamforming problem in (5) can be implemented in a
distributed fashion. Hence, as in [17], in this work we specify
f = [1, 0, · · · , 0]T ∈ Cr+1 (r is the number of interferers), and
Λ = [a,b1, · · · ,br] ∈ CM×(r+1) consisting of ATF vectors
with bj , ∀j the ATF of the jth interfering source. Clearly,
with such a set of linear constraints ΛHw = f and given

enough degrees-of-freedom, the power of the target source is
preserved and the power of the correlated sources can entirely
be suppressed. As a result, the output noise power after LCMV
beamforming can be shown to be given by [28]

E
[
|wHn|2

]
= E

[
|wHu|2

]
= wHRuw, (7)

due to the fact that bH
j w = 0, ∀j. That is, any decrease

in the objective function of (5) is caused by reducing the
uncorrelated noise components. As a result, the matrix Rn

can be replaced by Ru. In the sequel, we will use the block-
diagonal approximation of Ru for the design of algorithms.

III. DISTRIBUTED LCMV BEAMFORMING WITH
QUANTIZATION NOISE

Given the block-diagonal matrix Ru, by using (7) and the
constraints to null the early components contained in z, the
centralized LCMV beamforming problem in (5) can be written
in the following node separable form:

w∗ = argmin
w

K∑
k=1

wH
k Ru,kwk, s.t.

K∑
k=1

ΛH
k wk = f , (8)

where wk ∈ CMk , Λk ∈ CMk×(r+1) and Ru,k = E[uku
H
k ] ∈

CMk×Mk with uk ∈ CMk denote the elements of w, the rows
of Λ and the kth block of the matrix Ru, respectively. The
subscript k is used to indicate the components associated with
node k. Considering the real-valued Lagrangian function of
(8), we can obtain the optimal local LCMV filter, given by [17]

w∗
k = R−1

u,kΛkµ
∗, (9)

where µ∗ ∈ Cr+1 is a vector with Lagrangian multipliers.
Clearly, the optimal local LCMV filter w∗

k depends on the
global optimal dual variables µ∗. To determine µ∗, one can
consider the dual optimization problem of (8), given by

µ∗ = argmax
µ

−
K∑

k=1

µHΛH
k R−1

u,kΛkµ+ 2ℜ
(
µHf

)
, (10)

where ℜ(·) returns the real part. For notational simplicity,
we define Gk = ΛH

k R−1
u,kΛk, ∀k. To optimize (10) in a

distributed fashion, we introduce µk, ∀k to denote the local
version of µ at each node. With this, (10) is equivalent to

min
µk

K∑
k=1

(
µH

k Gkµk − 2

K
ℜ
(
µH

k f
))

s.t. µk = µm,

for all (k,m) ∈ E . The resulting problem can be solved using
randomized gossip [31], ADMM [32] or PDMM [33]. For
instance, as shown in [17], the PDMM update procedure for
the (i+ 1)th iteration can be summarized as

µ
(i+1)
k =(Gk + ρ|Nk|I)−1

×

[ ∑
m∈Nk

(
k −m

|k −m|
γ
(i)
m|k + ρµ(i)

m

)
+

f

K

]
, (11a)

γ
(i+1)
k|m =γ

(i)
m|k − ρ

k −m

|k −m|

(
µ

(i+1)
k − µ(i)

m

)
, (11b)

where γk|m and γm|k are the direct-edge variables computed
at nodes k and m, respectively, associated with the edge
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(k,m) ∈ E , I denotes the identity matrix, and ρ is a positive
step size. Note that in (11), by substituting the update equation
for γ(i)

m|k, we can get rid of transmitting the edge variables. As
such, updating the edge variables can be performed by broad-
ingcasting µ

(i)
k . The iterative procedure can be terminated until

|µ(i)
k − µ

(i)
m | < ϵ where ϵ is a small positive number.

In [34], [35], the convergence of PDMM was shown in
the presence of quantization noise. Due to quantization, the
dual variables exchanged among nodes are noisy, i.e., µ̂(i)

k =

µ
(i)
k + µ̃

(i)
k , where µ̃

(i)
k denotes the quantization noise which

is assumed to be zero-mean1. Using the above PDMM update
equations, the LCMV filter from (9) in iteration i is given by

ŵ
(i)
k = w

(i)
k + w̃

(i)
k = R−1

u,kΛk(µ
(i)
k + µ̃

(i)
k ), (12)

where w̃
(i)
k = R−1

u,kΛkµ̃
(i)
k is the error caused by quantization.

After the local filters are obtained, calculating the beamformer
output reduces to an average consensus problem as

min
X

K∑
k=1

(Xk − ŵH
k yk)

2 s.t. Xk = Xm, ∀(k,m) ∈ E . (13)

The PDMM update equations for (13) can be found in [17].
Note that for stationary signals, the update procedure in (11)
is time-invariant, while (13) is always both time and frequency
dependent. To reduce the communication costs, we will next
derive how to find the optimal quantization rate distribution
for iteratively calculating the local filters and beamforming.

IV. PROPOSED DISTRIBUTED RATE ALLOCATION

Let the transmission power from node k to a neighboring
node m for a single time-frequency bin be d2kVkm(4bk − 1),
where 0 ≤ bk ≤ b0, ∀k denotes the integer rate that is used
by the node k, and dk and Vkm denote the transmission range
and the channel noise power spectral density (PSD) between
node k and node m, respectively [36]–[38]. Assuming that in
each iteration we randomly (e.g., at a probability of 1

K ) pick
one node of the WASN that broadcasts information to all of its
neighboring nodes, such that the expected transmission power
per iteration can be given by

g(b) =
1

K

K∑
k=1

d2kVk(4
bk − 1), (14)

where Vk is the mean value of Vkm,m ∈ Nk. Assuming that I
iterations are used for calculating the filters through (11) and
J iterations for beamforming in (13), respectively, the original
RD-LCMV problem in [15] can be reformulated as

min
b

g(b) s.t.
K∑

k=1

(
E[|ŵ(I)H

k uk|2] + E[ζ(J)Xk
]
)
≤ β

α
, (P1)

where α ∈ (0, 1] is the parameter to control the expected
performance, E[ζ(J)Xk

] denotes the primal mean-squared error
(MSE) caused by quantizing Xk in calculating the beamformer
output, i.e., ζ(J)Xk

= |Xk−Q
(J)
bk

(Xk)|2 with Q
(J)
bk

(Xk) denoting

1This assumption holds when subtractive dithering based uniform quanti-
zation is used. The dither signal, which is known at the receiver side, and the
quantization noise are i.i.d. processes.

the quantized Xk using bk bits. Further, the filter ŵ
(I)
k was

given in (12), and β =
∑K

k=1 E[|w
(I)H
k uk|2] denotes the

minimum output noise power (i.e., without quantization noise).
In (P1), the term E[|ŵ(I)H

k uk|2] denotes the residual acoustic
noise and the residual noise of the beamformer due to quan-
tizing µk. Note that ζ(J)Xk

depends on the number of iterations
and the topology of the network. Since the beamforming is
performed iteratively with quantization, the quantization noise
ζ
(J)
Xk

will accumulate at each iteration. However, in [34], it was
shown that in case of quantization with sufficiently small fixed
cell width (e.g., uniform quantization), the error accumulates
but the growth is so slow that it can be considered constant
over the iteration range of interest. That is, the primal MSE
E[ζ(J)Xk

] can be approximated by

E[ζ(J)Xk
] ≈ Cσ2

k, ∀k, (15)

where σ2
k denotes the noise variance depending on the bit rate

and the quantization range, and C is a constant which only
depends on the topology of the network and is O(K).

The noise power at node k in (P1) can be calculated by

E[|ŵ(I)H
k uk|2]

(a)
= E[(w(I)

k + w̃
(I)
k )Huku

H
k (w

(I)
k + w̃

(I)
k )]

(b)
= E[w(I)H

k uku
H
k w

(I)
k ] + 2E[ℜ(w(I)H

k uku
H
k w̃

(I)
k )]

+ E[w̃(I)H
k uku

H
k w̃

(I)
k ],

where we note that
∑K

k=1 E[w
(I)H
k uku

H
k w

(I)
k ] = β.

Proposition 1. If the quantization noise µ̃
(I)
k and the acoustic

noise uk are independent, we have E[ℜ(w(I)H
k uku

H
k w̃

(I)
k )] =

0 and E[w̃(I)H
k uku

H
k w̃

(I)
k ] = Tr(GkRµ̃k

) where Rµ̃k
=

E[µ̃(I)
k µ̃

(I)H
k ] and Tr(·) returns the trace of a matrix.

Proof. The proof follows from the observation that E(AB)
= E(A)E(B) if A and B are independent (and E(aHbbHa)
= E(Tr(bbHaaH)) = Tr(E(aaH)E(bbH)) if a and b are
independent vectors).

To this end, we can see that
K∑

k=1

E
[
|ŵ(I)H

k uk|2
]
= β +

K∑
k=1

Tr
(
GkRµ̃k

)
. (16)

Further, we use fixed-rate uniform quantizers for all iterations
to quantize the dual variables, such that the SOS of the
quantization noise µ̃

(I)
k can be given by [14], [15], [39]

Rµ̃k
= E

[
µ̃

(i)
k µ̃

(i)H
k

]
=

1

12
× A2

4bk
Ir+1, ∀i, (17)

where A = max |µ∗|. Similarly, we have σ2
k = 1

12 ×
B2

k

4bk
with

Bk = max |wH
k yk|. Using a variable change 1 ≤ tk = 4bk ≤

4b0 , ∀k and the property in (15), (P1) can be reformulated as

min
t

g(b) s.t.

K∑
k=1

[
Tr (Gk)A2 + B2

kC
]
/tk ≤ δ, (P2)

where δ = 12(βα − β). By solving the KKT condition
∂L(t,λ)

∂tk
= 0, the optimal solution to (P2) can be found as

t∗k =
√
λ(A2Tr(Gk) + B2

kC)/d2kVk, (18)
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Figure 1. (a) Experimental setup, where the last node is assumed to be the FC for the centralized RD-LCMV method [15], (b) rate distribution for one
frequency bin with α = 0.8 and b0 = 16 bits per sample, (c) output noise power and transmission energy in terms of α.

which only depends on the Lagrange multiplier λ. To deter-
mine λ, one can consider the dual problem of (P2). Substitut-
ing (18) into (P2), we obtain the dual problem as

min
λ

K∑
k=1

(
δ

K
λ−2

√
λ(A2Tr(Gk) + B2

kC)d2kVk+d2kVk), (19)

which is quadratic in
√
λ and the constraint on δ is partitioned

into K equal parts. As a result, we can see that the optimal
global multiplier is given by

λ∗ =
1

K2

(
K∑

k=1

√
λk

)2

, (20)

where the local λk is defined by

λk = K2(A2Tr(Gk) + B2
kC)d2kVk/δ

2, ∀k. (21)

Clearly, determining λ∗ turns into an averaging problem, since
λk can be computed separately at each node. Then, we can
use PDMM to calculate the average consensus of

√
λk that is

required by (20). This requires a large amount of information
exchange. To avoid this, we can consider using the locally
optimal λk from (21) only, instead of the globally optimal λ∗.
Substituting (21) into (18), we obtain the rate distribution as

tk = K(A2Tr(Gk) + B2
kC)/δ, (22)

which reveals that by using local λk, the rate can be deter-
mined locally without any information exchange and it only
depends on the noise power. However, this might affect the
global optimality of the rate distribution, which will be studied
experimentally. Notably, the final rates should be resolved by
bk = log4 tk, ∀k and randomized rounding as in [15].

V. NUMERICAL RESULTS

Fig. 1(a) shows a simulated WASN in a 2D room with
dimensions (6 × 4) m. We consider K = 21 nodes and each
node has Mk = 3,∀k microphones. We set ρ = 0.5 and
C = 21. One target source is located at (2, 3) m. Five noise
sources are randomly placed around the WASN. The duration
of all sources is 10 minutes. All sources originate from the
TIMIT database [40]. The sensor noise is modeled as white
Gaussian noise at an SNR of 50 dB. The sampling frequency
is 16 kHz. A square-root-Hann window of 50 ms for framing

with 50% overlap is applied to the signals. The ATFs are
generated using [41] with reverberation time T60 = 200 ms.
The 21st node is assumed to be the FC for the centralized RD-
LCMV method [15], i.e., all other nodes are only connected
to this FC.

When we calculate the dual variable µ using PDMM from
(11), the warm-start procedure proposed in [17] is employed
to achieve an acceptable precision of PDMM within a finite
number of iterations. Fig. 1(b) shows a rate-distribution exam-
ple of the proposed method and the centralized method [15]
for α = 0.8. For the proposed method, the nodes that have
higher SNR are allocated with higher rate, e.g., node 6. For
the centralized method [15], the nodes that are closer to the FC
are allocated with higher rate. In addition, we show the output
noise power and transmission cost averaged over frequencies
in terms of α in Fig. 1(c). The energy of the RD-LCMV
method is used for transmitting the raw audio realizations.
For the proposed method, if we use the local λk in (21) to
determine the rate distribution, the energy is only used for
transmitting the dual variable µ and calculating the beam-
former output; if the rate distribution is computed using (18)
with the global λ∗ from (20), some extra energy needs to be
spent for calculating λ∗. Clearly, both the centralized method
and the proposed decentralized method satisfy the desired
noise reduction performance, while the proposed method using
(21)-(22) consumes less energy, since each sensor node only
needs to communicate with the neighboring nodes, instead of
with the remote FC. This reveals that using the local λk is
effective for the energy usage versus performance trade-off in
spite of scarifying rate optimality. Note that in general a global
optimization problem cannot be approached by optimizing
local sub-problems separately. We considered optimizing the
local problems in this work, as the simulation results show that
it gives a better energy usage versus performance trade-off.

VI. CONCLUSIONS

In this work, we solved the rate-distributed LCMV beam-
forming problem in [15] in a fully distributed fashion. The
quantization rates were determined locally without any in-
formation exchange. Numerical results show the superiority
of the proposed method in energy usage. More importantly,
the decentralized implementation is more robust against the
network variation compared to the centralized method.
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