Detailed proofs of paper [1] Slepian-Bangs formula and Cramér Rao bound for circular and non-circular complex elliptical symmetric distributions

Habti Abeida and Jean-Pierre Delmas

I. USEFUL RELATIONS AND LEMMA

A. Useful relations

We will make use of the following well known relations which hold for any conformable matrices A, B, C and D.

$$vec(\mathbf{ABC}) = (\mathbf{C}^T \otimes \mathbf{A})vec(\mathbf{B}), \tag{1}$$

1

$$(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{AC} \otimes \mathbf{BD},\tag{2}$$

$$Tr(\mathbf{AB}) = vec^{H}(\mathbf{A}^{H})vec(\mathbf{B}), \tag{3}$$

$$Tr(\mathbf{ABCD}) = vec^{H}(\mathbf{A}^{H})(\mathbf{D}^{T} \otimes \mathbf{B})vec(\mathbf{C}), \tag{4}$$

$$Tr(\mathbf{A} \otimes \mathbf{B}) = Tr(\mathbf{A})Tr(\mathbf{B}),$$
 (5)

$$Tr[K(A \otimes B)] = Tr(AB), \tag{6}$$

where K is the vec-permutation matrix which transforms vec(C) to $vec(C^T)$ for any square matrix C,

$$(\mathbf{A} + \mathbf{BCD})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1},$$
(7)

where A, C and $C^{-1} + DA^{-1}B$ are assumed invertible.

B. Useful lemma for the proof of Result 2

Lemma 1: Let $\widetilde{\mathbf{A}} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_2^* & \mathbf{A}_1^* \end{pmatrix}$ and $\widetilde{\mathbf{B}} = \begin{pmatrix} \mathbf{B}_1 & \mathbf{B}_2 \\ \mathbf{B}_2^* & \mathbf{B}_1^* \end{pmatrix}$ be two $2M \times 2M$ partitioned matrices with \mathbf{A}_1 and \mathbf{B}_1 are $M \times M$ Hermitian matrices, \mathbf{A}_2 and \mathbf{B}_2 are $M \times M$ complex symmetric matrices, and suppose that $\mathbf{y} \sim \mathbb{C}\mathcal{N}_M(\mathbf{0}, \mathbf{I})$. Then

$$E[(\widetilde{\mathbf{y}}^H \widetilde{\mathbf{A}} \widetilde{\mathbf{y}})(\widetilde{\mathbf{y}}^H \widetilde{\mathbf{B}} \widetilde{\mathbf{y}})] = Tr(\widetilde{\mathbf{A}})Tr(\widetilde{\mathbf{B}}) + 2Tr(\widetilde{\mathbf{A}} \widetilde{\mathbf{B}}), \tag{8}$$

where $\widetilde{\mathbf{y}} \stackrel{\text{def}}{=} (\mathbf{y}^T, \mathbf{y}^H)^T$. *Proof:*

We get from (4) then (2)

$$E[(\widetilde{\mathbf{y}}^H \widetilde{\mathbf{A}} \widetilde{\mathbf{y}})(\widetilde{\mathbf{y}}^H \widetilde{\mathbf{B}} \widetilde{\mathbf{y}})] = Tr[(\widetilde{\mathbf{A}}^T \otimes \widetilde{\mathbf{B}}) E(\widetilde{\mathbf{y}}^* \widetilde{\mathbf{y}}^T \otimes \widetilde{\mathbf{y}} \widetilde{\mathbf{y}}^H)], \tag{9}$$

where from e.g. [2, Appendix B]

$$E(\widetilde{\mathbf{y}}^*\widetilde{\mathbf{y}}^T \otimes \widetilde{\mathbf{y}}\widetilde{\mathbf{y}}^H) = \mathbf{I} \otimes \mathbf{I} + \mathbf{K}(\mathbf{J}' \otimes \mathbf{J}')(\mathbf{I} \otimes \mathbf{I}) + \text{vec}(\mathbf{I})\text{vec}^T(\mathbf{I}), \tag{10}$$

where $\mathbf{J'} \stackrel{\text{def}}{=} \begin{pmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{pmatrix}$. Plugging (10) in (9), we get:

$$E[(\widetilde{\mathbf{y}}^{H}\widetilde{\mathbf{A}}\widetilde{\mathbf{y}})(\widetilde{\mathbf{y}}^{H}\widetilde{\mathbf{B}}\widetilde{\mathbf{y}})] = Tr[(\widetilde{\mathbf{A}}^{T} \otimes \widetilde{\mathbf{B}})(\mathbf{I} \otimes \mathbf{I})] + Tr[(\widetilde{\mathbf{A}}^{T} \otimes \widetilde{\mathbf{B}})\mathbf{K}(\mathbf{J}' \otimes \mathbf{J}')(\mathbf{I} \otimes \mathbf{I})] + Tr[(\widetilde{\mathbf{A}}^{T} \otimes \widetilde{\mathbf{B}})\operatorname{vec}(\mathbf{I})\operatorname{vec}^{T}(\mathbf{I})],$$
(11)

where we have successively

$$\mathrm{Tr}[(\widetilde{\mathbf{A}}^T\otimes\widetilde{\mathbf{B}})(\mathbf{I}\otimes\mathbf{I})]=\mathrm{Tr}(\widetilde{\mathbf{A}})\mathrm{Tr}(\widetilde{\mathbf{B}})$$

from (2) and (5),

$$\mathrm{Tr}[(\widetilde{\mathbf{A}}^T\otimes\widetilde{\mathbf{B}})\mathbf{K}(\mathbf{J}'\otimes\mathbf{J}')(\mathbf{I}\otimes\mathbf{I})]=\mathrm{Tr}(\widetilde{\mathbf{A}}\widetilde{\mathbf{B}})$$

from (2), (6) and $\mathbf{J}'\widetilde{\mathbf{A}}^T\mathbf{J}'=\widetilde{\mathbf{A}}$, and

$$\mathrm{Tr}[(\widetilde{\mathbf{A}}^T\otimes\widetilde{\mathbf{B}})\mathrm{vec}(\mathbf{I})\mathrm{vec}^T(\mathbf{I})]=\mathrm{Tr}(\widetilde{\mathbf{A}}\widetilde{\mathbf{B}})$$

from (4). Plugging these three expressions in (11), (8) follows.

II. PROOF OF RESULT 1 AND EQ. (5) OF [1]

Since a linear transform in \mathbb{R}^{2M} is tantamount to \mathbb{R} -linear transform in \mathbb{C}^M , the definition of GCES given in [3] is equivalent to saying that¹

$$\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\Psi} \mathbf{z}_0 + \boldsymbol{\Phi} \mathbf{z}_0^*, \tag{12}$$

where Ψ and Φ are $M \times M$ fixed complex-valued matrices and \mathbf{z}_0 is a complex spherical distributed r.v. with stochastic representation $\mathbf{z}_0 =_d \mathcal{R}\mathbf{u}$ [4, th. 3]. Since $\mathrm{E}(\mathbf{u}\mathbf{u}^H) = \frac{1}{M}\mathbf{I}$ and $\mathrm{E}(\mathbf{u}\mathbf{u}^T) = \mathbf{0}$ [4, lemma 1b], we get if $\mathrm{E}(\mathcal{R}^2) < \infty$,

$$\Sigma = \mathbf{A}\mathbf{A}^{H} = \frac{\mathrm{E}(\mathcal{R}^{2})}{N\sigma_{c}} \left(\mathbf{\Psi}\mathbf{\Psi}^{H} + \mathbf{\Phi}\mathbf{\Phi}^{H} \right) \text{ and } \mathbf{\Omega} = \mathbf{A}\mathbf{\Delta}_{\kappa}\mathbf{A}^{T} = \frac{\mathrm{E}(\mathcal{R}^{2})}{N\sigma_{c}} \left(\mathbf{\Psi}\mathbf{\Phi}^{T} + \mathbf{\Psi}\mathbf{\Phi}^{T} \right),$$
(13)

where σ_c is defined by $\mathrm{E}[(\mathbf{z}-\boldsymbol{\mu})(\mathbf{z}-\boldsymbol{\mu})^H] = \sigma_c \boldsymbol{\Sigma}$ and $\mathrm{E}[(\mathbf{z}-\boldsymbol{\mu})(\mathbf{z}-\boldsymbol{\mu})^T] = \sigma_c \boldsymbol{\Omega}$ whose value is $\mathrm{E}(\mathcal{R}^2)/N$ [4, (14)]. Consequently (13) reduces to

$$\mathbf{A}\mathbf{A}^{H} = \mathbf{\Psi}\mathbf{\Psi}^{H} + \mathbf{\Phi}\mathbf{\Phi}^{H} \text{ and } \mathbf{A}\mathbf{\Delta}_{\kappa}\mathbf{A}^{T} = \mathbf{\Psi}\mathbf{\Phi}^{T} + \mathbf{\Psi}\mathbf{\Phi}^{T}. \tag{14}$$

By the one to one change of variable (because **A** is nonsingular): $\Psi' = \mathbf{A}\Psi$ and $\Phi' = \mathbf{A}\Phi$, (14) is equivalent to:

$$\mathbf{I} = \mathbf{\Psi}' \mathbf{\Psi}'^{H} + \mathbf{\Phi} \mathbf{\Phi}'^{H} \text{ and } \mathbf{\Delta}_{\kappa} = \mathbf{\Psi}' \mathbf{\Phi}'^{T} + \mathbf{\Psi}' \mathbf{\Phi}'^{T}.$$
 (15)

It is clear that the solution of (15) is not unique, but we can look for solutions in real-valued diagonal form $(\Psi, \Phi) = (\Delta_1, \Delta_2)$ with

$$\mathbf{I} = \boldsymbol{\Delta}_1^2 + \boldsymbol{\Delta}_2^2 \text{ and } \boldsymbol{\Delta}_{\kappa} = 2\boldsymbol{\Delta}_1\boldsymbol{\Delta}_2,$$
 (16)

whose solutions are $\Delta_1 = \frac{\Delta_+ + \Delta_-}{2}$ and $\Delta_2 = \frac{\Delta_+ - \Delta_-}{2}$ where $\Delta_+ \stackrel{\text{def}}{=} \sqrt{\mathbf{I} + \Delta_\kappa}$ and $\Delta_- \stackrel{\text{def}}{=} \sqrt{\mathbf{I} - \Delta_\kappa}$. Consequently

$$\mathbf{z} =_{d} \boldsymbol{\mu} + \mathcal{R}[\boldsymbol{\Psi}\mathbf{u} + \boldsymbol{\Phi}\mathbf{u}^{*}] = \boldsymbol{\mu} + \mathcal{R}\mathbf{A}[\boldsymbol{\Delta}_{1}\mathbf{u} + \boldsymbol{\Delta}_{2}\mathbf{u}^{*}]. \tag{17}$$

If $E(\mathcal{R}^2)$ is not finite, the scatter and pseudo-scatter matrices of \mathbf{z} given by (17) are also $\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^H$ and $\mathbf{\Omega} = \mathbf{A}\mathbf{\Delta}_{\kappa}\mathbf{A}^T$, respectively.

From the eigenvalue decomposition
$$\begin{pmatrix} \mathbf{I} & \boldsymbol{\Delta}_{\kappa} \\ \boldsymbol{\Delta}_{\kappa} & \mathbf{I} \end{pmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{I} & -\mathbf{I} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \mathbf{I} + \boldsymbol{\Delta}_{\kappa} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} + \boldsymbol{\Delta}_{\kappa} \end{pmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{I} & -\mathbf{I} \end{pmatrix} \end{bmatrix}$$
, we deduce from $\widetilde{\Gamma} = \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}^* \end{pmatrix} \begin{pmatrix} \mathbf{I} & \boldsymbol{\Delta}_{\kappa} \\ \boldsymbol{\Delta}_{\kappa} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{A}^H & \mathbf{0} \\ \mathbf{0} & \mathbf{A}^T \end{pmatrix}$ that $\widetilde{\Gamma}^{1/2} = \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}^* \end{pmatrix} \begin{pmatrix} \boldsymbol{\Delta}_1 & \boldsymbol{\Delta}_2 \\ \boldsymbol{\Delta}_2 & \boldsymbol{\Delta}_1 \end{pmatrix}$. Consequently,

¹Note that if $\Phi = 0$, **z** is C-CES distributed.

the stochastic representation $\mathbf{z} =_d \boldsymbol{\mu} + \mathcal{R} \mathbf{A} \mathbf{v}$ is equivalent to

$$\widetilde{\mathbf{z}} =_d \widetilde{\boldsymbol{\mu}} + \mathcal{R} \widetilde{\boldsymbol{\Gamma}}^{1/2} \widetilde{\mathbf{u}} \tag{18}$$

with $\widetilde{\mathbf{u}} \stackrel{\text{def}}{=} (\mathbf{u}^T, \mathbf{u}^H)^T$. It follows directly $\frac{1}{2} (\tilde{\mathbf{z}} - \tilde{\boldsymbol{\mu}})^H \widetilde{\mathbf{\Gamma}}^{-1} (\tilde{\mathbf{z}} - \tilde{\boldsymbol{\mu}}) =_d \frac{1}{2} \mathcal{R}^2 ||\widetilde{\mathbf{u}}||^2 = \mathcal{Q}$.

III. PROOF OF RESULT 2

To prove this result, we follows the different steps of [5, sec. 3]. First, we cheek that the p.d.f. $p(\mathbf{z}; \boldsymbol{\alpha})$ satisfies the "regularity" condition

$$E\left(\frac{\partial \log p(\mathbf{z}; \boldsymbol{\alpha})}{\partial \alpha_k}\right) = 0. \tag{19}$$

Taking the derivative of the p.d.f. [1, (1)] w.r.t. α_k , yields

$$\frac{\partial \log p(\mathbf{z}; \boldsymbol{\alpha})}{\partial \alpha_k} = -\frac{1}{2} \text{Tr}(\widetilde{\boldsymbol{\Gamma}}^{-1} \widetilde{\boldsymbol{\Gamma}}_k) + \phi(\widetilde{\boldsymbol{\eta}}) \frac{\partial \widetilde{\boldsymbol{\eta}}}{\partial \alpha_k}.$$
 (20)

It follows from the definition of $\tilde{\eta}$ that

$$\frac{\partial \tilde{\eta}}{\partial \alpha_k} = -\text{Re}\left(\tilde{\boldsymbol{\mu}}_k^H \widetilde{\boldsymbol{\Gamma}}^{-1} (\tilde{\mathbf{z}} - \tilde{\boldsymbol{\mu}})\right) - \frac{1}{2} (\tilde{\mathbf{z}} - \tilde{\boldsymbol{\mu}})^H \widetilde{\boldsymbol{\Gamma}}^{-1} \widetilde{\boldsymbol{\Gamma}}_k \widetilde{\boldsymbol{\Gamma}}^{-1} (\tilde{\mathbf{z}} - \tilde{\boldsymbol{\mu}}), \tag{21}$$

where $\widetilde{\mu}_k \stackrel{\text{def}}{=} \frac{\partial \widetilde{\mu}}{\partial \alpha_k}$ and $\widetilde{\Gamma}_k \stackrel{\text{def}}{=} \frac{\partial \widetilde{\Gamma}}{\partial \alpha_k}$. Making use of the extended stochastic representation (18), the second term of (21) is given by

$$\frac{1}{2}(\tilde{\mathbf{z}} - \tilde{\boldsymbol{\mu}})^H \tilde{\boldsymbol{\Gamma}}^{-1} \tilde{\boldsymbol{\Gamma}}_k \tilde{\boldsymbol{\Gamma}}^{-1} (\tilde{\mathbf{z}} - \tilde{\boldsymbol{\mu}}) =_d \frac{1}{2} \mathcal{Q} \tilde{\mathbf{u}}^H \tilde{\mathbf{H}}_k \tilde{\mathbf{u}}$$
(22)

where $\widetilde{\mathbf{H}}_k \stackrel{\mathrm{def}}{=} \widetilde{\mathbf{\Gamma}}^{-1/2} \widetilde{\mathbf{\Gamma}}_k \widetilde{\mathbf{\Gamma}}^{-1/2}$. Thus using $\widetilde{\eta} =_d \mathcal{Q}$ [1, (5)], we get:

$$E\left(\phi(\tilde{\eta})\frac{\partial \tilde{\eta}}{\partial \alpha_k}\right) = -E\left(\mathcal{Q}^{1/2}\phi(\mathcal{Q})\operatorname{Re}(\tilde{\boldsymbol{\mu}}_k^H \tilde{\boldsymbol{\Gamma}}^{-1/2}\tilde{\mathbf{u}})\right) - \frac{1}{2}E[\mathcal{Q}\phi(\mathcal{Q})\tilde{\mathbf{u}}^H \tilde{\mathbf{H}}_k \tilde{\mathbf{u}}]. \tag{23}$$

Since \mathcal{Q} and \mathbf{u} are independent, \mathcal{Q} and $\tilde{\mathbf{u}}$ are also independent. It follows then from $\mathrm{E}(\tilde{\mathbf{u}}) = \mathbf{0}$, $\mathrm{E}(\tilde{\mathbf{u}}\tilde{\mathbf{u}}^H) = \frac{1}{M}\mathbf{I}$ and $\mathrm{E}(\mathcal{Q}\phi(\mathcal{Q})) = -M$ [5, (11)] that

$$\mathrm{E}\left(\mathcal{Q}^{1/2}\phi(\mathcal{Q})\mathrm{Re}(\widetilde{\boldsymbol{\mu}}_{k}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\widetilde{\mathbf{u}})\right)=0$$

and

$$E[\mathcal{Q}\phi(\mathcal{Q})\tilde{\mathbf{u}}^H\widetilde{\mathbf{H}}_k\tilde{\mathbf{u}}] = E[\mathcal{Q}\phi(\mathcal{Q})]\operatorname{Tr}[\widetilde{\mathbf{H}}_kE(\tilde{\mathbf{u}}\tilde{\mathbf{u}}^H)] = -\operatorname{Tr}(\widetilde{\mathbf{H}}_k) = -\operatorname{Tr}(\widetilde{\boldsymbol{\Gamma}}^{-1}\widetilde{\boldsymbol{\Gamma}}_k).$$

Thus

$$E\left(\phi(\tilde{\eta})\frac{\partial \tilde{\eta}}{\partial \alpha_k}\right) = \frac{1}{2}\text{Tr}(\tilde{\Gamma}^{-1}\tilde{\Gamma}_k),\tag{24}$$

which proves (19).

Now, we evaluate the elements of the FIM. It follows from (20), using (24), that

$$[\mathbf{I}_{\mathrm{CES}}^{\mathrm{NC}}]_{k,l} = \mathrm{E}\left(\frac{\partial \log p(\mathbf{z}; \boldsymbol{\alpha})}{\partial \alpha_k} \frac{\partial \log p(\mathbf{z}; \boldsymbol{\alpha})}{\partial \alpha_l}\right) = -\frac{1}{4} \mathrm{Tr}(\widetilde{\boldsymbol{\Gamma}}^{-1} \widetilde{\boldsymbol{\Gamma}}_k) \mathrm{Tr}(\widetilde{\boldsymbol{\Gamma}}^{-1} \widetilde{\boldsymbol{\Gamma}}_l) + \mathrm{E}\left(\phi^2(\widetilde{\eta}) \frac{\partial \widetilde{\eta}}{\partial \alpha_k} \frac{\partial \widetilde{\eta}}{\partial \alpha_l}\right). \tag{25}$$

It follows from (18) that $\widetilde{\Gamma}^{-1/2}(\widetilde{\mathbf{z}}-\widetilde{\boldsymbol{\mu}})=_d\sqrt{\mathcal{Q}}\ \widetilde{\mathbf{u}}$ and hence from (21) we get

$$\phi^{2}(\tilde{\eta})\frac{\partial\tilde{\eta}}{\partial\alpha_{k}}\frac{\partial\tilde{\eta}}{\partial\alpha_{l}} =_{d} \mathcal{Q}\phi^{2}(\mathcal{Q})\operatorname{Re}\left(\tilde{\boldsymbol{\mu}}_{k}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\tilde{\mathbf{u}}\right)\operatorname{Re}\left(\tilde{\boldsymbol{\mu}}_{l}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\tilde{\mathbf{u}}\right)$$

$$+ \frac{1}{2}\mathcal{Q}^{3/2}\phi^{2}(\mathcal{Q})\operatorname{Re}\left(\tilde{\boldsymbol{\mu}}_{l}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\tilde{\mathbf{u}}\right)\left[\tilde{\mathbf{u}}^{H}\widetilde{\mathbf{H}}_{k}\tilde{\mathbf{u}}\right] + \frac{1}{2}\mathcal{Q}^{3/2}\phi^{2}(\mathcal{Q})\operatorname{Re}\left(\tilde{\boldsymbol{\mu}}_{k}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\tilde{\mathbf{u}}\right)\left[\tilde{\mathbf{u}}^{H}\widetilde{\mathbf{H}}_{l}\tilde{\mathbf{u}}\right]$$

$$+ \frac{1}{4}\mathcal{Q}^{2}\phi^{2}(\mathcal{Q})\left[\tilde{\mathbf{u}}^{H}\widetilde{\mathbf{H}}_{k}\tilde{\mathbf{u}}\right]\left[\tilde{\mathbf{u}}^{H}\widetilde{\mathbf{H}}_{l}\tilde{\mathbf{u}}\right]. \tag{26}$$

The first term of (26) can be further simplified as

$$\operatorname{Re}\left(\widetilde{\boldsymbol{\mu}}_{k}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\widetilde{\mathbf{u}}\right)\operatorname{Re}\left(\widetilde{\boldsymbol{\mu}}_{l}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\widetilde{\mathbf{u}}\right) = \frac{1}{2}\operatorname{Re}\left(\widetilde{\boldsymbol{\mu}}_{k}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\widetilde{\mathbf{u}}\widetilde{\mathbf{u}}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\widetilde{\boldsymbol{\mu}}_{l}\right) + \frac{1}{2}\operatorname{Re}\left(\widetilde{\boldsymbol{\mu}}_{k}^{T}\widetilde{\boldsymbol{\Gamma}}^{-*1/2}\widetilde{\mathbf{u}}^{*}\widetilde{\mathbf{u}}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\widetilde{\boldsymbol{\mu}}_{l}\right),$$

and thanks to the independence between Q and $\tilde{\mathbf{u}}$, the expected value of the first term of (26) is given by

$$E[\mathcal{Q}\phi^{2}(\mathcal{Q})]E\left(\operatorname{Re}\left(\tilde{\boldsymbol{\mu}}_{k}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\tilde{\mathbf{u}}\right)\operatorname{Re}\left(\tilde{\boldsymbol{\mu}}_{l}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1/2}\tilde{\mathbf{u}}\right)\right) = \frac{E[\mathcal{Q}\phi^{2}(\mathcal{Q})]}{2M}\operatorname{Re}\left(\tilde{\boldsymbol{\mu}}_{k}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1}\tilde{\boldsymbol{\mu}}_{l}\right) + \frac{E[\mathcal{Q}\phi^{2}(\mathcal{Q})]}{2M}\operatorname{Re}\left(\tilde{\boldsymbol{\mu}}_{k}^{T}\widetilde{\boldsymbol{\Gamma}}^{-*}\mathbf{J}'\tilde{\boldsymbol{\mu}}_{l}\right) = \frac{E[\mathcal{Q}\phi^{2}(\mathcal{Q})]}{M}\operatorname{Re}\left(\tilde{\boldsymbol{\mu}}_{k}^{H}\widetilde{\boldsymbol{\Gamma}}^{-1}\tilde{\boldsymbol{\mu}}_{l}\right), (27)$$

using $E(\tilde{\mathbf{u}}\tilde{\mathbf{u}}^H) = \frac{1}{M}\mathbf{I}$ and $E(\tilde{\mathbf{u}}^*\tilde{\mathbf{u}}^H) = \frac{1}{M}\mathbf{J}$, $\widetilde{\mathbf{\Gamma}}^{-*1/2}\mathbf{J}'\widetilde{\mathbf{\Gamma}}^{-1/2} = \widetilde{\mathbf{\Gamma}}^{-*}\mathbf{J}'$ and $\mathbf{J}'\tilde{\boldsymbol{\mu}}_l = \tilde{\boldsymbol{\mu}}_l^*$. The expected value of the second and third terms of (26) are zero because the third-order moments of \mathbf{u} are zero. Because $\mathbf{y} =_d \|\mathbf{y}\|\mathbf{u}$, where $\|\mathbf{y}\|$ and \mathbf{u} are independent when $\mathbf{y} \sim \mathbb{C}\mathcal{N}_M(\mathbf{0},\mathbf{I})$, we get

$$E[(\tilde{\mathbf{u}}^H \widetilde{\mathbf{H}}_k \tilde{\mathbf{u}})(\tilde{\mathbf{u}}^H \widetilde{\mathbf{H}}_l \tilde{\mathbf{u}})] = \frac{1}{E(\|\mathbf{y}\|^4)} E[(\widetilde{\mathbf{y}}^H \widetilde{\mathbf{H}}_k \widetilde{\mathbf{y}})(\widetilde{\mathbf{y}}^H \widetilde{\mathbf{H}}_l \widetilde{\mathbf{y}})].$$

Noting that $\widetilde{\mathbf{H}}_k$ and $\widetilde{\mathbf{H}}_l$ are structured as $\widetilde{\mathbf{A}}$ and $\widetilde{\mathbf{B}}$ of the Lemma 1, this lemma applies to the couples $(\widetilde{\mathbf{H}}_k, \widetilde{\mathbf{H}}_l)$ and (\mathbf{I}, \mathbf{I}) giving $\mathrm{E}[(\widetilde{\mathbf{y}}^H \widetilde{\mathbf{H}}_k \widetilde{\mathbf{y}})(\widetilde{\mathbf{y}}^H \widetilde{\mathbf{H}}_l \widetilde{\mathbf{y}})] = \mathrm{Tr}(\widetilde{\mathbf{H}}_k)\mathrm{Tr}(\widetilde{\mathbf{H}}_l) + 2\mathrm{Tr}(\widetilde{\mathbf{H}}_k \widetilde{\mathbf{H}}_l)$ and $\mathrm{E}[\|\widetilde{\mathbf{y}}\|^4] = 4M(M+1)$. Consequently the expected value of the last term of (26) is given by

$$\mathbb{E}\left(\frac{1}{4}\mathcal{Q}^{2}\phi^{2}(\mathcal{Q})[\tilde{\mathbf{u}}^{H}\widetilde{\mathbf{H}}_{k}\tilde{\mathbf{u}}][\tilde{\mathbf{u}}^{H}\widetilde{\mathbf{H}}_{l}\tilde{\mathbf{u}}]\right) = \frac{\mathbb{E}(\mathcal{Q}^{2}\phi^{2}(\mathcal{Q}))}{4M(M+1)}\left(\operatorname{Tr}(\widetilde{\mathbf{H}}_{k})\operatorname{Tr}(\widetilde{\mathbf{H}}_{l}) + 2\operatorname{Tr}(\widetilde{\mathbf{H}}_{k}\widetilde{\mathbf{H}}_{l})\right) \\
= \frac{\mathbb{E}(\mathcal{Q}^{2}\phi^{2}(\mathcal{Q}))}{4M(M+1)}\left(\operatorname{Tr}(\widetilde{\Gamma}_{k}\widetilde{\Gamma}^{-1})\operatorname{Tr}(\widetilde{\Gamma}_{l}\widetilde{\Gamma}^{-1}) + 2\operatorname{Tr}(\widetilde{\Gamma}_{k}\widetilde{\Gamma}^{-1}\widetilde{\Gamma}_{l}\widetilde{\Gamma}^{-1})\right) (28)$$

Gathering (27) (28) in (25) concludes the proof.

IV. PROOF OF Eq. (9) OF [1]

Using that [1, (4)] is a p.d.f. with $\int_0^\infty \delta_{M,g}^{-1} \mathcal{Q}_t^{M-1} g(\mathcal{Q}_t) d\mathcal{Q}_t = 1$ and that $E(\mathcal{Q}) = E(\mathcal{R}^2) < \infty$, we get

$$E(\mathcal{Q}\phi(\mathcal{Q})) = \int_0^\infty \delta_{M,g}^{-1} \mathcal{Q}^M g'(\mathcal{Q}) d\mathcal{Q} = \left[\delta_{M,g}^{-1} \mathcal{Q}^M g(\mathcal{Q})\right]_0^\infty - M \int_0^\infty \delta_{M,g}^{-1} \mathcal{Q}^{M-1} g(\mathcal{Q}) d\mathcal{Q} = -M. \tag{29}$$

It follows from Cauchy-Schwarz inequality that

$$M^{2} = (\mathcal{E}(\mathcal{Q}\phi(\mathcal{Q})))^{2} \le \mathcal{E}(\mathcal{Q})\mathcal{E}(\mathcal{Q}\phi^{2}(\mathcal{Q})) = \mathcal{E}(\mathcal{Q})M\xi_{1}.$$
(30)

Next, note that

$$E(Q) = \int_0^\infty \delta_{M,g}^{-1} Q^M g(Q) dQ = \delta_{M,g}^{-1} \delta_{M+1,g} \int_0^\infty \delta_{M+1,g}^{-1} Q^M g(Q) dQ = \delta_{M,g}^{-1} \delta_{M+1,g} = M.$$
 (31)

Plugging (31) in (30) proves Eq. (9) of [1].

V. Proof of Result 4

Because $\xi_2 = 1$ for Gaussian distributions, we get for NC-CES distributions:

$$\mathbf{I}_{\mathrm{CES}}^{\mathrm{NC}}(\boldsymbol{\alpha}_{2}) - \mathbf{I}_{\mathrm{CN}}^{\mathrm{NC}}(\boldsymbol{\alpha}_{2}) = \frac{\xi_{2} - 1}{2} \left(\frac{d \mathrm{vec}(\widetilde{\boldsymbol{\Gamma}})}{d \boldsymbol{\alpha}_{2}^{T}} \right)^{H} \left((\widetilde{\boldsymbol{\Gamma}}^{-T} \otimes \widetilde{\boldsymbol{\Gamma}}^{-1}) + \frac{1}{2} \mathrm{vec}(\widetilde{\boldsymbol{\Gamma}}^{-1}) \mathrm{vec}^{H}(\widetilde{\boldsymbol{\Gamma}}^{-1}) \right) \frac{d \mathrm{vec}(\widetilde{\boldsymbol{\Gamma}})}{d \boldsymbol{\alpha}_{2}^{T}}$$
(32)

where $(\widetilde{\Gamma}^{-T} \otimes \widetilde{\Gamma}^{-1}) + \frac{1}{2} \text{vec}(\widetilde{\Gamma}^{-1}) \text{vec}^H(\widetilde{\Gamma}^{-1})$ is positive definite. Replacing $\widetilde{\Gamma}$ by Γ , the proof is identical for C-CES distributions.

VI. PROOF OF RESULT 5

We note first that the general expressions of the SCRB proved here is valid for arbitrary parameterization of \mathbf{A}_{θ} if the real-valued parameter of interest $\boldsymbol{\theta} \in \mathbb{R}^L$ is characterized by the subspace generated by the columns of the full column rank $M \times K$ matrix \mathbf{A}_{θ} with K < M. It can be applied for example to near or far-field DOA modeling with scalar or vector-sensors for an arbitrary number of parameters per source $s_{t,k}$ (with $\mathbf{s}_t \stackrel{\text{def}}{=} (s_{t,1},...,s_{t,K})^T$ and many other modelings as the SIMO and MIMO modelings. Let us start with the circular case for which $\mathbf{\Omega} = \mathbf{0}$ and thus $\widetilde{\mathbf{\Gamma}} = \text{Diag}(\mathbf{\Sigma}, \mathbf{\Sigma}^*)$ where $\mathbf{\Sigma} = \mathbf{A}_{\theta} \mathbf{R}_s \mathbf{A}_{\theta}^H + \sigma_n^2 \mathbf{I}$. The SCRB form for this case can be then written through the compact expression of the general FIM given in Result 2, using (1) and (2), as follows:

$$\frac{1}{T} SCRB_{CES}^{-1}(\boldsymbol{\alpha}) = \left(\frac{d \text{vec}(\boldsymbol{\Sigma})}{d\boldsymbol{\alpha}^T}\right)^H \left(\xi_2(\boldsymbol{\Sigma}^{-T} \otimes \boldsymbol{\Sigma}^{-1}) + (\xi_2 - 1)\text{vec}(\boldsymbol{\Sigma}^{-1})\text{vec}^H(\boldsymbol{\Sigma}^{-1})\right) \left(\frac{d \text{vec}(\boldsymbol{\Sigma})}{d\boldsymbol{\alpha}^T}\right). \tag{33}$$

The SCRB of θ alone can be deduced from (33) as follows:

$$\frac{1}{T}SCRB_{CES}^{-1}(\boldsymbol{\theta}) = \mathbf{G}^{H}\mathbf{\Pi}_{\Delta}^{\perp}\mathbf{G},$$
(34)

with $\mathbf{G} \stackrel{\mathrm{def}}{=} \mathbf{T}_i^{1/2} (\mathbf{\Sigma}^{-T/2} \otimes \mathbf{\Sigma}^{-1/2}) \frac{\partial \mathrm{vec}(\mathbf{\Sigma})}{\partial \boldsymbol{\theta}^T}$ and $\mathbf{\Delta} \stackrel{\mathrm{def}}{=} \mathbf{T}_i^{1/2} (\mathbf{\Sigma}^{-T/2} \otimes \mathbf{\Sigma}^{-1/2}) \frac{\partial \mathrm{vec}(\mathbf{\Sigma})}{\partial \boldsymbol{\alpha}_n^T}$ where

$$\mathbf{T}_{i} \stackrel{\text{def}}{=} \xi_{2} \mathbf{I} + (\xi_{2} - 1) \text{vec}(\mathbf{I}) \text{vec}^{T}(\mathbf{I}). \tag{35}$$

Let's further partition the matrix Δ as $\Delta = \mathbf{T}_i^{1/2}(\mathbf{\Sigma}^{-T/2}\otimes\mathbf{\Sigma}^{-1/2})\left[\frac{\partial\mathrm{vec}(\mathbf{\Sigma})}{\partial\rho^T}\mid\frac{\partial\mathrm{vec}(\mathbf{\Sigma})}{\partial\sigma_n^2}\right]\stackrel{\mathrm{def}}{=} [\mathbf{V}\mid\mathbf{u}_n]$. In the sequel, the proofs presented here follow the lines of the proof presented in [6] for circular Gaussian distributed observations. It follows from [6, rel. (14)] that

$$\Pi_{\Delta}^{\perp} = \Pi_{\mathbf{V}}^{\perp} - \frac{\Pi_{\mathbf{V}}^{\perp} \mathbf{u}_{n} \mathbf{u}_{n}^{H} \Pi_{\mathbf{V}}^{\perp}}{\mathbf{u}_{n}^{H} \Pi_{\mathbf{V}}^{\perp} \mathbf{u}_{n}}.$$
(36)

Using $\frac{\partial \text{vec}(\mathbf{\Sigma})}{\partial \sigma_n^2} = \text{vec}(\mathbf{I})$, we obtain

$$\mathbf{u}_n = \mathbf{T}_i^{1/2} \text{vec}(\mathbf{\Sigma}^{-1}). \tag{37}$$

Consequently using (34) and (36), if \mathbf{g}_k denotes the *kth* column of \mathbf{G} , the (k,l) element of $\mathrm{SCRB}^{-1}_{\mathrm{CES}}(\boldsymbol{\alpha})$ can be written elementwise as

$$\frac{1}{T} \left[SCRB_{CES}^{-1}(\boldsymbol{\theta}) \right]_{k,l} = \mathbf{g}_k^H \mathbf{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_l - \frac{\mathbf{g}_k^H \mathbf{\Pi}_{\mathbf{V}}^{\perp} \mathbf{u}_n \mathbf{u}_n^H \mathbf{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_l}{\mathbf{u}_n^H \mathbf{\Pi}_{\mathbf{V}}^{\perp} \mathbf{u}_n}.$$
(38)

Let us proceed now to determine the expression of \mathbf{g}_k . Letting $\mathbf{A}'_{\theta_k} \stackrel{\text{def}}{=} \frac{\partial \mathbf{A}_{\theta}}{\partial \theta_k}$, we get

$$\frac{\partial \mathbf{\Sigma}}{\partial \theta_k} = \mathbf{A}'_{\theta_k} \mathbf{R}_s \mathbf{A}_{\theta}^H + \mathbf{A}_{\theta} \mathbf{R}_s \mathbf{A}_{\theta_k}^{'H}, \tag{39}$$

Hence, using (1), the kth column of G in (38) is given by

$$\mathbf{g}_k = \mathbf{T}_i^{1/2} \operatorname{vec}(\mathbf{Z}_k + \mathbf{Z}_k^H) \text{ where } \mathbf{Z}_k \stackrel{\text{def}}{=} \mathbf{\Sigma}^{-1/2} \mathbf{A}_{\theta} \mathbf{R}_s \mathbf{A}_{\theta_k}^{'H} \mathbf{\Sigma}^{-1/2}.$$
 (40)

Next, we determine V and then $\Pi_{\mathbf{V}}^{\perp}$. Since \mathbf{R}_s is a Hermitian matrix, it can be then factorized as

$$vec(\mathbf{R}_s) = \mathbf{J}\boldsymbol{\rho} \tag{41}$$

where $\bf J$ is a $K^2 \times K^2$ constant nonsingular matrix. It follows, using (1), that $\bf V$ can be be expressed as

$$\mathbf{V} = \mathbf{T}_i^{1/2} (\mathbf{\Sigma}^{-T/2} \mathbf{A}_{\theta}^* \otimes \mathbf{\Sigma}^{-1/2} \mathbf{A}_{\theta}) \mathbf{J} \stackrel{\text{def}}{=} \mathbf{T}_i^{1/2} \mathbf{W} \mathbf{J}.$$

Note from (38) that the SCRB depends on V only via $\Pi_{\mathbf{V}}^{\perp}$, that can be expressed as

$$\mathbf{\Pi}_{\mathbf{V}}^{\perp} = \mathbf{I} - \mathbf{V}(\mathbf{V}^{H}\mathbf{V})^{-1}\mathbf{V}^{H} = \mathbf{I} - \mathbf{T}_{i}^{1/2}\mathbf{W}(\mathbf{W}^{H}\mathbf{T}_{i}\mathbf{W})^{-1}\mathbf{W}^{H}\mathbf{T}_{i}^{1/2}.$$
(42)

After some algebraic manducation, using (1) and (2), we obtain

$$\mathbf{W}^{H}\mathbf{T}_{i}\mathbf{W} = \xi_{2}(\mathbf{U}^{*} \otimes \mathbf{U}) + (\xi_{2} - 1)\operatorname{vec}(\mathbf{U})\operatorname{vec}^{H}(\mathbf{U}),$$

where $\mathbf{U} \stackrel{\text{def}}{=} \mathbf{A}_{\theta}^H \mathbf{\Sigma}^{-1} \mathbf{A}_{\theta}$ is a $K \times K$ Hermitian nonsingular matrix. It follows from matrix inverse lemma (given by (7)), that its inverse can be expressed as

$$(\mathbf{W}^H \mathbf{T}_i \mathbf{W})^{-1} = \frac{1}{\xi_2} (\mathbf{U}^{-*} \otimes \mathbf{U}^{-1}) - \eta \text{vec}(\mathbf{U}^{-1}) \text{vec}^H(\mathbf{U}^{-1})$$

where $\eta \stackrel{\text{def}}{=} \frac{\xi_2 - 1}{\xi_2^2 (1 + \frac{\xi_2 - 1}{\xi_2} \text{vec}^H(\tilde{\mathbf{U}})(\tilde{\mathbf{U}}^{-*} \otimes \tilde{\mathbf{U}}^{-1}) \text{vec}(\tilde{\mathbf{U}}))}$ can be simplified, using (4), as $\eta \stackrel{\text{def}}{=} \frac{\xi_2 - 1}{\xi_2^2 (1 + \frac{\xi_2 - 1}{\xi_2} K)}$. Thus, using (1) and (2), we obtain

$$\mathbf{W}(\mathbf{W}^H \mathbf{T}_i \mathbf{W})^{-1} \mathbf{W}^H = \frac{1}{\xi_2} (\mathbf{H}_1^* \otimes \mathbf{H}_1) - \eta \operatorname{vec}(\mathbf{H}_1) \operatorname{vec}^H(\mathbf{H}_1) \stackrel{\text{def}}{=} \mathcal{B}, \tag{43}$$

where $\mathbf{H}_1 \stackrel{\text{def}}{=} \mathbf{\Sigma}^{-1/2} \mathbf{A}_{\theta} \mathbf{U}^{-1} \mathbf{A}_{\theta}^H \mathbf{\Sigma}^{-1/2}$. Therefore, (42) becomes

$$\mathbf{\Pi}_{\mathbf{V}}^{\perp} = \mathbf{I} - \mathbf{T}_i^{1/2} \mathcal{B} \mathbf{T}_i^{1/2}.\tag{44}$$

Now let us show that $\mathbf{u}_n^H \mathbf{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_k = 0$. It follows from (37) and (40), using (44), that

$$\mathbf{u}_{n}^{H} \mathbf{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_{k} = \operatorname{vec}^{H}(\mathbf{\Sigma}^{-1}) \mathbf{T}_{i} \operatorname{vec}(\mathbf{Z}_{k} + \mathbf{Z}_{k}^{H}) - \operatorname{vec}^{H}(\mathbf{\Sigma}^{-1}) \mathbf{T}_{i} \mathcal{B} \mathbf{T}_{i} \operatorname{vec}(\mathbf{Z}_{k} + \mathbf{Z}_{k}^{H}).$$
(45)

It follows, after some algebraic manipulation, using (1), (3) and (43) that

$$\mathbf{T}_{i}\mathcal{B}\mathbf{T}_{i} = \xi_{2}(\mathbf{H}_{1}^{*}\otimes\mathbf{H}_{1}) - \xi_{2}^{2}\eta\operatorname{vec}(\mathbf{H}_{1})\operatorname{vec}^{H}(\mathbf{H}_{1}) + (\xi_{2} - 1)(1 - K\eta\xi_{2})\left(\operatorname{vec}(\mathbf{I})\operatorname{vec}^{H}(\mathbf{H}_{1}) + \operatorname{vec}(\mathbf{H}_{1})\operatorname{vec}^{T}(\mathbf{I})\right) + \frac{(\xi_{2} - 1)^{2}K}{\xi_{2}}(1 - K\eta\xi_{2})\operatorname{vec}(\mathbf{I})\operatorname{vec}^{T}(\mathbf{I}),$$

$$(46)$$

using $\mathbf{H}_1^2 = \mathbf{H}_1$ and $\text{Tr}(\mathbf{H}_1) = K$. Using the definition (35) for \mathbf{T}_i and (3), the first term of (45) can be expressed as

$$\operatorname{vec}^{H}(\mathbf{\Sigma}^{-1})\mathbf{T}_{i}\operatorname{vec}(\mathbf{Z}_{k}+\mathbf{Z}_{k}^{H}) = \xi_{2}\operatorname{Tr}(\mathbf{\Sigma}^{-1}(\mathbf{Z}_{k}+\mathbf{Z}_{k}^{H})) + (\xi_{2}-1)\operatorname{Tr}(\mathbf{\Sigma}^{-1})\operatorname{Tr}(\mathbf{Z}_{k}+\mathbf{Z}_{k}^{H})$$

$$= 2\xi_{2}\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-2}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta}^{'H})) + 2(\xi_{2}-1)\operatorname{Tr}(\mathbf{\Sigma}^{-1})\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta}^{'H})) (47)$$

using $\operatorname{Tr}(\mathbf{\Sigma}^{-1}(\mathbf{Z}_k + \mathbf{Z}_k^H)) = 2\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-2}\mathbf{A}_{\theta}\mathbf{R}_s\mathbf{A}_{\theta_k}^{'H}))$ and $\operatorname{Tr}(\mathbf{Z}_k + \mathbf{Z}_k^H) = 2\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_s\mathbf{A}_{\theta_k}^{'H}))$. After simple algebraic manipulations, using (46), (1) and (3), and that $\operatorname{Tr}(\mathbf{Z}_k + \mathbf{Z}_k^H) = \operatorname{Tr}((\mathbf{Z}_k + \mathbf{Z}_k^H)\mathbf{H}_1) = \operatorname{Tr}(\mathbf{H}_1(\mathbf{Z}_k + \mathbf{Z}_k^H)\mathbf{H}_1) = 2\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_s\mathbf{A}_{\theta_k}^{'H}))$ and $\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{H}_1^2) = \operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{H}_1)$, the second term of (45) can be simplified as

$$\operatorname{vec}^{H}(\mathbf{\Sigma}^{-1})\mathbf{T}_{i}\mathcal{B}\mathbf{T}_{i}\operatorname{vec}(\mathbf{Z}_{k}+\mathbf{Z}_{k}^{H})$$

$$=\xi_{2}\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{H}_{1}(\mathbf{Z}_{k}+\mathbf{Z}_{k}^{H})\mathbf{H}_{1})+(\xi_{2}-1)\operatorname{Tr}(\mathbf{\Sigma}^{-1})\operatorname{Tr}(\mathbf{Z}_{k}+\mathbf{Z}_{k}^{H})$$

$$=2\xi_{2}\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{U}^{-1}\mathbf{A}_{\theta}^{H}\mathbf{\Sigma}^{-2}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))+2(\xi_{2}-1)\operatorname{Tr}(\mathbf{\Sigma}^{-1})\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))$$

$$=2\xi_{2}\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-2}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))+2(\xi_{2}-1)\operatorname{Tr}(\mathbf{\Sigma}^{-1})\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H})),$$

$$(48)$$

where the first term in the last line is obtained using $\mathbf{A}_{\theta}\mathbf{U}^{-1}\mathbf{A}_{\theta}^{H}\mathbf{\Sigma}^{-2}\mathbf{A}_{\theta} = \mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}$. It follows, therefore, from (45), (47) and (48) that

$$\mathbf{u}_n^H \mathbf{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_k = 0.$$

This identity together with (40) and (44) allows us to rewrite the individual elements of (38) as

$$\frac{1}{T} \left[SCRB_{CES}^{-1}(\boldsymbol{\theta}) \right]_{k,l} = \mathbf{g}_{k}^{H} \mathbf{\Pi}_{\mathbf{V}}^{\perp} \mathbf{g}_{l}
= vec^{H} (\mathbf{Z}_{k} + \mathbf{Z}_{k}^{H}) \mathbf{T}_{i} vec(\mathbf{Z}_{l} + \mathbf{Z}_{l}^{H}) - vec^{H} (\mathbf{Z}_{k} + \mathbf{Z}_{k}^{H}) \mathbf{T}_{i} \mathcal{B} \mathbf{T}_{i} vec(\mathbf{Z}_{l} + \mathbf{Z}_{l}^{H}). (49)$$

After simple algebraic manipulations, using the definition (35) for T_i , (1) and (3), the first term in (49) can be simplified as

$$\operatorname{vec}^{H}(\mathbf{Z}_{k} + \mathbf{Z}_{k}^{H})\mathbf{T}_{i}\operatorname{vec}(\mathbf{Z}_{l} + \mathbf{Z}_{l}^{H}) = \xi_{2}\operatorname{Tr}((\mathbf{Z}_{k} + \mathbf{Z}_{k}^{H})(\mathbf{Z}_{l} + \mathbf{Z}_{l}^{H})) + (\xi_{2} - 1)\operatorname{Tr}(\mathbf{Z}_{k} + \mathbf{Z}_{k}^{H})\operatorname{Tr}(\mathbf{Z}_{l} + \mathbf{Z}_{l}^{H})$$

$$= 2\xi_{2}\left[\operatorname{Re}(\operatorname{Tr}((\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{l}}^{'H})(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))\right]$$

$$+ \operatorname{Re}(\operatorname{Tr}((\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}^{'}\mathbf{R}_{s}\mathbf{A}_{\theta})(\mathbf{\Sigma}^{-1}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))\right]$$

$$+ 4(\xi_{2} - 1)\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))\operatorname{Re}(\operatorname{Tr}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))$$
(50)

Similarly, after some algebraic manipulations, using (46), (1) and (4), the second term in (49) can be simplified as

$$\operatorname{vec}^{H}(\mathbf{Z}_{k} + \mathbf{Z}_{k}^{H})\mathbf{T}_{i}\operatorname{vec}(\mathbf{Z}_{l} + \mathbf{Z}_{l}^{H}) = 2\xi_{2}\left[\operatorname{Tr}(\operatorname{Re}((\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{l}}^{'H})(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))\right] + \operatorname{Tr}(\operatorname{Re}((\mathbf{\Sigma}^{-1}\mathbf{A}\mathbf{U}^{-1}\mathbf{A}^{H}\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta_{l}}^{'}\mathbf{R}_{s}\mathbf{A}_{\theta_{l}}^{H})(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))\right] + 4(\xi_{2} - 1)\operatorname{Tr}(\operatorname{Re}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H}))\operatorname{Tr}(\operatorname{Re}(\mathbf{\Sigma}^{-1}\mathbf{A}_{\theta}\mathbf{R}_{s}\mathbf{A}_{\theta_{k}}^{'H})). (51)$$

It follows then from (50) and (51) that (49) can be simplified as

$$\frac{1}{T} \left[SCRB_{CES}^{-1}(\boldsymbol{\theta}) \right]_{k,l} = 2\xi_{2} Re \left(Tr \left[(\boldsymbol{\Sigma}^{-1} - \boldsymbol{\Sigma}^{-1} \mathbf{A} \mathbf{U}^{-1} \mathbf{A}^{H} \boldsymbol{\Sigma}^{-1}) (\mathbf{A}_{\theta_{l}}^{'} \mathbf{R}_{s} \mathbf{A}_{\theta}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{A}_{\theta} \mathbf{R}_{s} \mathbf{A}_{\theta_{k}}^{'H}) \right] \right)$$

$$= \frac{2\xi_{2}}{\sigma_{n}^{2}} Re \left(Tr \left[(\boldsymbol{\Pi}_{\mathbf{A}_{\theta}}^{\perp}) (\mathbf{A}_{\theta_{l}}^{'} \mathbf{R}_{s} \mathbf{A}_{\theta}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{A}_{\theta} \mathbf{R}_{s} \mathbf{A}_{\theta_{k}}^{'H}) \right] \right)$$

$$= \frac{2\xi_{2}}{\sigma_{n}^{2}} Re \left(Tr \left[\boldsymbol{\Pi}_{\mathbf{A}_{\theta}}^{\perp} \mathbf{A}_{\theta_{l}}^{'} \mathbf{H} \mathbf{A}_{\theta_{k}}^{'H} \right] \right), \tag{52}$$

where the second equality is obtained using $\Sigma^{-1} - \Sigma^{-1} \mathbf{A} \mathbf{U}^{-1} \mathbf{A}^H \Sigma^{-1} = \frac{1}{\sigma_n^2} \mathbf{\Pi}_{\mathbf{A}}^{\perp}$ thanks to $\mathbf{A} \mathbf{U}^{-1} \mathbf{A}^H \Sigma^{-1} = \mathbf{A} (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H$. Using (4), we can write (52) in matrix form as is shown in Result 5.

In the noncircular case, the proof follows the similar above steps by replacing \mathbf{T}_i by $\widetilde{\mathbf{T}}_i \stackrel{\text{def}}{=} \frac{\xi_2}{2}\mathbf{I} + \frac{\xi_2 - 1}{4} \text{vec}(\mathbf{I}) \text{vec}^T(\mathbf{I})$, and Σ by $\widetilde{\Gamma}$ where (39) is replaced by $\frac{\partial \widetilde{\Gamma}}{\partial \theta_k} = \widetilde{\mathbf{A}}_{\theta_k}' \mathbf{R}_{\tilde{s}} \widetilde{\mathbf{A}}_{\theta}^H + \widetilde{\mathbf{A}}_{\theta} \mathbf{R}_{\tilde{s}} \widetilde{\mathbf{A}}_{\theta_k}^H$ with $\widetilde{\mathbf{A}}_{\theta} \stackrel{\text{def}}{=} \frac{\partial \widetilde{\mathbf{A}}_{\theta}}{\partial \theta_k}$.

VII. PROOF OF RESULT 6

The proof of this result follows similar steps as the proof of Result 5 based on [7, th. 1] by replacing Σ by $\widetilde{\Gamma} = \widetilde{\mathbf{A}}_{\omega} \mathbf{R}_r \widetilde{\mathbf{A}}_{\omega}^H + \sigma_n^2 \mathbf{I}$, \mathbf{A}_{θ} by $\widetilde{\mathbf{A}}_{\omega} = \begin{pmatrix} \mathbf{A}_{\theta} \mathbf{\Delta}_{\phi} \\ \mathbf{A}_{\theta}^* \mathbf{\Delta}_{\phi}^* \end{pmatrix}$ where $\boldsymbol{\omega} \stackrel{\text{def}}{=} (\boldsymbol{\theta}^T, \boldsymbol{\phi}^T)^T$ with $\boldsymbol{\phi} \stackrel{\text{def}}{=} (\phi_1, ..., \phi_K)^T$, and also by pointing out that $\mathbf{R}_r \in \mathbb{R}^{K \times K}$ is symmetric which lead us to replace \mathbf{J} in (41) by \mathbf{D}_{ρ} defined in [7, th. 1] to get $\text{vec}(\mathbf{R}_r) = \mathbf{D}_{\rho} \boldsymbol{\rho}$. Thus, \mathbf{V} becomes $\mathbf{V} = \widetilde{\mathbf{T}}_i^{1/2} \mathbf{W} \mathbf{D}_{\rho}$ with $\mathbf{W} = (\widetilde{\mathbf{\Gamma}}^{-T/2} \widetilde{\mathbf{A}}_{\omega}^* \otimes \widetilde{\mathbf{\Gamma}}^{-1/2} \widetilde{\mathbf{A}}_{\omega})$. Hence $\mathbf{\Pi}_{\mathbf{V}}^{\perp}$ in [7, th. 1] takes here the following key form expression: $\mathbf{\Pi}_{\mathbf{V}}^{\perp} = \mathbf{I} - \widetilde{\mathbf{T}}_i^{1/2} \mathcal{B} \widetilde{\mathbf{T}}_i^{1/2}$ with $\boldsymbol{\mathcal{B}} = \frac{2}{\xi_2} \mathbf{W} (\mathbf{U}^{-1} \otimes \mathbf{U}^{-1}) \mathbf{N}_K \mathbf{W}^H - \widetilde{\boldsymbol{\eta}} \text{vec}(\mathbf{H}_1) \text{vec}^H(\mathbf{H}_1)$ where $\mathbf{U} \stackrel{\text{def}}{=} \widetilde{\mathbf{A}}_{\omega}^H \widetilde{\mathbf{\Gamma}}^{-1} \widetilde{\mathbf{A}}_{\omega}$, \mathbf{N}_K is defined in [7, th. 1] and $\widetilde{\boldsymbol{\eta}} \stackrel{\text{def}}{=} \frac{\xi_2 - 1}{\xi_3^2 (1 + \frac{\xi_2 - 1}{2\varepsilon_2} K)}$. The rest of the proof follows the same lines of arguments as that of the proof of Result 5.

REFERENCES

- [1] H. Abeida and J.P. Delmas, "Slepian-Bangs formula and Cramér Rao bound for circular and non-circular complex elliptical symmetric distributions," accepted to *IEEE Signal Process. Lett.*, August 2019.
- [2] H. Abeida and J.P. Delmas, "MUSIC-like estimation of direction of arrival for noncircular sources," *IEEE Trans. Signal Process.*, vol. 54, no. 7, pp. 2678-2690, 2006.
- [3] E. Ollila and V. Koivunen, "Generalized complex elliptical distributions," in Proc. SAM Workshop, pp. 460-464, July 2004.
- [4] E. Ollila, D. Tyler, V. Koivunen and H. Poor, "Complex elliptically symmetric distributions: Survey, new results and applications," *IEEE Trans. Signal Process.*, vol. 60, no. 11, pp. 5597-5625, Nov. 2012.
- [5] O. Besson and Y. I. Abramovich, "On the Fisher information matrix for multivariate elliptically contoured distributions," *IEEE Signal Process. Lett.*, vol. 20, no. 11, pp. 1130-1133, Nov. 2013.
- [6] P. Stoica, A. G. Larsson, and A. B. Gershman, "The stochastic CRB for array processing: A textbook derivation," *IEEE Signal Process. Lett.*, vol. 8, no. 5, pp. 148-150, May 2001.
- [7] H. Abeida and J.P. Delmas, "Direct derivation of the stochastic CRB of DOA estimation for rectilinear sources," *IEEE Signal Process. Lett.*, vol. 24, no. 10, pp. 1522-1526, 2017.