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Power Method for Robust Diagonal Unloading

Localization Beamforming
Daniele Salvati, Carlo Drioli, Member, IEEE, and Gian Luca Foresti, Senior Member, IEEE

Abstract—We propose a robust version of the diagonal un-
loading (DU) beamforming for the acoustic source localization
problem in high noise conditions. The DU beamformer exploits
the subspace orthogonality property by the removal or the
attenuation of the signal subspaces, obtained through the sub-
traction of an opportune diagonal matrix from the covariance
matrix. As a result, it provides high resolution directional
response with low computational complexity. We show that a
robust DU beamformer can be implemented by subtracting
the largest eigenvalue of the estimated covariance matrix from
the diagonal elements, and that this implementation is valid
in general (i.e., for both the single-source and the multiple-
source case). We propose the use of the power method for the
estimation of the largest eigenvalue in the DU procedure. We show
with numerical simulations that the proposed method improves
the localization performance in high noise conditions without
substantial increment of the computational cost. Applications for
this method include a number of scenarios involving multirotor
aerial systems due to its robustness to the noise and its low
computational complexity.

Index Terms—Robust diagonal unloading beamforming, power
method, acoustic source localization, microphone array, noisy
environment, multirotor aerial system, drone.

I. INTRODUCTION

A
COUSTIC source localization (ASL) is an important task

in microphone array processing and it is of interest in

an increasing number of applications such as teleconferenc-

ing, surveillance, animal ecology, human-computer interac-

tion, hearing aid, volcanology, medicine, robotics [1]–[13].

Recently, ASL has been recognized to provide interesting

application perspectives in a number of scenarios involving

multirotor aerial systems [14]–[22]. For example, in aerial

surveillance for ground security or search and rescue oper-

ations, the localization and recognition of acoustic sources is

highly desirable in case of visual occlusion. In these scenarios,

the ASL is performed in a low signal-to-noise ratio (SNR)

environment. Basically, two main characteristics are strongly

required for multichannel signal processing in open air drone

applications: 1) robustness to noise; 2) low-complexity for

real-time processing.

To address these requirements, we propose a robust diagonal

unloading (DU) localization beamforming based on the power

method [23] for the estimation of the largest eigenvalue of the

available covariance matrix. The DU beamforming, recently

proposed in [24], provides high resolution directional response

and noise robustness comparable to those of the multiple signal
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classification (MUSIC) method [25] and the minimum vari-

ance distortionless response (MVDR) beamformer [26] while

requiring less computational resources. In fact, the MUSIC

method and the MVDR beamformer require an eigendecompo-

sition and a matrix inversion operation, respectively, that lead

to an increased computation cost in broadband applications.

Conversely, the DU beamforming has the same complexity of

the conventional steered response power beamforming [27],

since the DU beamformer is based on the subtraction of an

opportune diagonal matrix from the covariance matrix. The

DU beamformer is hence very attractive in drone applications,

in which noise robustness and real-time processing are highly

desirable. However, the DU beamformer was proposed in

[24] with an optimal solution in single-source scenario with

spatially white noise and true covariance matrix, and with a

suboptimal solution, valid for a broader class of acoustic con-

ditions (single-source, multi-source, anechoic or reverberant

environment) when the covariance matrix is estimated (as it is

in real applications). This suboptimal solution has been shown

to be effective in reverberant and moderate noisy conditions

with speech signals [24].

The DU beamformer exploits the orthogonality property be-

tween signal and noise subspaces by removing in practice the

signal subspace (or subspaces) from the covariance matrix of

the input signals of the array, i.e., by subtracting an opportune

diagonal matrix from the covariance matrix. We will refer here

to a robust implementation of this process as the best solution

to the diagonal removal problem to achieve the subspace

orthogonality property given the estimated covariance matrix.

The novelty of this letter is two-fold. First, we show that the

robust DU beamformer can be implemented by subtracting the

largest eigenvalue from the diagonal elements of the estimated

covariance matrix. Then, we propose the use of the power

method in the DU procedure for the estimation of the largest

eigenvalue. Beside that, we show that the proposed algorithm

improves the localization performance, in terms of direction of

arrival (DOA) estimation, in high noise conditions if compared

to the DU suboptimal solution of [24].

II. ROBUST DIAGONAL UNLOADING LOCALIZATION

BEAMFORMING

A. Model

Let us refer to a microphone array with M omnidirectional

sensors, and to a far-field model for the sound source wave

propagation. Suppose that the sound wave from an acoustic

source impinges upon the array with a direction Ωs = [θs, φs]
(θs and φs are the azimuth and elevation angles). In the

short-time Fourier transform domain, the data model of the
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array signals can be expressed in single-source scenario with

spatially white noise as

x(k, f) = a(f,Ωs)S(k, f) + v(k, f), (1)

where k is the block time index, f is the frequency bin, S(k, f)
is the source signal at the reference sensor, v(k, f) is the noise

that is assumed to be spatially white Gaussian with zero mean

and variance equals to σ2 for all sensors, and a(f,Ωs) is the

array steering vector for the source direction.

The output of a beamformer Y (k, f,Ω) at block time k, for

frequency f and look direction Ω = [θ, φ], is obtained as

Y (k, f,Ω) = wH(k, f,Ω)x(k, f), (2)

where w(k, f,Ω) is a column vector containing the beam-

former coefficients for time-shifting, weighting, and summing

the data, so to steer the array in the direction Ω, and H
denotes the Hermitian transpose. Then, the power spectral

density (PSD) of the spatially filtered signal is

P (k, f,Ω) = E{|Y (k, f,Ω)|2}

= wH(k, f,Ω)Φ(k, f)w(k, f,Ω),
(3)

where Φ(k, f) = E{x(k, f)xH(k, f)} is the covariance

matrix of the array signal, which is symmetric and posi-

tive definite, and E{·} denotes mathematical expectation. In

the conventional steered response power (SRP) beamformer,

whose implementation reflects the delay-and-sum scheme, all

its weights are equal in magnitude, i.e. wSRP(k, f,Ω) =
a(f,Ω). The P (k, f,Ω) is related to the power contribution

of a single frequency bin, and a function providing the steered

response power information of the whole frequency spectrum

can be obtained by merging the contribution by some fusion

criterion, such as the normalized frequency fusion proposed

in [28], and defined as

P (k,Ω) =

fmax∑

f=fmin

P (k, f,Ω)

||p(k, f)||∞
, (4)

where || · ||∞ denotes the uniform norm of the vector

p(k, f) = [P (k, f,Ω1), P (k, f,Ω2), . . . , P (k, f,ΩD)] that

contains all the PSDs for the considered directions D, and

fmin and fmax denote the frequency range for the computation

of the broadband SRP. The broadband SRP resulting from the

fusion is characterized by high energy peaks corresponding

to those directions from which acoustic energy is sensed. For

the single-source case, the DOA estimation of the source is

provided by the maximum energy peak search

Ω̂s(k) = argmax
Ω

[P (k,Ω)]. (5)

In the multi-source case, a given number (known a priori or

estimated) of local maxima energy peaks are searched instead.

B. Optimal DU Beamformer in Single-Source Case with Spa-

tially White Noise and True Covariance Matrix

The DU beamformer [24] is a data-dependent spatial filter-

ing model that aims at exploiting the orthogonality property

between signal and noise subspaces by subtracting an oppor-

tune diagonal matrix from the covariance matrix Φ(k, f) of the

array output vector. It follows from following the minimization

problem

minimize ||w(k, f,Ω)− a(f,Ω)||2,

subject to uH
s (k, f)w(k, f,Ω) = 0,

(6)

where us(k, f) is the signal subspace of Φ(k, f), and || · ||
denotes the Euclidean norm. Using the method of Lagrange

multipliers, the solution of (6) for the beamforming coeffi-

cients w is:

wDU(k, f,Ω) =
( 1

λ
I
)
ΦDU(k, f)a(f,Ω), (7)

where λ is the noise eigenvalue of the transformed matrix

ΦDU(k, f) that can be written as

ΦDU(k, f) = Φ(k, f)− µ(k, f)I, (8)

where µ(k, f) is a real-valued, positive scalar, selected in such

a way that its eigenvalue corresponding to the signal subspace

is null, and I denotes identity matrix. The value of µ that

satisfies such constraints in a single source case with spatially

white noise can be shown to be [24]

µ(k, f) = tr[Φ(k, f)]− (M − 1)σ2, (9)

where tr[·] is the operator that computes the trace of a

matrix. In fact, the covariance matrix can be decomposed

in its eigenvalues and their associated eigenvectors through

a subspace decomposition Φ(k, f) = Udiag(MPs(f) +
σ2, σ2, . . . , σ2)UH , where U is the square matrix of eigen-

vectors, and Ps(f) = E{|S(f)|2} is the power of the signal.

By applying the diagonal removal in (8) and (9), we have

that the signal eigenvalue of ΦDU(k, f) becomes null, i.e.,

MPs(f) + σ2 − tr[Φ(k, f)] + (M − 1)σ2 = MPs(f) + σ2 −
M(Ps(f) + σ2) + (M − 1)σ2 = 0, and the noise eigenvalue

becomes negative, i.e., λ = σ2 − tr[Φ(k, f)] + (M − 1)σ2 =
−σ2 − M(Ps(f) + σ2) + (M − 1)σ2 = −MPs(f). Hence,

the transformed matrix ΦDU(k, f) contains only the noise

eigenvectors and it is negative semidefinite. Substituting (7) in

(3), we have P ′
DU(f,Ω) = σ2

λ3 a
H(f,Ω)ΦDU(f)a(f,Ω), where

the quantity σ2

λ3 is a scalar factor that can be omitted since it

has no influence on the DOA estimation. Since ΦDU(k, f) is

negative semidefinite, i.e., P ′
DU(f,Ω) ≤ 0, we can write the

pseudo-spectrum in the equivalent form

PDU(f,Ω) =
−1

aH(f,Ω)ΦDU(k, f)a(f,Ω)
. (10)

C. Robust DU Beamformer with Estimated Covariance Matrix

Using the Power Method

In real-world applications, the covariance matrix Φ(k, f) is

unknown and it has to be estimated. In general, the estimation

can be computed through the averaging of the array signal

blocks [29]

Φ̂(k, f) =
1

B

B−1∑

kb=0

x(k − kb, f)x
H(k − kb, f), (11)

where B is the number of snapshots for the averaging. There

is always a certain mismatch between the estimated and the

true covariance matrix, due to the finite sample size (number
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of snapshots), to the signal model mismatches, and to the

nonstationary nature of the source. The solution in (9) is based

on an ideal model of single source with spatially white noise,

which is easily violated in practice due to the model mismatch

or when operated in multi-source scenarios.

A general data model of the array signals can be expressed

as

x(k, f) =

N∑

n=1

(a(f,Ωsn)Sn(k, f)) + v(k, f), (12)

where N denotes the number of sources, a(f,Ωsn) is the

array steering vector for the n-th source direction Ωsn , and

v(k, f) is the noise component. A practical DU solution is

given in [24] by assuming µ(k, f)′ = tr[Φ̂(k, f)], which is a

suboptimal solution:

P subopt
DU (f,Ω) =

−1

aH(f,Ω)(Φ̂(k, f)− tr[Φ̂(k, f)]I)a(f,Ω)
.

(13)

This solution guarantees that the transformed covariance ma-

trix is negative semidefinite, allowing the exploitation of

the orthogonality property, which is however affected by a

certain quantity of signal subspace (or signal subspaces) in

the transformed covariance matrix.

The proposed robust diagonal unloading beamforming is

based on the estimation, computed by the power method, of

the largest eigenvalue of the covariance matrix. We can write

the estimated eigenvalue matrix of the estimated covariance

matrix Φ̂(k, f) at time block k, organizing the eigenvalues

of Φ̂(k, f) in descending order (λ̂1 > λ̂2 > · · · > λ̂M )

as Λ̂ = diag(λ̂1, λ̂2, . . . , λ̂M ). The eigenvalue matrix of the

transformed covariance matrix can be written as Λ̂DU =
diag(λ̂1 − µ(k, f), λ̂2 − µ(k, f), . . . , λ̂M − µ(k, f)). We can

easily see that the robust DU implementation in the single-

source case is obtained by assuming that the parameter µ(k, f)
is equal to the largest eigenvalue λ̂1. This allows the best

removal of the signal subspace in the transformed covariance

matrix Φ̂DU(k, f). We now assume the case of N sources, i.e.,

λ̂n (n = 1, 2, . . . , N ) are signal eigenvalues. By considering

that the transformed covariance matrix has to be negative

semidefinite to exploit the subspace orthogonality property,

meaning that each eigenvalue of the matrix has a value less

than or equal to zero, we have that the parameter µ(k, f) has

to be greater than or equal to the largest eigenvalue λ̂1. We can

thus write a generalized parameter µ(k, f) = λ̂1+α, where α
is a real positive value. The optimal solution, which aims at

reducing as maximum as possible the N signal eigenvectors,

can be computed by solving the following maximization

problem for the signal eigenvalues of Φ̂DU(k, f):

maximize

N∑

n=1

λ̂n −N(λ̂1 + α),

subject to α ≥ 0.

(14)

We have that the cost function can be written as
∑N

n=2 λ̂n −

(N − 1)λ̂1 −Nα. Since λ̂1 > λ̂2 > · · · > λ̂N , we have that

(N − 1)λ̂1 >
∑N

n=2 λ̂n. The sum of eigenvalues in the cost

function is always negative, and thus the solution is given for

TABLE I
THE COMPUTATIONAL COST EXPRESSES IN TERMS OF THE

APPROXIMATED NUMBER OF FLOPS.

Suboptimal DU BM(4Llog2L− 6L+ 8) +M
2
F (7D + 2B + 6) +MF (7D + 2) + F (D − 2)−D

Robust DU BM(4Llog2L− 6L+ 8) +M
2
F (7D + 2B + 8I + 6) +MF (7D + 1 + 6I) + F (D − 1)−D

MUSIC BM(4Llog2L− 6L+ 8) + 21M3
F +M

2
F (7D + 2B − 2) +MF (7D + 2) + F (D − 1)−D

α = 0. Hence, we can say that the robust DU solution for an

available covariance matrix with a general model is obtained

by imposing µrob(k, f) = λ̂1(k, f).
Hence, the proposed robust DU beamforming becomes

P rob
DU(f,Ω) =

−1

aH(f,Ω)(Φ̂(k, f)− λ̂1(k, f)I)a(f,Ω)
. (15)

The robust DU implementation requires that the largest eigen-

value of Φ̂(k, f) has to be estimated. To avoid the use of

the eigendecomposition, which has O(M3) complexity, we

use herein the power method, which has O(M2) complexity.

The power method is an iterative procedure for approximating

the largest eigenvalue and the corresponding eigenvector of a

matrix [23]. The iterative sequence is given by (i = 0, 1, . . . ):

1) gu(i+1) = Φ̂(k, f)g(i), 2) g(i+1) =
gu(i+ 1)

||gu(i+ 1)||
,

(16)

where g is a weight vector. After I iterations the largest

eigenvalue is estimated as:

λ̂1(k, f) =
gH
u (I + 1)g(I)

gH(I)g(I)
. (17)

The weight vector g is initialized with arbitrary nonzero

values, and the iteration is computed until a convergence

criterion is satisfied. We adopt the threshold criterion e(i +
1) = ||g(i + 1) − g(i)|| < ǫ. Note that the weight vector

needs to be normalized during the iterations to prevent it from

becoming too large or too small. The rate of convergence of

the power method depends upon the ratio λ̂2/λ̂1 (i.e., it has

linear convergence). If λ̂1 = λ̂2 the method may not converge.

The computational cost for the broadband robust DU can be

expressed in terms of the approximated floating-point opera-

tion (FLOP, either a real multiplication or a real summation).

Let L denote the frame size for the fast Fourier transform

(FFT), we obtain BM(4Llog2L−6L+8) FLOPs for the FFTs

of M channels for B snapshots. Let F denote the number of

frequency bins, we obtain M2F (6 + 2B) FLOPs for the esti-

mation of covariance matrices. The steered response power (3)

requires FD(7M2+7M−2) FLOPs with D being the number

of considered search directions. The suboptimal DU operation

adds F (M − 1) summations for the trace operation and the

diagonal removal requires FM subtractions. The broadband

fusion adds 3FD − F − D FLOPs. The robust DU requires

the estimation of the largest eigenvalue with the power method

that requires IF (8M2 +6M) FLOPs. The MUSIC [25], [28]

instead requires an eigendecomposition and the product of

the noise subspace with the corresponding conjugate transpose

that have F (21M3 − 8M2 + 2M) FLOPs. The MUSIC has

thus a cubic complexity O(M3) that becomes significant at

increasing of the array size. The overall computational cost

for each method is summarized in Table I.
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Fig. 1. Localization performance of a single source at variation of SNR
level. The number of snapshots was 25.
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Fig. 2. Localization performance of two sources at variation of SNR level.
The number of snapshots was 25.

III. SIMULATIONS

The localization performance is illustrated through a set of

simulated experiments in noisy conditions adding mutually

independent white Gaussian noise to each channel with a

wideband SNR defined as 10log10
E{

∑
N

n=1
|sn(t)|

2}

σ2
v

(sn(t) is

the time-domain n-th source signal at time t in the first

channel, and σ2
v is the wideband noise power). A circular

uniform array of 8 microphones and radius 20 cm was used.

The spatial resolution was 5 degrees. The sampling frequency

was 48 kHz, the block size L was 2048 samples, and a Hann

windowing was used. The tolerance ǫ for the power method

was set to 10−3. We considered 25 random source positions

with 10 trial repetitions for each position. Recording of a

drone sound was used as source signal. The drone sound

has a concentrated energy up to 6000 Hz, which consists

of a broadband aerodynamic noise induced by the propellers

and nonstationary narrowband components originated by the

electrical engines. We have compared the DOA localization

performance of the robust DU, the suboptimal DU [24], the

MUSIC [25], [28], and the conventional SRP beamforming

[27] with the phase transform (PHAT) normalization [30].

The localization beamforming was limited to the [150-6000]

Hz frequency range for all methods. Performance is reported

in terms of the root mean square error (RMSE) for all the

estimates (RMSE =

√∑
k

∑
N

n=1
((θsn−θ̂n(k))2+(φsn

−φ̂n(k))2)

K
,

K is total number of estimates). In the first set of simulations,

the single-source localization performance at variation of SNR

level was evaluated. The number of snapshots was 25 for

all methods. The results are reported in Figure 1. As we

can observe, all methods have the same performance at an

SNR of 0 dB, and the proposed robust DU outperforms

the suboptimal DU and SRP-PHAT when the noise level

increases. The robust DU performance is similar to that of

the MUSIC. Next, the localization performance in a multi-

source case was evaluated, by using two drone signal sources.

The number of snapshots was 25. The results at variation of

SNR level are shown in Figure 2. The proposed robust DU
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Fig. 3. Localization performance of two sources (SNR=-5 dB) at variation
of number of snapshots.

significantly outperforms the suboptimal DU and the SRP-

PHAT at increasing of the noise level, achieving an RMSE

comparable to that of the MUSIC. The trace-based diagonal

removal for the suboptimal DU (13) becomes ineffective for

the suppression of the signal subspaces from the covariance

matrices at low SNR levels. Finally, simulations using two

sources at variation of number of snapshots were performed.

The SNR was -5 dB. The results are depicted in Figure 3.

The robust DU improves the performance if compared to the

suboptimal DU at increasing of number of snapshots. We can

see that the robust and the suboptimal DU provide the same

performance in the case of single snapshot. This is due to the

fact that the estimated covariance matrix has only one non-null

eigenvalue. In this case the trace of the covariance matrix,

which is needed for the suboptimal DU implementation, is

equal to the largest eigenvalue. The suboptimal DU degrades

at increasing of number of snapshots (i.e., when the estimated

covariance matrix becomes more accurate), as it does not

provide a sufficient attenuation of the signal subspaces in

low SNR conditions since the trace contains both signals and

noise eigenvalues. Considering M = 8, L = 2048, B = 25,

F = 251, and D = 1296, we have that the suboptimal DU

requires 1.807 · 108 FLOPs. We measured an average number

of iterations I = 20 for the power method in the simulations,

and hence, the robust DU requires 1.836 · 108 FLOPs without

adding significant computational cost.

IV. CONCLUSIONS

We have proposed a robust DU beamforming that improves

acoustic DOA estimation in high noise conditions. We dis-

cussed how to set the diagonal removal procedure of the

covariance matrix to obtain the best suppression of signal sub-

spaces in a general model, exploiting as much as possible the

subspace orthogonality property that provides high resolution

directional response and noise robustness. We demonstrated

that the robust DU beamformer can be implemented by sub-

tracting the largest eigenvalue from the diagonal elements of

the estimated covariance matrix. We have proposed the use of

the power method for the estimation of the largest eigenvalue

without adding significant computational cost. The proposed

method can be attractive for microphone array applications in

a number of scenarios involving multirotor aerial systems due

to the noise robustness similar to that of the MUSIC without

however the computational cost of the eigendecomposition for

each narrowband component.
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interface for real-time control of audio processing,” in Proceedings of the

International Conference on Digital Audio Effects, 2011, pp. 177–184.
[4] S. Doclo, M. Moonen, T. V. den Bogaert, and J. Wouters, “Reduced

bandwidth and distributed MWF-based noise reduction algorithms for
binaural hearing aids,” IEEE Transactions on Audio, Speech, and Lan-

guage Processing, vol. 17, no. 1, pp. 38–51, 2009.
[5] D. Salvati, C. Drioli, and G. L. Foresti, “Exploiting a geometrically

sampled grid in the steered response power algorithm for localization
improvement,” Journal of the Acoustical Society of America, vol. 141,
no. 1, pp. 586–601, 2017.

[6] C. R. Rowell, D. Fee, C. A. S. K. Arnoult, R. S. Matoza, P. P.
Firstov, K. Kim, and E. Makhmudov, “Three-dimensional volcano-
acoustic source localization at Karymsky Volcano, Kamchatka, Russia,”
Journal of Volcanology and Geothermal Research, vol. 283, pp. 101–
115, 2014.

[7] D. Salvati, C. Drioli, and G. L. Foresti, “Sound source and microphone
localization from acoustic impulse responses,” IEEE Signal Processing

Letters, vol. 23, no. 10, pp. 1459–1463, 2016.
[8] Y. Li, K. C. Ho, and M. Popescu, “A microphone array system for au-

tomatic fall detection,” IEEE Transactions on Biomedical Engineering,
vol. 59, no. 5, pp. 1291–1301, 2012.

[9] D. Salvati, C. Drioli, and G. L. Foresti, “Sensitivity-based region
selection in the steered response power algorithm,” Signal Processing,
vol. 153, pp. 1–100, 2018.

[10] S. Argentieri, P. Danes, and P. Soueres, “A survey on sound source
localization in robotics: from binaural to array processing methods,”
Computer Speech and Language, vol. 34, no. 1, pp. 87–112, 2015.

[11] D. Salvati and S. Canazza, “Improvement of acoustic localization using
a short time spectral attenuation with a novel suppression rule,” in
Proceedings of the International Conference on Digital Audio Effects,
2009, pp. 150–156.

[12] J. M. Valin, F. Michaud, J. Rouat, and D. Letourneau, “Robust sound
source localization using a microphone array on a mobile robot,” in
Proceeding of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, vol. 2, 2003, pp. 1228–1233.
[13] R. Levorato and E. Pagello, “DOA acoustic source localization in

mobile robot sensor networks,” in Proceeding of the IEEE International

Conference on Autonomous Robot Systems and Competitions, 2015, pp.
71–76.

[14] M. Basiri, F. Schill, P. Lima, and D. Floreano, “On-board relative
bearing estimation for teams of drones using sound,” IEEE Robotics

and Automation Letters, vol. 1, no. 2, pp. 820–827, 2016.
[15] L. Wang and A. Cavallaro, “Acoustic sensing from a multi-rotor drone,”

IEEE Sensors Journal, vol. 18, no. 1, pp. 4570–4582, 2018.

[16] D. Salvati, C. Drioli, G. Ferrin, and G. L. Foresti, “Beamforming-based
acoustic source localization and enhancement for multirotor UAVs,”
in Proceedings of the 26th European Signal Processing Conference

(EUSIPCO), 2018.
[17] L. Wang and A. Cavallaro, “Time-frequency processing for sound source

localization from a micro aerial vehicle,” in Proceeding of the IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2017, pp. 496–500.
[18] K. Hoshiba, K. Washizaki, M. Wakabayashi, T. Ishiki, M. Kumon,

Y. Bando, D. Gabriel, K. Nakadai, and H. G. Okuno, “Design of UAV-
embedded microphone array system for sound source localization in
outdoor environments,” Sensors, vol. 17, no. 11, 2017.

[19] T. Ishiki and M. Kumon, “Design model of microphone arrays for
multirotor helicopters,” in Proceeding of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2015, pp. 6143–
6148.

[20] K. Furukawa, K. Okutani, K. Nagira, T. Otsuka, K. Itoyama, K. Nakadai,
and H. G. Okuno, “Noise correlation matrix estimation for improving
sound source localization by multirotor UAV,” in Proceeding of the

International Conference on Intelligent Robots and Systems, 2013, pp.
3943–3948.

[21] K. Okutani, T. Yoshida, K. Nakamura, and K. Nakadai, “Outdoor
auditory scene analysis using a moving microphone array embedded in a
quadrocopter,” in Proceeding of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2012, pp. 3288–3293.
[22] M. Basiri, F. Schill, P. U. Lima, and D. Floreano, “Robust acoustic

source localization of emergency signals from micro air vehicles,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2012, pp. 4737–4742.
[23] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins

University Press, 1996.
[24] D. Salvati, C. Drioli, and G. L. Foresti, “A low-complexity robust

beamforming using diagonal unloading for acoustic source localization,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 26, no. 3, pp. 609–622, 2018.

[25] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3,
pp. 276–280, 1986.

[26] J. Capon, “High resolution frequency-wavenumber spectrum analysis,”
Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[27] H. Krim and M. Viberg, “Two decades of array signal processing
research: the parametric approach,” IEEE Signal Processing Magazine,
vol. 13, no. 4, pp. 1053–5888, 1996.

[28] D. Salvati, C. Drioli, and G. L. Foresti, “Incoherent frequency fusion for
broadband steered response power algorithms in noisy environments,”
IEEE Signal Processing Letters, vol. 21, no. 5, pp. 581–585, 2014.

[29] L. Zhang, W. Liu, and L. Yu, “Performance analysis for finite sample
MVDR beamformer with forward backward processing,” IEEE Trans-

actions on Signal Processing, vol. 59, no. 5, pp. 2427–2431, 2011.
[30] C. Knapp and G. Carter, “The generalized correlation method for

estimation of time delay,” IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. 24, no. 4, pp. 320–327, 1976.


