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Abstract

The uniform white noise assumption is one of the basic assumptions in most of the existing

directional-of-arrival (DOA) estimation methods. In many applications, however, the non-uniform white

noise model is more adequate. Then the noise variances at different sensors have to be also estimated

as nuisance parameters while estimating DOAs. In this letter, different from the existing iterative

methods that address the problem of non-uniform noise, a non-iterative two-phase subspace-based DOA

estimation method is proposed. The first phase of the method is based on estimating the noise subspace

via eigendecomposition (ED) of some properly designed matrix and it avoids estimating the noise

covariance matrix. In the second phase, the results achieved in the first phase are used to estimate

the noise covariance matrix, followed by estimating the noise subspace via generalized ED. Since the

proposed method estimates DOAs in a non-iterative manner, it is computationally more efficient and

has no convergence issues as compared to the existing methods. Simulation results demonstrate better

performance of the proposed method as compared to other existing state-of-the-art methods.

Index Terms

Array processing, direction-of-arrival (DOA) estimation, subspace based methods, nonuniform noise,

spectral analysis.

I. INTRODUCTION

Direction of Arrival (DOA) and spectral estimation are the fundamental problems in array

processing and spectral analysis with many applications in radar, sonar, navigation and com-
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munication systems, as well as acoustic tracking to mention just a few [1]–[5]. There exist

several DOA estimation approaches. Among the most notable are the maximum likelihood (ML),

beamforming-based, parametric subspace-based, and sparse representation-based approaches [6]–

[10]. Parametric subspace-based DOA estimation methods, such as multiple signal classification

(MUSIC) [6], [8] and estimation of signal parameters via rotational invariance technique (ES-

PRIT) [9] are well known to provide high accuracy and high resolution for DOA estimation with

low computational complexity in comparison to the methods such as ML [6]. In addition to the

traditional far-field narrow band signal assumption, the assumption of uncorrelated sources is also

critical for the former methods. A fundamental assumption that applies to all the aforementioned

methods is however the presence of spatially uniform white noise. Under this assumption, the

analytic concentration of the ML function with respect to the noise variance single parameter

becomes possible, while parametric subspace-based methods are just built on this assumption

since it enables separation of signal and noise subspaces [11], [12].

In diverse practical scenarios, the spatially uniform white noise assumption may be violated.

Indeed, the sensor noise may be non-uniform [7], [13]–[17], spatially correlated [18], [19], or

block-correlated [20]. Spatially white non-uniform noise arises when sensor noise powers are

non-identical across the array, and leads to diagonal noise covariance matrix with not-identical

entries. To overcome the problem of performance degradation in the presence of non-uniform

noise, a variety of DOA estimation algorithms and techniques have been proposed. In [7]

and [13], two deterministic and stochastic ML estimators are respectively proposed based on

iterative procedures. These two estimators suffer from high computational complexity. Thus,

two iterative subspace estimation algorithms with lower complexity, called iterative maximum

likelihood subspace estimation (IMLSE) and iterative least squares subspace estimation (ILSSE),

respectively, based on ML and least squares (LS) have been proposed in [14] for estimating signal

subspace and noise covariance matrix. These algorithms then use spectral MUSIC method for

performing the DOA estimation.

In this letter, we propose a new subspace-based method for DOA estimation in spatially

non-uniform noise, which is non-iterative, thus leading to lower computational complexity and

avoiding any convergence issues. The method has two phases. In the first phase, the noise

subspace is initially estimated via eigendecomposition (ED) of some properly designed matrix

without knowing the noise covariance matrix. In the second phase, the noise covariance matrix

is then estimated by exploiting the results of the first phase and then the generalized ED is
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applied to the output array covariance matrix and noise covariance matrix. Simulation results

demonstrate the efficiency and superiority of the proposed method in terms of both performance

and complexity over the existing methods.

II. SIGNAL MODEL

Consider an array of M sensors receiving L (L < M is known) independent narrowband

signals impinging from the sources in far-field. The signal observed at time instance t by the

array is given as

x(t) = A(θ)s(t) + n(t) (1)

where A(θ) , [a(θ1), · · · , a(θL)] is the M × L matrix whose columns are the signal steering

vectors a(θi), i = 1, · · · , L, θ , [θ1, · · · , θL]
T is the vector of unknown source DOA’s, s(t) is

the L×1 vector of source signals, n(t) is the M×1 vector of zero-mean spatially and temporally

white Gaussian noise, N is the number of snapshots, t is the discrete time index, and [·]T denotes

the transpose.

Using (1), the array output covariance matrix can be expressed as

R , E{x(t)xH(t)} = A(θ)PAH(θ) +Q (2)

where P , E{s(t)sH(t)} and Q , E{n(t)nH(t)} are respectively the L×L signal and M×M

noise covariance matrices, and E{·} and (·)H denote the expectation and Hermitian transpose

operators, respectively. For uncorrelated sources, P is a diagonal matrix. Under the non-uniform

uncorrelated noise assumption, Q is also a diagonal matrix of the form

Q = diag
{

σ2

1
, · · · , σ2

M

}

(3)

where σ2

m, m = 1, · · · ,M are the sensor noise variances and diag{·} denotes a diagonal matrix.

III. NEW PROPOSED METHOD

In parametric subspace-based DOA estimation, the noise subspace needs to be first estimated.

Under the non-uniform noise, also the noise covariance matrix possibly needs to be estimated.

Then the orthogonality of the noise subspace basis vectors and the source steering vectors can

be used to estimate the source DOA’s.
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To estimate the noise subspace, recall that in (2), AH(θ) is an L×M full row-rank matrix, and

there are M−L orthonormal vectors ul, l = 1, · · · ,M−L satisfying the following homogenous

equation

AH(θ)ul = 0 (4)

where 0 is the vector of zeros. Multiplying both sides of (2) on the right by ul and using (4),

we obtain

Rul = A(θ)PAH(θ)ul +Qul = Qul, l = 1, · · · ,M − L. (5)

According to (5), M − L vectors ul, l = 1, · · · ,M − L which span the range space of the

noise subspace are the solutions of the generalized ED problem for the matrices R and Q,

while all M − L eigenvalues being equal to one. However, since the matrix Q is unknown, ul,

l = 1, · · · ,M − L cannot be computed as simple as in the uniform noise case.

We observe, however, that the array output covariance matrix R can be written as the following

sum of two matrices

R = R1 +R2 (6)

where

[R1]i,j =











[R]i,j, i 6= j

0, i = j
(7)

and

R2 = diag {[R]1,1, · · · , [R]M,M}

= diag

{

L
∑

k=1

sk + σ2

1
, · · · ,

L
∑

k=1

sk + σ2

M

}

(8)

with sk being the received power of the kth source.

Substituting (6), (7), and (8) into (5), we obtain

R1ul = (Q−R2)ul = −

(

L
∑

k=1

sk

)

ul. (9)

It can be seen from (9) that ul, l = 1, · · · ,M −L can be obtained by applying ED to the matrix

R1 only. As a matter of fact, since adding the scaled identity matrix of the form b · I to R1 does

not alter eigenvectors and only shifts eigenvalues of R1, the noise subspace basis vectors ul,
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l = 1, · · · ,M − L can be computed by applying ED to every matrix whose diagonal elements

are identical and off-diagonal elements are equal to the off-diagonal elements of R. Thus, after

applying ED to R1, the noise subspace basis vectors ul, l = 1, · · · ,M − L, or in matrix form

U , [u1, · · · ,uM−L], can be obtained even without the need to estimate Q. This novel result

is stated and proved in the following lemma.

Lemma 1: The noise subspace basis vectors ul, l = 1, · · · ,M−L are the M−L eigenvectors

of R1 whose corresponding eigenvalues are the smallest.

Proof: Assume that there exists an M × 1 vector d that satisfies the following conditions

A(θ)PAH(θ)d 6= 0 (10)

R1d = λd. (11)

Adding R2d to both sides of (11) and using (6), we obtain

R1d+R2d = Rd = λd+R2d. (12)

Inserting (2) into (12), and rearranging the terms, we have

A(θ)PAH(θ)d = λd+ (R2 −Q)d. (13)

Moreover, substituting (3) and (8) into (13), we obtain

A(θ)PAH(θ)d =

(

λ+

L
∑

k=1

sk

)

d. (14)

It can be seen from (14) that d is an eigenvector of the matrix A(θ)PAH(θ) while its

corresponding eigenvalue is equal to λ+
∑L

k=1
sk. Since the matrix A(θ)PAH(θ) has L positive

eigenvalues and the condition (10) has to be satisfied, it can be concluded that

λ+

L
∑

k=1

sk > 0 ⇒ λ > −

L
∑

k=1

sk. (15)

In other words, (15) indicates that −
∑L

k=1
sk is the lower bound on the smallest eigenvalue of

R1. Thus, the noise subspace basis ul, l = 1, · · · ,M − L is composed of M − L eigenvectors

of R1 with the smallest eigenvalues. �

Knowing U, the spectral-MUSIC method, for example, can be used for the source DOA’s

estimation by finding the locations of L peaks in the pseudo-spectrum

S(θ) =
1

aH(θ)UUHa(θ)
. (16)
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However, the estimate of U can be further improved using the results of the initial U estimation

and exploiting (5). Indeed, if there exists an estimate of Q, (5) can be solved by applying

generalized ED to the matrices R and Q. Then more accurate noise subspace basis vectors ul,

l = 1, · · · ,M − L can be found as stated in the following lemma.

Lemma 2: The noise subspace basis vectors ul, l = 1, · · · ,M − L are the M − L eigen-

vectors, obtained by applying generalized eigendecomposion to the matrices R and Q whose

corresponding eigenvalues are the smallest.

Proof: Similar to the proof of Lemma 1, assume that there exists an M × 1 vector d that

satisfies (10) and Rd = λQd.

Inserting (2) into Rd = λQd, and rearranging the terms, we have

A(θ)PAH(θ)d = (λ− 1)Qd. (17)

Multiplying both sides of (17) on the left by dH , we obtain

dHA(θ)PAH(θ)d = d̄HPd̄ = (λ− 1)dHQd (18)

where d̄ = AH(θ)d. Since both P and Q are positive definite matrices and the condition (10)

has to be satisfied, it can be concluded that

λ− 1 > 0 ⇒ λ > 1. (19)

In other words, (19) indicates that 1 is the lower bound on the smallest eigenvalue of generalized

ED of R and Q. Thus, the noise subspace basis ul, l = 1, · · · ,M − L is composed of M − L

eigenvectors with the smallest eigenvalues. �

To apply Lemma 2, we first need to find an estimate of Q. Towards this end, first we write

Q as the following sum of two diagonal matrices

Q = σ2I+Qnun (20)

where σ2 represents the common part of sensor noise powers, which is computed later, and Qnun

is a diagonal matrix whose diagonal elements, except for one of them, are nonzero. The place

of this zero element is the place of the smallest diagonal element of R. As a result, the rank of

Qnun is M − 1, and

eTkQnun = 0 (21)
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where ek is the M × 1 unit vector such that

[ek]i =











0, i 6= k

1, i = k
(22)

and k is the index of the smallest diagonal element of R.

Multiplying both sides of (5) by eTk on the left and using (20) and (21), we obtain

eTkRul = eTk (σ
2I+Qnun) = σ2eTk ul. (23)

Equation (23) can be written for all vectors ul, l = 1, · · · ,M −L in the following matrix-vector

form

eTkRU = σ2eTkU (24)

where U is composed of ul, l = 1, · · · ,M −L obtained by Algorithm 1. Consequently, σ2 can

be computed as

σ2 =
eTkRUUHek

eTkUUHek
. (25)

The only issue remaining is the construction of the matrix Qnun. Let us set the nonzero

diagonal elements of Qnun as the differences of the corresponding elements in R with the

smallest diagonal element of R, that is,

Qnun = diag {[R]1,1 − c, · · · , [R]M,M − c} (26)

where c is the smallest diagonal element of R.

Finally, the matrix Q can be formed by utilizing (20), (25), and (26). With the matrices R

and Q, the noise subspace basis ul, l = 1, · · · ,M − L can be re-estimated as stated in (5) and

Lemma 2. Then the new U can be formed and the source DOA’s can be estimated by finding,

for example, the locations of L peaks in (16). The corresponding algorithm for DOA estimation

in non-uniform noise is summarized in Algorithm 1, where the sample data covariance matrix R̂

is used as an estimate of the array output covariance matrix R. Steps 1 and 2 represent the first

phase of the algorithm that can be followed by step 7 directly. Steps 3–6 represent the second

correction phase of the algorithm.

Complexity analysis: For the proposed method, the ED of R1 or the generalized ED of R and

Q are involved. The corresponding complexity is O(M3) [21]. It is equivalent to the complexity

in each iteration of IMLSE or ILSSE [14]. The difference arises from the fact that IMLSE and

ILSSE are iterative methods (the number of iterations can be comparable to M in many scenarios

to converge to their best result).
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Algorithm 1: The proposed method.

1: Compute the sample covariance matrix R̂ = 1

N

∑

N

t=1
X(t)XH(t).

2: Form R̂1 from R̂ as in (7), carry out the ED of R̂1 to obtain the

noise subspace basis ûl, l = 1, · · · ,M − L, and construct the matrix Û.

3: Construct ek and Q̂nun according to (21), (22), and (26).

4: Using the data sample covariance matrix and Û obtained in step 2,

estimate σ̂2 according to (25).

5: Using, σ̂2 and Q̂nun, estimate Q̂ according to (20).

6: Apply generalized ED to R̂ and Q̂, and obtain the new estimate of the

noise subspace basis ûl, l = 1, · · · ,M − L, i.e., the new estimate of Û.

7: Use spectral-MUSIC, i.e., find the locations of L peaks in (16), where

U is substituted its estimate Û.

IV. SIMULATION RESULTS

A ULA with M = 8 omnidirectional sensors, which are separated by half wavelength, is

considered. Two far-field uncorrelated narrow-band signals (with equal powers) impinge on the

array simultaneously from θ1 = −3◦ and θ2 = 6◦, respectively.

The worst noise power ratio (WNPR), and the signal-to-noise ratio (SNR) are defined as

WNPR = σ2

max/σ2

min
and SNR = σ2

s/M
∑M

m=1
(σ2

m)
−1, respectively, where σ2

max
and σ2

min
are the

maximum and minimum sensors noise powers, respectively, and σ2

s
is the signal power. The

number of snapshots (N) and the number of Monte Carlo trials (K) are set to 500 and 5000,

respectively. The root mean squared error (RMSE) of DOA’s estimation is defined as

RMSE =

√

√

√

√

1

KL

K
∑

k=1

L
∑

l=1

(θ̂k,l − θl)
2

where θ̂k,l denotes the lth DOA estimate in the kth trial.

To validate the performance of the proposed methods, two examples are considered, and the

results are compared to the performance of the standard spectral-MUSIC and well as IMLSE

and ILSSE methods both after the first iteration only and also after convergence is achieved.1

The number of sources is assumed to be known for all methods tested.

Example 1: The non-uniform noise covariance matrix is fixed in all simulation runs and is

given as Q = diag{1, 1, 1, 1, 1, 20, 30, 50}, resulting in WNPR=50. Fig. 1 shows the RMSEs

for the methods tested versus SNR. The Cramer-Rao bound (CRB) [7] is also shown. It can be

1The performance of ILSSE is plotted only for the SNRs when ILSSE converges for all trials.
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Fig. 1. The RMSEs of DOA estimation versus SNR in Example 1.

seen from the figure that the proposed method after both phases demonstrates the best threshold

behavior, despite it is non-iterative and has lower computational complexity. Although the IMLSE

method after the first iteration only possesses as low computational complexity as the proposed

method, its DOA estimation accuracy is very poor. Thus, multiple iterations have to run for it

to achieve its best result.

Example 2: To provide more comprehensive insights into the performance of the methods

tested, the noise covariance matrix is chosen in this example multiple times randomly with

maximum WNPR of 30. Then the RMSE results are also averaged over 50 different realizations

of the noise covariance matrix Q for which of each 5000 Monte Carlo trials are averaged. The
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Fig. 2. The RMSEs of DOA estimation versus SNR in Example 2.

average RMSEs for the methods tested are shown in Fig. 2.2 It can be seen from the figure

that the second phase of the proposed method shows the best performance and improves the

threshold behavior by about 2 dB as compared to the next best performing method that is the

IMLSE method.

Furthermore, Table I shows the average run time of the methods tested for SNRs=-5, 0, 5, 10 ,

and 15 dB for the setup of Example 2. The simulation is performed on a PC running an Intel(R)

2Since the curves in Fig. 2 are resulted also from averaging over different realization of the nuisance parameters, i.e., Q’s

with different WNPRs, the CRB is not applicable in the setup and is not shown. Indeed, fixed parameters of interest as well as

nuisance parameters have to be assumed for CRB.
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Xeon(R) 3.40GHz CPU. It can be observed that the proposed method is superior in terms of

the required time which is reduced by orders of magnitude compared to the existing methods.

The average number of iterations for IMLSE and ILSSE are about 27 and 52, respectively, for

SNR=5 dB, for example. Inspecting Fig. 2 and Table I together, it can be seen that even the first

phase of the proposed method leads to superior performance with lower complexity compared

to the competitive methods after the first iteration.

TABLE I

COMPARISON OF AVERAGE RUN TIME OF ONE TRIAL (IN ms).

Method IMLSE ILSSE IMLSE after ILSSE after Proposed method Proposed method

first iteration first iteration (phase 1) (phase 2)

SNR=-5 dB 13.108 Not converged 0.573 0.478 0.371 0.891

SNR=0 dB 14.395 21.739 0.552 0.470 0.877 0.877

SNR=5 dB 15.133 23.870 0.546 0.462 0.359 0.861

SNR=10 dB 15.470 26.667 0.545 0.459 0.357 0.860

SNR=15 dB 15.604 26.385 0.547 0.459 0.357 0.861

V. CONCLUSION

A novel computationally efficient non-iterative two-phase subspace-based parametric method

for DOA estimation in the presence of unknown spatially non-uniform noise has been proposed.

The noise subspace estimation problem is converted in the first phase of the proposed method to

the problem of finding eigenvectors of a properly designed matrix so that the noise covariance

matrix estimation is evoided. In the second phase, the covariance matrix of the non-uniform noise

is first estimate based on the results of the first phase and then it is used for finding the noise

subspace more accurately by means of generalized ED of this matrix and the data covariance

matrix. It is of importance that the proposed method has low computational complexity and is

non-iterative, and thus, has no issues with convergence. Moreover, it is superior to the existing

iterative state-of-art methods in both the performance and especially the computational cost.
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