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Detailed proofs of paper [1]
Slepian-Bangs formula and Cramér Rao bound for
circular and non-circular complex elliptical
symmetric distributions

Habti Abeida and Jean-Pierre Delmas

1. USEFUL RELATIONS AND LEMMA
A. Useful relations

We will make use of the following well known relations which hold for any conformable matrices A, B, C
and D.

vec(ABC) = (CT @ A)vec(B), (1)

(A ®B)(C®D)=AC @ BD, )
Tr(AB) = vec (A7)vec(B), 3)
Tr(ABCD) = vec (A7) (DT @ B)vec(C), (4)
Tr(A ® B) = Tr(A)Tr(B), (5)
Tr[K(A ® B)] = Tr(AB), (6)

where K is the vec-permutation matrix which transforms vec(C) to vec(C”) for any square matrix C,

(A+BCD)'=A"!'—-A"'B(C™' + DA™'B)"'DA !, (7)
where A, C and C~! + DA !B are assumed invertible.

B. Useful lemma for the proof of Result 2
X A Ay = B, B; iy . .
Lemma 1: Let A = . . ) and B = N . ] be two 2M x 2M partitioned matrices with A
Ay A] B; Bj
and By are M x M Hermitian matrices, A and B are M x M complex symmetric matrices, and suppose
that y ~ CANj/(0,I). Then

E[(¥7AY)(F7"BY)] = Tr(A)Tr(B) + 2Tr(AB), ®)
where 3 & (y7, y#)T.
Proof:
We get from @) then
E((y7Ay)F"BY)] = (AT @ BIEF'Y @ yy")), )

where from e.g. 2, Appendix B]
Eyy @yy?) =101+ KT @ J)I 1)+ vec(I)vec’ (I), (10)
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where J' & < (I) (I) ) Plugging (I0) in @), we get:
E[(77Ay)(7"By) = T[(AT @B)I&1I)]+ Tr[(AT @ B)K(J @ J)I®1)]
+ Tr[(AT @ B)vec(I)vec! (I)], (11)

where we have successively B B B B
Tr[(AT ® B)(I®I)] = Tr(A)Tr(B)

from @) and (@), N N .
Tr[(AT @ BIK(J ® J)I® 1) = Tr(AB)

from @), @) and JATJI = A, and
Tr[(AT @ B)vec(I)vec” (I)] = Tr(AB)

from ). Plugging these three expressions in (1), (&) follows. [ |

II. PROOF OF RESULT 1 AND EQ. (5) OF [[1]

R?M is tantamount to R-linear transform in C, the definition of GCES given

Since a linear transform in
in [3]] is equivalent to saying tha(l

z=p+ Pz + Pz, (12)

where W and ® are M x M fixed complex-valued matrices and zg is a complex spherical distributed r.v. with
stochastic representation zg =4 Ru [4] th. 3]. Since E(uu”’) = &1 and E(uu”) = 0 [4] lemma 1b], we get
if BE(R?) < oo,
E(R? E(R?

(”°) (e + @) and Q@ =AA AT = E(R7) (vo” + o7, (13)

No, No.

where o, is defined by E[(z—u)(z—p)] = 0.% and E[(z—u)(z—p)?] = 0.2 whose value is E(R?)/N [4]
(14)]. Consequently reduces to

AAT = 90F + 87 and AAAT = 0T + 0T, (14)

> =AAH =

By the one to one change of variable (because A is nonsingular): ¥/ = AW and &' = AP, is equivalent
to:
I=0P " L7 and A, =TT + TP 7. (15)

It is clear that the solution of (I3)) is not unique, but we can look for solutions in real-valued diagonal form
(‘I’,‘I’) = (Al, Ag) with
I=A2+ A2 and A, =2AA,, (16)

whose solutions are A; = # and Ay = A*;A* where A def I+ A, and A_ def VI—A,.
Consequently
z=g p+ R[Pu+ Pu’|=p+RA[Aju+ Asu’]. (17)

If E(R?) is not finite, the scatter and pseudo-scatter matrices of z given by are also ¥ = AAY and
Q = AA AT, respectively.

]
. .. I A, |1 (T 1 I+ A, 0 1 (1T 1
From the eigenvalue decomposition ( A, I ) = [\ﬁ ( I —I>] ( 0 I+A, > [ﬁ ( I —I)} , we
= (A0 I A \(AT 0 =12 _ (A0 A Ay
deduce from I' = < 0 A* >< A, I >< 0 AT> that I''/* = 0 A* Ay AL Consequently,

"Note that if ® = 0, z is C-CES distributed.



the stochastic representation z =4 1 + RAV is equivalent to
Z =4 i+ RTY?u (18)
with @ & (u”, uf)7. It follows directly 1(z — 2)#T~1(z — 1) =4 1R2||0|% = Q. m

III. PROOF OF RESULT 2

To prove this result, we follows the different steps of [5, sec. 3]. First, we cheek that the p.d.f. p(z; )
satisfies the “’regularity” condition

E <abgp7(z?a)> —0. (19)
Oay,
Taking the derivative of the p.d.f. [, (1)] w.r.t. oy, yields
dlog p(z; ) Lo =i _ On
———=——"T(I'"'T —. 20
P 5T + 0(7) 5 0)
It follows from the definition of 7} that
on _ CHT-1(5 - Lo o HF1R w15 -

For = ~Re (BT 7@~ ) — 56— )T @ ), @1
where 11, def % and f‘k def 5?72. Making use of the extended stochastic representation (I8), the second term
of @2I)) is given by . .

5z~ I Nz — i) =4 5QleI?Ikﬁ (22)
where ﬁk def f‘l/Qf‘kf‘_l/Q. Thus using 11 =4 Q [}, (5)], we get:
_. On CHE_1/2~ 1 CHor
E <¢<n)671> = —E (Q'?6(QRe(if/T™"/1)) — SE[Q4(Q)a" . (23)
Since Q and u are independent, Q and @ are also independent. It follows then from E(i1) = 0, E(@a) = ;1
and E(Q¢(Q)) = —M [5} (11)] that
B (QY26(QRe(a{T1/?a)) = 0
and B B B L
E[Q¢(Q)u" Hyu] = E[Q¢(Q)| Tr[HE(an)] = ~Tr(Hy) = —Tr(T~'Ty).
Thus o7 1
~\ O —17
E — ) = -Tr(r'rC 24
(0L ) = 5Tl "F), 4
which proves (19).
Now, we evaluate the elements of the FIM. It follows from 20), using (24)), that
0log p(z; ) dlog p(z; ) 1, = 1= ~ 1= . On 0n
INSslks =E ’ ’ = ——Tr(T'Ty) (T ') + B ( 6 () n—%— ). (25
Il = b ( ZERL ) DL0E R [OE T TER) B (20 2. )
It follows from (I8) that T—Y/2(z — i) =4 v/Q U and hence from @I) we get
_, O0n 017 CHE—1/2~ CH™_1/2~
204 9N 0N _ 2 Hp—1/2 Hp—1/2
P D) g =t Q0 (QRe (AT 77) Re (4f'T " a)

+ %Q3/2¢2(Q)Re (AT (@' ) + %Q3/2¢2(Q)Re (AfT12a) [ Hyd)

+ i 0%¢*(Q)[u” Hya)[a” H,a). (26)



The first term of (26) can be further simplified as
Re ( HP 1/2 ) Re ( HP 1/2 ) _ —Re ( HF 1256HT-1/2; ) 4z Re ( TF *1/25 wa—l/2ﬁl) :
and thanks to the independence between Q and 4, the expected value of the first term of (26) is given by
E[Q4?(Q)E (Re (p,?f-l/?ﬁ) Re (n{ff—lﬂﬁ)) -

BQ0*( Q) (omp-1 ), BIQA* (), (rmwn.\ _ E[QH*(Q)]

=oar - Re (AT ) + == Re (BT ) = === Re (T ) @7)
using E(aa’) = 41 and E(a*a?) = LJ, T*1/23T-1/2 = T=*J and J'fi; = 1}. The expected value of
the second and third terms of (26) are zero because the third-order moments of u are zero. Because y =, ||y ||u,
where ||y|| and u are independent when y ~ CN);(0,1), we get

1 BT T Sl
WE[(YHHW)(YHHW)]-

Noting that Hk and Hl are structured as A and B of the Lemma [I] this lemma apphes to the couples
(Hy, H;) and (I, T) giving E[(77 H,¥) (¥ H,3)] = Tr(Hy) Tr(H,) + 2Tr(HH,) and E[||y 4] = 4M (M +1).
Consequently the expected value of the last term of [26) is given by

B B 22

EGQ%Q(Q)[ﬁHﬂkﬁHﬁHHlﬁ]) N %
)
)

E[(a" H,a) (8 H)] =

(Te(FL) T (FL) + 2T (FL,H)) )
E(Q*¢*(Q)

AM(M + 1

Gathering 27) 28) in 23) concludes the proof. [ |

( r(T, D) Tr(T,T ) + 2T (T, D' T, T ))(28)

IV. PROOF oF EQ. (9) oF [1]]
Using that [T, (4)] is a p.d.f. with [, Q) "g(Q;)dQ; = 1 and that E(Q) = E(R?) < oo, we get
/ 521, Qd (Q)dQ = [53}, 0V g(0)] ™ - M/ 53l QM 1g(Q)dQ = —M.  (29)
It follows from Cauchy-Schwarz inequality that
M? = (E(Q4(Q)))* < E(QE(Q¢*(Q)) = E(Q)M&:. (30)
Next, note that
/ 0319 Q" 9(Q)dQ = 6y Oariig / Oni1,4QM9(Q)dQ = 6y Oary1g =M. (31)

Plugging (31) in 3Q) proves Eq. (9) of [1]. [ |

V. PROOF OF RESULT 4

Because & = 1 for Gaussian distributions, we get for NC-CES distributions:

& —1 (dvec(f‘)

2 dag

dvec(T)
dad

H
~ ~ 1 ~ ~
INGs (o) — ING (a) = ) <(I‘_T oI h + §vec(I‘_1)vecH(I‘_1)> (32)
where (T"7 @ T1) + %vec(f‘_l)vecH (1) is positive definite. Replacing T' by T, the proof is identical for
C-CES distributions. [}



VI. PROOF OF RESULT 5

We note first that the general expressions of the SCRB proved here is valid for arbitrary parameterization
of Ay if the real-valued parameter of interest & € R¥ is characterized by the subspace generated by the
columns of the full column rank M x K matrix Ay with K < M. It can be applied for example to near or
far-field DOA modeling with scalar or vector-sensors for an arbitrary number of parameters per source sy
(with s; def (St,1, -5 5S¢, K)T and many other modelings as the SIMO and MIMO modelings. Let us start with
the circular case for which € = 0 and thus T’ = Diag (X, X*) where ¥ = AgR;A} + 021. The SCRB form

for this case can be then written through the compact expression of the general FIM given in Result 2, using
() and @), as follows:

%SCRBEES(a) = <%@>H (LET ™) + (&—1)vec(T Hvec (=7Y) <dv%(f)> . (33)
The SCRB of 0 alone can be deduced from (33)) as follows:
%SCRBEES(O) = G'TI; G, (34)
with G & TE/Z(E_T/2 ® 2_1/2)‘%5%9 and A Til/z(Z)_T/2 ® 2_1/2)%%) where
T; & &1+ (& — 1)vee(T)vecT (T). (35)

Let’s further partition the matrix A as A = T, P(n-1/2 g n-1/ 2)d[8vgz(TZ) | avgg(zz) © [V | u,]. In the
sequel, the proofs presented here follow the lines of the proof presented in [6] for circular Gaussian distributed
observations. It follows from [6, rel. (14)] that

mi — s — Hyu,u, My (36)
v ull Tl u,
Using 8V§Z_(22) = vec(I), we obtain
u, = T} *vee(S71). (37)

Consequently using and (36), if g denotes the krh column of G, the (k,[) element of SCRBEES(Q) can
be written elementwise as

1 -1 Hypl gi Dyu,u)/ Ty g
7 [SCRBggg(0)],, = &, e — T %:; - (38)
n
Let us proceed now to determine the expression of gj. Letting A’gk def %’;*;, we get
ox /
— = A) RAY + ApR A, (39)
aek k k
Hence, using (1)), the kth column of G in (38)) is given by
g, = T}/ *vec(Zy, + Zf1) where Z; < 124, RA D12 (40)
Next, we determine V and then H%,. Since R, is a Hermitian matrix, it can be then factorized as
vec(Rs) = Jp (41)

where J is a K? x K? constant nonsingular matrix. It follows, using (I), that V can be be expressed as

V — T3/2(2—T/2A; ®2"V2A4)3 def T;/sz.



Note from (38)) that the SCRB depends on V only via H\L,, that can be expressed as
Iy =1- V(VIV) 'V =1 - T/ *wW(WHT,W) 'WHT}/?, (42)
After some algebraic manducation, using and (@), we obtain
WHT,W = &(U* @ U) + (& — 1)vec(U)vec (U),
def

where U = Agf $71Ay is a K x K Hermitian nonsingular matrix. It follows from matrix inverse lemma
(given by (@), that its inverse can be expressed as

(WHT,W)~! = fi(U_* ®@ U™ —pvec(U Hvec (U™
2

where 7 def 5§(I+%VOCH(éj(i}’*@ﬁ’l)voc(ﬁ)) can be simplified, using @), as 7 o 5%(15;7_2&_}]() Thus, using
() and @), we obtain
W(WHT,W)"TWH = 6—12(H’{ ® Hy) — nvec(H; )vect (H;) ¥ B, (43)
where H; dof 2_1/2A9U_1A£IE_1/2. Therefore, becomes
Iy =I- T/*BT)> (44)
Now let us show that uf/ TI; g = 0. It follows from (37) and (#0), using (@), that
ull Ty g, = vec (71 Tivec(Zy, + Z) — vec (27T, BT vec(Zy, + Z1). (45)
It follows, after some algebraic manipulation, using (1)), () and @3) that
T;BT; = &(H; @Hy) — &nvec(Hy)vec (Hy)
+ (& — 1)1 — Kn&) (vec(I)vec (Hy) + vec(H;)vec” (I))
+ (62_5721)%(1 — Knéy)vee(I)vect (I), (46)

using H? = H; and Tr(H;) = K. Using the definition (33) for T; and (@), the first term of @3) can be
expressed as
vec! (7N Tyvec(Zy + ZE ) =&Tr(E7H(Zy, + Z1)) + (& — D)Te(Z™HTr(Zg + ZF)
=26Re(Tr(E2AgRAT)) +2(& - 1) Tr(Z Y Re(Tr (T AR A ) 47)
using Tr(27Y(Zy + Zi')) = 2Re(Tr(Z2AgR,A M) and Tr(Zy, + Z]7) = 2Re(Tr(Z 1 AgR A7), After
simple algebraic manipulations, using (46), (I) and (@), and that Tr(Zy + ZkH) = Tr((Zy + Z;) )Hy) =
Tr(Hy(Zy, + Z])H;) = 2Re(Tr(Z7'AgR,AJ7)) and Tr(27'H}) = Tr(S7'Hy), the second term of (@3)
can be simplified as
VeCH(E_l)TiBTZ’VGC(Zk + Zf)
= &Tr(S7 Hi(Zy + 23 )Hy) + (&2 — DTe(S7HTe(Zg + Z4)
= 265Re(Tr(Z AU AT E2AGRAT)) +2(& — 1)Tr(EHRe(Tr(T AR AY))
= 26Re(Tr(Z2A0RA ) +2(& — DTr(Z7HRe(Tr(Z'AgRAY)), (48)
where the first term in the last line is obtained using AgU_lAgf $72A9 = 31 Ay. It follows, therefore, from

@3), @7) and (@8) that

u;?l'[%,gk =0.



This identity together with (40) and (@4)) allows us to rewrite the individual elements of (38) as

1 _
T [SCRBC]%}S(O)] kL gl?H%/gl
= vec(Zy + ZE)Tvec(Z) + ZF) — vec™ (Zy, + ZH)T;BTvec(Z) + Z1). (49)

After simple algebraic manipulations, using the definition (33) for T}, and (3)), the first term in can be
simplified as

vec (Zy + ZMTivec(Z) + ZF) = &Tv((Zy + Z7)(Z) + ZF)) + (& — D)Tx(Zy, + ZF)Te(Z, + ZF)
= 2& |Re(Tr((Z7'ARA)(ZTAGRAT)))
n Re(Tr((z—lA;lRSAQ)(E—leA;f)))]
+ 4(& - DRe(Tr(Z T A)RA L)) Re(Tr(Z AR A ) (50)

Similarly, after some algebraic manipulations, using (46)), (Il) and (), the second term in (49) can be simplified
as

vecH (Zy + ZHYT,BTvec(Z; + ZF) = 26 [Tr(Re((z—lAgRSA;{f (S AgRAT)))
+ Tr(Re((z—lAU—lAHz—lA;lRSAgf)(z—lAgRSA;f)))]
+ 4(& - 1)Tr(Re(Z T ARA ) Tr(Re(Z T ARA ). (51)
It follows then from (30) and (3I) that can be simplified as

~[SCRBG(0)],, = 26Re (Tr[(37 — 5AUAT S (A, RA S ARAL) )
_ &Re< (ITx, ) (A, RAFSIAR, Agk)D
= %ge (1 [, A 1A (52)

n
where the second equality is obtained using X7' — STTAUTAHZ ! = U%Hk thanks to AUT!AH R~ =
A(ATA)"TAH  Using @), we can write (52) in matrix form as is shown in Result 5.
def ¢,

In the noncircular case, the proof follows the similar above steps by replacing T; by 'i‘, = I+
g24_1vec(I)VecT(I), and 3 by T’ where (39) is replaced by 3 aP = A Rs Al + AgRgA,eIk{ with Ay

Diag(Ag, Aj) and A{‘)k def %‘2‘: .

VII. PROOF OF RESULT 6
The proof of this result follows similar steps as the proof of Result 5 based on [7, th. 1] by replacing X

by r = AR, AT 4 521 Ay by A, = < izﬁf ) where w & 0T, 1T with ¢ = def (¢1,...,05)7, and
0="¢

also by pointing out that R, € is symmetric which lead us to replace J in by D, defined in
[7. th. 1] to get vec(R,) = D,p. Thus, V becomes V = T)*WD, with W = (I-7/2A* @ T-1/2A,,).
Hence H%, in [7, th. 1] takes here the following key form expression l'Il =1- 1/ 2BT1/ ? with B =
g%W(U_1 ®@ U Y)NgWH — fivec(Hy)vecH (H;) where U AHI‘ 1A, Ng is deﬁned in [[7, th. 1] and
~ def §o—1
B8O E)

RKXK

The rest of the proof follows the same lines of arguments as that of the proof of Result 5.
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