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Abstract—Correntropy is a local similarity measure defined
in kernel space and the maximum correntropy criterion (MCC)
has been successfully applied in many areas of signal processing
and machine learning in recent years. The kernel function in
correntropy is usually restricted to the Gaussian function with
center located at zero. However, zero-mean Gaussian function
may not be a good choice for many practical applications. In
this study, we propose an extended version of correntropy, whose
center can locate at any position. Accordingly, we propose a
new optimization criterion called maximum correntropy criterion
with variable center (MCC-VC). We also propose an efficient
approach to optimize the kernel width and center location
in MCC-VC. Simulation results of regression with linear in
parameters (LIP) models confirm the desirable performance of
the new method.

Index Terms—Correntropy, maximum correntropy criterion
(MCC), maximum correntropy criterion with variable center
(MCC-VC), robust learning.

I. INTRODUCTION

O
NE of the most important problems in machine learning

is how to approximate a target random variable (T )

knowing another (Y ). This is a central problem in supervised

learning, where we design a model (M ) that receives a random

variable X and outputs Y that should approximate T in some

sense. The difficulty requires the definition of a loss function

(or a similarity measure) to compare Y with T . The minimum

mean square error (MMSE) criterion is widely used where

the loss function is E
[

e2
]

, with e = T − Y being the error

variable and E[.] the expectation operator. The MMSE is gen-

erally computationally simple and mathematically tractable,

but its learning performance may degrade seriously when non-

Gaussian noises are present in the variables [1].

To improve the learning performance in non-Gaussian

noises, a variety of non-MMSE criteria have been proposed in

the literature [1–8]. Particularly in recent years, the maximum

correntropy criterion (MCC) have found many successful

applications in domains of signal processing and machine

learning, which is very useful for the case where the signals are

contaminated by heavy-tailed impulsive noises[9–15]. Under
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the MCC, an optimal model can be obtained by maximizing

the correntropy between the target variable T and the output

Y [4]:
M∗ = argmax

M∈M

Vσ(T, Y ) = E[Gσ(e)] (1)

where M∗ is the optimal model, M stands for the models

hypothesis space, and Vσ(T, Y ) = E[Gσ(e)] denotes the

correntropy between T and Y , with Gσ(e) being the Gaussian

kernel function:

Gσ(e) =
1√
2πσ

exp

(

− e2

2σ2

)

(2)

where σ is the kernel bandwidth. Since the Gaussian kernel

function Gσ(e) is a local function of the error variable e, the

correntropy can be used as an outlier-robust error measure

in signal processing and machine learning [1]. However,

the center of the Gaussian kernel in correntropy is always

located at zero, which may not be a good choice for many

practical situations. In particular, when the error distribution is

non-zero-mean, the original correntropy may perform poorly,

because in this case the zero-mean Gaussian function usually

cannot match well the error distribution. The goal of the

present paper is thus to extend the correntropy to the case

where the center can be located anywhere, which potentially

can significantly improve the learning performance but is still

not fully appreciated in the community.

The rest of the paper is organized as follows. In section II,

we define the correntropy with variable center and propose the

maximum correntropy criterion with variable center (MCC-

VC). In section III, we propose an efficient approach to

optimize the kernel width and center location in MCC-VC.

Simulation results of regression with linear in parameters (LIP)

models are then presented in section IV. Finally, conclusion is

given in section V.

II. MAXIMUM CORRENTROPY CRITERION WITH

VARIABLE CENTER

In this work, we define the correntropy with variable center
between T and Y as follows:

Vσ,c(T, Y ) = E[Gσ(e− c)] = E[
1

√

2πσ
exp

(

−
(e− c)2

2σ2

)

] (3)

where c ∈ R is the center location. The above definition will

reduce to the original correntropy Vσ(T, Y ) when c = 0.

Similar to the original correntropy [4], the correntropy with

center c also involves all the even moments of the error e =
T − Y about the center c, that is

Vσ,c(T, Y ) =
1√
2πσ

∞
∑

n=0

(−1)
n

2nn!
E

[

(e− c)
2n

σ2n

]

(4)
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As σ increases, the high-order moments about the center c

will decay faster, hence the second-order moment tends to

dominate the value. Particularly, when c = E[e] and σ → ∞
, maximizing the correntropy with center c will be equivalent

to minimizing the error’s variance.

In addition, when the Gaussian kernel shrinks to zero

(σ → 0), the correntropy with center c approaches the value of
∫∞

−∞
pTY (t, t− c)dt, where pTY (t, y) is the joint probability

density function (PDF) of (T, Y ). This can easily be proved

as follows

lim
σ→0

Vσ,c(T, Y ) = lim
σ→0

∫∫

Gσ(t− y − c)pTY (t, y)dtdy

=

∫∫

δ(t− y − c)pTY (t, y)dtdy

=

∫ ∞

−∞

pTY (t, t− c)dt

(5)

where δ(.) denotes the Dirac delta function. In this case, we

also have

lim
σ→0

Vσ,c(T, Y ) = lim
σ→0

∫

Gσ(ε− c)pe(ε)dε

=

∫

δ(ε− c)pe(ε)dε

= pe(c)

(6)

Therefore, when σ → 0, the correntropy with center c will

also approach the value of pe(ε) evaluated at ε = c, where

pe(.) denotes the error’s PDF.

The optimal model under the maximum correntropy crite-

rion with variable center (MCC-VC) is defined by

M∗ = argmax
M∈M

Vσ,c(T, Y ) = E[Gσ(e− c)] (7)

To demonstrate how to solve the optimal solution with finite

training samples (by optimizing an empirical risk function), we

consider the following linear in parameter (LIP) model:

yi = hiβ = [φ1(xi), φ2(xi), · · · , φÑ (xi)] [β1, β2, · · · , βÑ ]
T

, i = 1, 2, · · ·N
(8)

where {xi, yi}Ni=1
are the N input-output samples, hi =

[φ1(xi), φ2(xi), · · · , φÑ (xi)] ∈ RÑ is the i-th nonlinearly

mapped input vector (a row vector), with φj(.) being the j-

th nonlinear mapping function (j = 1, 2, · · · Ñ), and β =

[β1, β2, · · · , βÑ ]
T ∈ RÑ is the output weight vector that needs

to be learned. Given N target samples {ti}Ni=1
, the output

weight vector β can be trained by minimizing the following

regularized MMSE cost:

JMMSE(β) = ‖T − Y‖2 + λ‖β‖2 (9)

where Y = [y1, y2, · · · , yN ]T , T = [t1, t2, · · · , tN ]T , and

λ ≥ 0 is the regularization parameter. In this case, the optimal

solution can easily be obtained as

β∗ =
(

HT H + λI
)−1

HT T (10)

where H = [hij] is an N × Ñ dimensional matrix with

hij = φj(xi). Similarly, one can solve β by minimizing the

following regularized MCC-VC cost:

JMCC−V C(β) = − 1

N

N
∑

i=1

[Gσ(ei − c)] + λ‖β‖2 (11)

where ei = ti−yi = ti−hiβ is the i-th error sample. Setting
∂
∂β

JMCC−V C(β) = 0, one can derive

β∗ = [HT
ΛH+ λ′

I]−1
H

T
ΛT′ (12)

where λ′ = 2Nλ, T′ = [t1 − c, t2 − c, . . . , tN − c]T , and Λ

is a diagonal matrix with diagonal elements Λii = Gσ(ei−c).

The solution (12) is a fixed-point equation since the diagonal

matrix Λ on the right-hand side depends on the weight vector

β via ei = ti − hiβ. Therefore, the optimal solution under

MCC-VC can be solved by using the following fixed-point

iteration:

βk =
(

[HT
ΛH+ λ′

I]
−1

H
T
ΛT

′

)∣

∣

∣

βk−1

(13)

where βk is the estimated weight vector at the k-th iteration.

III. OPTIMIZATION OF THE FREE PARAMETERS IN

MCC-VC

There are two free parameters in MCC-VC, namely the

kernel width σ and the center location c, whose values have

significant influence on the learning performance. In this

section, we propose an efficient approach to optimize the two

parameters. First, we divide the correntropy with center c into

three terms:

Vσ,c(T, Y ) =

∫

Gσ(ε− c)pe(ε)dε

=
1

2

∫

[Gσ(ε− c)]
2
dε+

1

2

∫

[pe(ε)]
2
dε

− 1

2

∫

[Gσ(ε− c)− pe(ε)]
2
dε

(14)

Since the first term is independent of the model M , we have

M∗ = argmax
M∈M

Vσ,c(T, Y ) = argmax
M∈M

Uσ,c(T, Y ) (15)

where Uσ,c(T, Y ) =
∫

[pe(ε)]
2
dε−

∫

[Gσ(ε− c)− pe(ε)]
2
dε.

Then we propose the following optimization:

(M∗, σ∗, c∗) = argmax
M∈M,σ∈S,c∈C

Uσ,c(T, Y ) (16)

where S and C denote the admissible sets of parameters σ

and c. Thus, the model M , the kernel width σ and the center

location c are jointly optimized to maximize the function

Uσ,c(T, Y ). To simplify the optimization, we adopt an alter-

native optimization approach:

i) When the model is fixed(hence the error’s distribution is

fixed), the term
∫

(pe(ε))
2
dε is independent of σ and c, in
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this case the two free parameters can simply be optimized by

(σ∗, c∗) = argmin
σ∈S,c∈C

∫

[Gσ(ε− c)− pe(ε)]
2
dε

= argmin
σ∈S,c∈C

{
∫

[Gσ(ε− c)]
2
dε− 2E [Gσ(e − c)]

}

= argmin
σ∈S,c∈C

{

1

2
√
πσ

− 2E [Gσ(e− c)]

}

(17)

ii) After the parameters have been determined, the model

M can then be optimized by maximizing the function (16) or

(14) with σ = σ∗ and c = c∗.

The above procedure can be repeated until convergence.

From (17), one can see that the parameters σ and c are

optimized such that the Gaussian kernel function Gσ(ε − c)
matches the error’s PDF pe(ε) as closely as possible. This is in

principle consistent with our intuition. The idea of PDF match-

ing has been explored with great success in the literature of

information theoretic learning (ITL) [1, 16–18]. Given N error

samples {ei}Ni=1
, we have E [Gσ(e− c)] ≈ 1

N

N
∑

i=1

Gσ(ei − c).

It follows that

(σ∗, c∗) = argmin
σ∈S,c∈C

{

1

2
√
πσ

− 2

N

N
∑

i=1

Gσ(ei − c)

}

(18)

Remark: There are several approaches to solve the optimiza-

tion problem in (18). For example, we can use a gradient based

method to search the solution. In many practical situations, we

often find the optimal solution in a given finite set. To further

simplify the computation, one can just set the parameter c

to the mean or median value of the error samples, and only

optimize the kernel width σ.

Based on the above parameters optimization strategy, a

robust regression algorithm with LIP models under MCC-VC

can be obtained, which is referred to as the LIP-MCC-VC and

is described in Algorithm 1.

Algorithm 1 LIP-MCC-VC

Input: training samples {xi, ti}Ni=1
, number of nonlinear mappers Ñ ,

regularization parameter λ′, maximum iteration number K , a set of kernel
widths S , a set of kernel centers C, termination tolerance ξ and the initial
weight vector β0=0.

Output: weight vector β

1: for all k = 1, 2, ...,K do

2: Compute the errors based on βk−1: ei = ti − hiβk−1, i =
1, 2, · · · , N

3: Optimize the parameters σ and c: (σ∗, c∗) =

argmin
σ∈S,c∈C

{

1

2
√

πσ
− 2

N

N
∑

i=1

Gσ(ei − c)

}

4: Compute the diagonal matrix Λ: Λii = Gσ∗(ei − c∗), i =
1, 2, · · · , N

5: Update the weight vector β: βk =
(

[HT
ΛH+ λ′

I]
−1

H
T
ΛT

′
)
∣

∣

∣

βk−1

6: Until |JMCC−V C(βk)− JMCC−V C(βk−1)| < ξ
7: end for

IV. SIMULATION RESULTS

In this section, we present simulation results of regression

with LIP models to demonstrate the performance of the

proposed method. We consider two LIP models, one is the

linear regression model and the another is the extreme learning

machine (ELM) [19–22], a kind of single hidden layer feed

forward neural network (SLFN), in which the input weights

and biases of the hidden layer are randomly generated, and

only the weights of the output layer need to be trained.

A. Linear Regression

Consider a simple example in which the data are generated

by a two-dimensional linear system yi = w∗Txi + ρi, where

w∗ = [1, 2]T and ρi is an additive noise. The input samples

{xi} are uniformly distributed over [−2, 2]×[−2, 2]. The noise

ρi comprises two mutually independent noises, namely the

inner noise Bi and the outlier noise Oi. Specifically, ρi is

given by ρi = (1−gi)Bi+giOi, where gi is a binary variable

with probability mass Pr {gi = 1} = p, Pr {gi = 0} = 1− p,

(0 ≤ p ≤ 1), which is assumed to be independent of both Bi

and Oi. In this example, p is set at 0.1, and the outlier Oi is

drawn from a zero-mean Gaussian distribution with variance

10000. For the inner noise Bi, we consider four zero-mean

or non-zero-mean distributions: 1) N (0,2), where N (u, σ2)
denotes the Gaussian PDF with mean u and variance σ2; 2)

N (3,1); 3) Laplace distribution with zero-mean and variance

1; 4) Chi-square distribution with three degrees of freedom.

The root mean squared error (RMSE) is employed to measure

the performance, computed by RMSE =
√

1

2
‖wk −w∗‖2,

where wk and w∗ denote the estimated and the target weight

vectors respectively.

We compare the performance of three optimization criteria,

namely MMSE, MCC and MCC-VC. For MMSE, there is

a closed-form solution, so no iteration is needed. For MCC

and MCC-VC, a fixed-point iteration is used to solve the

model (see [23] for the fixed-point algorithm under MCC).

The mean ± deviation results of the RMSE and the training

time averaged over 100 Monte Carlo runs are presented in

Table I. In the simulation, the sample number is N = 400,

the iteration number is K = 100, and the initial weight vector

is set to w0 = [0, 0]T . For each criterion, the parameters are

selected by trial-and-error to achieve the best results, except

that the kernel bandwidth and center location of MCC-VC are

chosen through solving the optimization (18). The finite kernel

bandwidth set S is equally spaced over [0.2, 5.0] with step size

0.2, and the center set C is equally spaced over [−5.0, 5.0]
with step size 0.1. From Table I, we observe: i) MCC and

MCC-VC can significantly outperform MMSE although both

have no closed-form solution; ii) MCC-VC can achieve better

performance than MCC especially for non-zero-mean noises

because the cost function center can be set at proper value

according to the error PDF adaptively; iii) MCC-VC can

save much time through solving (18) to find the best values

of parameters σ and c, without performing trial-and-error to

optimize the two parameters. Under the noise of case 2), the

error distribution and corresponding Gaussian kernel function

Gσ∗(e − c∗) optimized by (18) at the first and second fixed-

point iterations of MCC-VC are shown in Fig. 1. As expected,

the Gaussian kernel function matches the error distribution

very well.
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TABLE I: RMSE AND COMPUTING TIME (sec) OF DIFFERENT CRITERIA

MMSE MCC MCC-VC

case 1)
RMSE 1.2374± 0.6840 0.0765±0.0422 0.0902± 0.0547

TIME(sec) N/A 1.2217± 0.0269 0.0962 ± 0.0023

case 2)
RMSE 1.2214± 0.6441 0.1375± 0.0737 0.0505 ± 0.0272

TIME(sec) N/A 1.2214± 0.0253 0.0976 ± 0.0024

case 3)
RMSE 1.2435± 0.6218 0.0337± 0.0168 0.0332 ± 0.0165

TIME(sec) N/A 1.2805± 0.0613 0.0957 ± 0.0032

case 4)
RMSE 1.1317± 0.5763 0.1546± 0.0762 0.0910 ± 0.0441

TIME(sec) N/A 1.2157± 0.0249 0.0978 ± 0.0022

-5 0 5 10
e

0

0.05

0.1

0.15

0.2

0.25

0.3
Error distribution

σ

*(e - c*)

(a)

-2 0 2 4 6 8
e

0

0.1

0.2

0.3

0.4

0.5

0.6
Error distribution

σ

*(e - c*)

(b)

Fig. 1: Error distribution and Gaussian kernel function: (a)First iteration, (b)Second iteration.

TABLE II: TRAINING AND TESTING RMSEs OF THREE ALGORITHMS

Datasets
RELM ELM-RCC ELM-MCC-VC

Training RMSE Testing RMSE Training RMSE Testing RMSE Training RMSE Testing RMSE

Servo 0.0600 ± 0.0095 0.1088 ± 0.0171 0.0831 ± 0.0219 0.1064 ± 0.0165 0.0835± 0.0225 0.1029 ± 0.0179

Airfoil 0.0974 ± 0.0074 0.1031 ± 0.0077 0.0942 ± 0.0022 0.0997 ± 0.0028 0.0812± 0.0038 0.0923 ± 0.0054

Concrete 0.0738 ± 0.0021 0.0965 ± 0.0055 0.0823 ± 0.0025 0.0945 ± 0.0034 0.0642± 0.0033 0.0927 ± 0.0049

Housing 0.0439 ± 0.0042 0.0921 ± 0.0137 0.0442 ± 0.0042 0.0907 ± 0.0138 0.0455± 0.0040 0.0903 ± 0.0137

Yacht 0.0366 ± 0.0093 0.0823 ± 0.0090 0.0575 ± 0.0023 0.0769 ± 0.0053 0.0041± 0.0003 0.0232 ± 0.0105

Wine-red 0.1205 ± 0.0036 0.1350 ± 0.0044 0.1171 ± 0.0027 0.1309 ± 0.0035 0.1209± 0.0025 0.1299 ± 0.0031

Slump 0.0081 ± 0.0011 0.0461 ± 0.0095 0.0000 ± 0.0000 0.0433 ± 0.0102 0.0000± 0.0000 0.0412 ± 0.0106

TABLE III: Specification of the datasets

Datasets Features
Observations

Training Testing

Servo 5 83 83

Airfoil 5 751 751

Concrete 9 515 515

Housing 14 253 253

Yacht 6 154 154

Wine-red 12 799 799

Slump 10 52 51

B. ELM Based Regression for Benchmark Datasets

In the second example, we utilize seven benchmark data

sets from UCI machine learning repository [24] to confirm

the superior regression performance of the MCC-VC based

ELM (ELM-MCC-VC) compared with the MCC based ELM

(ELM-RCC) [22] and regularized ELM (RELM)([21]). The

descriptions of the data sets are given in Table II. In the

simulation, the training and testing samples from each data set

are randomly chosen and the data values are normalized into

[0, 1]. The parameters of each algorithm are selected through

fivefold cross-validation, except that the kernel bandwidth and

center location of MCC-VC are chosen through solving (18).

We set the kernel center of MCC-VC to the median value of

the error samples, only optimize the kernel width σ by solving

(18). The finite kernel bandwidth set S is equally spaced over

[0.1, 2.0] with step size 0.1. The training and testing RMSEs

over 100 runs are presented in Table III. Evidently, The ELM-

MCC-VC outperforms the ELM-RCC and RELM for all the

data sets. Especially on the Yacht data set, MCC-VC can

significantly outperform other methods.

V. CONCLUSION

The kernel function in Correntropy is in general a Gaussian

function and the kernel center is always located at zero. In

this paper, we extended the correntropy to the case where the

center can locate at any position. On this basis, the maximum
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correntropy criterion with variable center (MCC-VC) was

proposed. In addition, we proposed an efficient method to

optimize the kernel width and center location in MCC-VC.

Regression results with linear in parameters (LIP) models have

shown the desirable performance of the new method.
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