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Coupled Feature Space Learning
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Abstract

In this letter, we propose a novel computationally efficient coupled dictionary learning method

that enforces pairwise correlation between the atoms of dictionaries learned to represent the underlying

feature spaces of two different representations of the same signals, e.g., representations in different

modalities or representations of the same signals measured with different qualities. The jointly learned

correlated feature spaces represented by coupled dictionaries are used in sparse representation based

classification, recognition and reconstruction tasks. The presented experimental results show that the

proposed coupled dictionary learning method has a significantly lower computational cost. Moreover,

the visual presentation of jointly learned dictionaries shows that the pairwise correlations between the

corresponding atoms are ensured.

Index Terms

Coupled dictionary learning, feature space learning, sparse representation.

I. INTRODUCTION

Sparsity and overcompleteness has been successfully used for diverse applications in signal

processing over the last decade [1]–[4]. The fact exploited is that signals can be compactly

modelled using an overcomplete dictionary as a linear combination of only few atoms.

Formally, the basic synthesis model suggests that the signal x can be described as a linear

combination of few atoms over an overcomplete dictionary D, and the problem of seeking such

sparse representation can be formulated as min
α
‖α‖0 s.t. x ≈ Dα, where α is the sparse

vector of coefficients for atoms in the dictionary D and ‖ · ‖0 denotes the operator that counts

the number of non-zero entries in a vector.
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Many applications have benefited remarkably from using the above approach with learned

overcomplete dictionary [5]–[8]. Representative examples of dictionary learning algorithms in-

clude the K-SVD method [9], the method of optimal directions (MOD) [10], the online dictionary

learning (OLD) method [11], and their variants [12]–[14]. “Good” dictionaries are expected to

be highly adaptive to the observed signals and to lead to accurate sparse representations.

While the single dictionary model has been extensively studied, there exists also a coupled

dictionary viewpoint to sparsity and overcompleteness, where a coupled dictionary is needed to

represent the double feature space (e.g., focused and blurred image patches in image processing).

The combination of learned coupled dictionary and sparse approximation is shown to be superior

for representing double feature spaces [15]–[22].

The coupled dictionary learning aims to find a pair of dictionaries [D1, D2] best representing

two subsets of n training signals X1 = [[x1]1, · · · , [x1]n] and X2 = [[x2]1, · · · , [x2]n] in such a

way that the atoms of D1 and D2 are pairwise correlated, and if a linear combination of atoms

of D1 models a signal in X1, the same linear combination of atoms of D2 also models the

corresponding signal in X2. This can be insured by enforcing an identical sparse representation

matrix Γ for both X1 and X2 while learning D1 and D2. Then the coupled dictionary learning

problem can be formulated as the following optimization problem [15]

min
D1,D2,Γ

‖X1 −D1Γ‖22 + ‖X2 −D2Γ‖22

s.t. ‖γc
i‖0 6 T0, ‖[d1]t‖2 = 1, ‖[d2]t‖2 = 1,∀t, i

(1)

where [d2]t are the t-th dictionary atoms (columns) of D1 and D2, respectively, T0 is the

constraint value on sparsity, and ‖ · ‖2 is the Euclidian norm of a vector. The notation γc
i is used

for i-th column of Γ, to be distinct from the notation that later is used for the rows of the same

matrix.

The methods in [15]–[18] address (1) to model the function between observation and latent

feature spaces (e.g., noisy and clear data), so that they can recover the unknown higher quality

signals from their available low quality versions. Inverse problems such as image superresolu-

tion [15], [16], and speech signal bandwidth extension [17] are then examples of applications.

For such methods, the corresponding dictionaries are expected to yield accurate sparse approx-

imations. There are also methods that employ coupled dictionary learning techniques to solve

problems such as cross-modal matching [19], cross-domain image recognition [20], and multi-

focus image fusion [21], as examples of classification and recognition applications. In latter
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applications, the learned dictionaries are not required to provide accurate sparse recovery, but

the objective is to learn the underlying feature spaces of X1 and X2, i.e., the coupled dictionary.

A majority of existing coupled dictionary learning algorithms address (1) by learning two

correlated feature spaces through burdensome complex procedures, while the computationally

demanding nature of dictionary learning algorithms becomes more restrictive when we need to

learn two dictionaries simultaneously. In this letter, we propose a fast coupled dictionary learning

scheme that dramatically reduces the computational costs that brings it below the one by the

K-SVD method even for a single dictionary.

II. A NEW PROPOSED METHOD

The optimization variables in problem (1) can be split into two subsets, where one subset

consists of the common sparse representation matrix Γ, and the other includes the dictionariesD1

and D2. Then (1) can be addressed in alternating manner by iterating between two phases, where

in the first phase Γ is optimized under the constraint ‖γc
i‖0 6 T0 – a joint sparse coding problem,

and in the second phase D1 and D2 are optimized under the constraints ‖[d1]t‖2 = 1 and

‖[d2]t‖2 = 1, respectively– dictionary update problems. The general procedure of the proposed

coupled dictionary learning is summarized in the block-diagram presented in Fig. 1. In the

dictionary update phase, after updating each atom, all nonzero coefficients of its corresponding

row of Γ have to be updated. The dashed arrow in the block diagram indicates that in order

to preserve the same sparse representation for both D1 and D2, the updates of Γ need to be

performed jointly also during the dictionary update phase. Other operations, e.g., substituting

unused atoms with better ones, are performed based on the common sparse representation matrix,

thus the enforced atom-wise correlations in the joint sparse coding phase are preserved. The

dictionaries can be initialized by any fixed basis overcomplete dictionary, e.g., discrete cosine

transform (DCT) dictionary.
A. Joint Sparse Coding

The joint sparse coding is the problem of finding optimal in least squares (LS) sense sparse

representations of the joint dataset X ,
[
XT

1 ,X
T
2

]T
over the joint dictionary D ,

[
DT

1 ,D
T
2

]T
,

that is,

min
Γ
‖X −DΓ‖22 s.t. ‖γc

i‖0 6 T0, ∀i. (2)

Problem (2) is known to be NP-hard, but by replacing ‖ · ‖0 with l1-norm, it can be turned to a

convex problem that is solvable by many existing methods. There are also sparse approximation
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Fig. 1: Block-diagram of the proposed coupled dictionary learning method.

methods known as matching pursuits (MP) [23] which despite of not using explicit l1-norm term,

are proved to yield approximations for l1-norm minimization problems [24].

Here, we use the orthogonal matching pursuit (OMP) method [25] to address the joint sparse

coding problem. OMP is an iterative method that sequentially adds coefficients to the sparse

representation vector in two steps.

The first step is to find the best matching atom for the signal (or residual). The standard

formulation for the matching problem is as follows

dbest = argmax
dt
| dT

t r |; dt ∈D (3)

where dbest denotes the best matching atom from the joint dictionary D for the joint residual

r , xi −Dγc
i and xi ∈ X . “Matching” is measured by the absolute value of correlation, i.e.,

| dT
t r |.

The second step is to calculate the coefficients for the atoms that are selected so far. This can

be formulated as the following LS problem

min
γ
c(m)
i

∥∥∥r(m) −D(m)γ
c(m)
i

∥∥∥2
2

(4)

where r(m) is the residual, γc(m)
i is the sparse representation vector, and D(m) is the subset of

chosen atoms, all at m-th iteration. Problem (4) is equivalent to (1) optimized over Γ only, that

is,

min
γ
c(m)
i

∥∥∥r(m)
1 −D

(m)
1 γ

c(m)
i

∥∥∥2
2
+
∥∥∥r(m)

2 −D
(m)
2 γ

c(m)
i

∥∥∥2
2
,∀i (5)
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where r1 and r2 are the residuals from [x1]i ∈ X1 and [x2]i ∈ X2, respectively. Thus,

OMP approximates a common sparse representation matrix for X1 and X2 over D1 and D2,

respectively.

At the end of each iteration, the residuals need to be updated. The algorithm iterates until the

remainder error which is calculated as the norm squared of the residuals e =
∥∥r(m)

∥∥2
2

satisfies the

error threshold ε or the number of coefficients reaches its limit T0, i.e., the constraint ‖γc
i‖0 6 T0

is satisfied as equality.

B. Dictionary Update

For the common sparse representation Γ, problem (1) needs to be solved then over the coupled

dictionary D. Since the objective function of (1) is separable with respect to the dictionaries D1

and D2, and different sets of constraints are applied to the atoms of D1 and D2, problem (1)

can be split into two subproblems of finding updates for the dictionaries D1 and D2 separately,

although the similarity of the sparse representations has to be maintained. Thus, we explain the

proposed dictionary update for a single dictionary Di, i = 1, 2.

The corresponding optimization problem is given as

Di = argmin
Di

∥∥∥∥∥X i −
∑
t

[di]tγ
r
t

∥∥∥∥∥
2

F

(6)

subject to the constraints in (1) applicable to corresponding atoms. Here γr
t is the t-th row of Γ.

Note that in (6), we rewrite the product DΓ as the sum of vector outer products [di]tγ
r
t. After

such modification, it appears that each atom can be updated disjoint from the others. Thus, to

update the atom [di]t, we fix the remaining atoms, and rewrite optimization problem (6) as

[di]t = argmin
[di]t

∥∥∥∥∥
(
X i −

∑
s 6=t

[di]sγ
r
s

)
− [di]tγ

r
t

∥∥∥∥∥
2

F

. (7)

Columns of X i−
∑

s 6=t[di]sγ
r
s that correspond to zero entries of γr

t can be ignored. Thus, we

define the vector ωt representing the subset of indices where γr
t 6= 0, that is, ωt={i|[γr

t]i 6=0}.

Then the error matrix [Ei]t is formed as

[Ei]t ,

[
X i −

∑
s 6=t

[di]sγ
r
t

]
ωt

. (8)

Then optimization problem (7) can be further rewritten as the following simple rank-1 LS

approximation problem

[di]t = argmin
[di]t
‖[Ei]t − [di]t[γ

r
t]ωt‖

2
F (9)
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where [γr
t]ωt contains nonzero entries of γr

t. There is no sparsity constraint in LS problem (9),

thus, it can be easily solved as dt=Et[γ
r
t]
T
ωt
/‖[γr

t]ωt‖22. The normalization term ‖[γr
t]ωt‖22 can

be dropped, since we need to normalize the l2-norm of each atom to one anyway. Then the atom

update rule is

[di]t = [Ei]t[γ
r
t]
T
ωt
. (10)

If ωt is empty, [di]t is updated as the column-wise average of error matrix [Ei]t =X i−DiΓ.

To avoid the scale ambiguity in sparse approximation, the updated atoms are then normalized.

After updating [di]t, we need to update [γr
t]ωt accordingly. Since [di]t is a unit vector, the

solution of (9), this time over [γr
t]ωt , can be efficiently found as [γr

t]ωt = [di]
T
t [Ei]t. However,

this solution is different for each feature space, i.e., i = 1 and i = 2. Thus, the optimal common

nonzero coefficients can be found for the joint atom dt =
[
[d1]

T
t , [d2]

T
t

]T and joint error matrix

Et =
[
[E1]

T
t , [E2]

T
t

]T , as

[γr
t]ωt =

1
2
dT
t Et. (11)

The complexity orders of (10) and (11) are both O(mn), which is much smaller than that of

singular value decomposition (SVD) in [9] with complexity order ofO(max(m,n)2×min(m,n)).

C. Maximum Number of Nonzero Coefficients

In each iteration, the majority of the existing two-phased alternating dictionary learning

methods (including [9]–[14]) first find Γ over D, then update the atoms to reduce the error

‖X −DΓ‖22 in order to have a sparser Γ in the next iteration. That means that Γ is not sparse

enough at the beginning. This backward approach imposes unnecessary extra computational

costs, since a larger number of nonzero entries in sparse representation matrix leads to higher

computational costs in both sparse coding and dictionary update phases.

Another drawback of this backward approach is that it reduces the effectiveness of the

dictionary update phase. Each atom dt is updated according to the error matrix Et, which

represents a potential amount of error that the atom update can compensate for in the total

approximation error. When the dictionary is not learned to yield sparse enough approximations,

the backward approach adds more coefficients to the sparse representations to minimize the

approximation error, which leads to smaller entries for Et, thus reducing the learning potential

for updating dt.
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These issues can be easily addressed. Instead of setting the maximum number of nonzero

coefficients as a constant number, we can gradually increase it. As a result, the first iterations

become computationally cheap and the dictionary update phase becomes more effective. For

example, we can form a vector of a size equal to the number of update cycles of dictionary

learning algorithm, and set its values as equally spaced numbers between a minimum (e.g., 1)

and the maximum number of nonzero coefficients. This simple change significantly reduces the

computational cost without sacrificing the performance, even slightly.

D. Summary of the Algorithm

The overall algorithm for coupled dictionary learning can be then summarized as in Algo-

rithm 1, where lines 3 to 11 represent the sparse coding phase, and lines 12 to 18 represent the

dictionary update phase.

III. EXPERIMENTAL RESULTS

In this section, we first demonstrate that the proposed coupled dictionary learning method

is able to provide the desired pairwise correlation between the atoms of two jointly learned

dictionaries. As an example experiment, we generate two subsets of 20,000 focused and blurred

8×8 grayscale image patches taken from Lytro image dataset [26], and use them as X1 (focused

data) and X2 (blurred data), where the patches (signals) in X2 are blurred versions of their

corresponding focused patches in X1. The columns of X1 and X2 are vectorized image patches.

We apply our method to the double feature space and learn the correlated dictionaries D1 and

D2 (see Figs. 2.(a) and (b)), then we visually compare it to the case where D1 and D2 are

learned separately from the same feature spaces (see Figs. 2.(c) and (d)).

From the visual representations of atoms if Fig. 2, the pairwise correlations can be observed

only between the atoms of dictionaries learned by the proposed coupled dictionary learning

method. Those correlations are obtained by enforcing identical sparse representations through

the proposed method and ensure that D1 and D2 represent corresponding features from the

focused and blurred feature spaces.

Next, we compare our proposed dictionary learning method to the K-SVD and ODL meth-

ods, in terms of runtime, obtained number of nonzero coefficients, and average learning error√∑n
i=1(xi −Dγc

i )
2/n, for learning a dictionary from a single feature space.1 The experiment

1Note that the proposed method is applicable without any change to a single dictionary learning as well.
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(a) (b)

(c) (d)

Fig. 2: Visual comparison between coupled learned dictionaries: (a) D1 and (b) D2, and

separately learned dictionaries: (c) D1 and (d) D2.

is performed on a PC running an Intel(R) Xeon(R) 3.40GHz CPU. The learning dataset includes

10,000 mean centred grayscale image patches with the size of 8 × 8, taken from Lytro image

dataset. The tolerance error is set as ε = 4, and the maximum number of nonzero coefficients

is set to 32 (half of the size of vectorized patches). We run the K-SVD method for 16, the

proposed algorithm for 32, and the ODL method for 256 dictionary learning cycles. The numbers

of learning cycles are chosen with regards to the computational costs of the iterations of the

algorithms, in a way that the ultimate runtimes are almost the same, so we can compare the

results.
From Fig. 3(a), it can be observed that the dictionary learned by the proposed method yields

significantly sparser representations in a much shorter time, comparing to those learned by the

other methods. To explain this result, we visualize the changes in average learning error in
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Fig. 3: The results for (a) the average number of nonzero coefficients, and (b) the average

learning error versus the runtime. For the K-SVD and proposed methods, the markers indicate

each iteration. For the ODL method, the markers show each 8 iterations.

Fig. 3(b). As explained in Subsection II-C, in the proposed method, we increase the maximum

number of nonzero coefficients gradually. As a result, in the first iterations, the average error is

high, however those iterations are faster. In this experiment, when the K-SVD method finishes

its fifth iteration, the proposed algorithm has iterated 12 times. After about 11 seconds (13

iterations), the proposed method reaches the same average error and obtains a sparsity level

which the K-SVD method achieves in about 28 seconds (16 iterations).

IV. CONCLUSION

A novel fast coupled dictionary learning algorithm that enforces common sparse approxima-

tions for double feature spaces and learns correlated pairs of atoms representing corresponding

features from different feature spaces has been developed. The proposed dictionary learning

method reduces dramatically the computational cost, which is important for computationally

costly tasks such as coupled dictionary learning. The proposed method can be straightforwardly

extended to find joint dictionaries for more than two feature spaces.
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Algorithm 1 Coupled Dictionary Learning.
Input: Two training datasets of N signals X1 and X2, and D0 = DCT dictionary.

1: Initialization: Set D1 :=D0, D2 :=D0.

Number of update cycles := N .

maxNum = A sequence of N equally spaced numbers between 1 and the maximum

number of nonzero coefficients.

2: for k = 1 · · ·N do

3: for i = 1 · · ·n do

4: Set r =
[
[x1]

T
i , [x2]

T
i

]T ;

m← 1;

5: while e>ε and m 6maxNum(k)

6: Find dbest by solving (3);

7: Find γc(m)
t by solving (4);

8: Update r(m) = xi−Dγc
t ;

9: Update e =
∥∥r(m)

∥∥2
2
;

m← m+ 1;

10: end while

11: end for

12: for t = 1 · · · number of atoms do

13: Find ωt = {i|[γr
t]i 6= 0};

14: Find [E1]t and [E2]t for [d1]t and [d2]t using (8);

15: Update [d1]t and [d2]t using (10);

16: Normalize the atoms:

[d1]t = [d1]t/‖[d1]t‖2 and [d2]t = [d2]t/‖[d2]t‖2;

17: Update γr
t using (11);

18: end for

19: end for

Output: The pairwise correlated dictionaries D1 and D2.
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