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Automatically Extract the Semi-transparent
Motion-blurred Hand from a Single Image

Xiaomei Zhao, Yihong Wu

Abstract—When we use video chat, video game, or other
video applications, motion-blurred hands often appear. Accu-
rately extracting these hands is very useful for video editing
and behavior analysis. However, existing motion-blurred object
extraction methods either need user interactions, such as user
supplied trimaps and scribbles, or need additional information,
such as background images. In this paper, a novel method which
can automatically extract the semi-transparent motion-blurred
hand just according to the original RGB image is proposed.
The proposed method separates the extraction task into two
subtasks: alpha matte prediction and foreground prediction.
These two subtasks are implemented by Xception based encoder-
decoder networks. The extracted motion-blurred hand images
can be calculated by multiplying the predicted alpha mattes and
foreground images. Experiments on synthetic and real datasets
show that the proposed method has promising performance.

Index Terms—Motion-blurred hand, Semi-transparent, Alpha
matte prediction, Foreground prediction, Automatically

I. INTRODUCTION

HAND language is one of the most important human ges-
ture languages. Poor hand extraction results can greatly

reduce the performance of image or video editing, behavior
recognition, and behavior analysis. Extracting hands can be
implemented by hand segmentation methods [1, 2]. However
these methods cant deal with motion-blurred hands, which
are very common in practical applications. Existing traditional
methods [3-5], which were designed to predict the alpha mat-
tes or foreground images of motion-blurred objects, generally
need user interactions [3, 4] or short-exposure frames [5]. Zhao
et. al. [6] proposed a deep learning network to predict the alpha
mattes of motion-blurred hands, and then extracted motion-
blurred hands by subtracting background components from the
original images. A simple flow chart of this method is shown
in Fig. 1 (a). An obvious drawback of this method is that it
needs background images, which are inconvenient to obtain.
In this paper, we propose a method which can automatically
extract semi-transparent motion-blurred hands just according
to the original RGB images, without requiring any additional
information.

An image I , which contains a motion-blurred hand, is made
up by combining foreground hand F and background B:
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Fig. 1. Compare the flow charts of different motion-blurred hand extraction
methods: (a) the method proposed in [6]; (b) the method proposed in this
paper. (c-g) show examples of different kinds of images. In this figure, I
denotes original image, B denotes background image, F denotes foreground
image, α denotes alpha matte, α · F is the extracted motion-blurred hand.

I = α · F + (1 − α) · B,α ∈ [0, 1], where α is called alpha
matte. As shown in this equation, both α and F are related to
motion-blurred hands: α demonstrates their transparency; F
demonstrates their color. The proposed method separates the
task of extracting semi-transparent motion-blurred hand into
two subtasks: alpha matte prediction and foreground predic-
tion. The extracted hands can be calculated by multiplying
the predicted α and F . A simple flow chart of the proposed
method is shown in Fig. 1 (b).

Alpha mattes can be calculated by matting methods [7-11].
However, most of matting methods need additional informa-
tion, such as user supplied trimaps and scribbles [7-11]. In
order to avoid the need for user interactions, several matting
methods [12-14] employ CNN networks to predict trimaps
explicitly or implicitly. The above matting methods focus
on static objects, rather than motion-blurred objects. Zhao
et. al. [6] proposed a motion-blurred object matting network
which only used RGB images as inputs and directly outputted
the predicted alpha mattes. In this paper, our alpha matte
prediction network is developed from the matting network in
[6] by adding a perceptual loss [15].

Up to now, most of matting methods concentrate on alpha
matte prediction. Very few methods can predict foreground
images. A recently proposed sampling- and learning-based
matting method [11] can estimate the foreground color of
unknown regions. However, this method needs user supplied
trimaps to annotate the background, foreground, and unknown
regions respectively. Besides, this method focuses on static
objects, rather than motion-blurred object. In this paper, a
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Fig. 2. The Network architecture of the proposed method, where the alpha matte prediction network and foreground prediction network share the same
Xception [16] based encoder and have different decoders. In this figure, (a) is the original image; (b) is the predicted alpha matte; (c) is the predicted
foreground; (d) is the extracted motion-blurred hand which is calculated by multiplying (b) and (c); (e) is new image with new background. In this figure,
0.5×, 4×, 2×, 1× denote the upsampling and downsampling ratios.

network which can automatically predict the foreground im-
ages of motion-blurred hands is proposed. The foreground
prediction network is a Xception [16] based encoder-decoder
network. It only uses the original RGB images as inputs
and directly outputs the predicted foreground images. During
training, L1-loss and perceptual loss [15] are employed. As
shown in Fig. 2, the proposed foreground prediction network
shares the same encoder with alpha matte prediction network.
But these two prediction networks have different decoders.

Human matting methods [12, 13] extracted human just by
α·I , rather than α·F . A human image I can also be formulated
as I = α · F + (1 − α) · B. Therefore, in semi-transparent
areas where 0 < α < 1, α · I still contains background
information. However, in human images, almost all of the
pixels, whose alpha values are between 0 and 1, are located
at isolated hairs. Isolated hairs are very thin and have low
transparency. Thus, in human images without motion blur, the
background information contained in α · I is not obvious and
α · I ≈ α · F . In contrast, in motion-blurred hand images, the
areas with high transparency are large. If we extract motion-
blurred hands by α · I , the extracted hand images will contain
obvious background information, which can greatly reduce the
sense of reality when changing background. Thus, motion-
blurred hands should be calculated by α ·F , rather than α · I .

In summary, the main contributions in this paper are:
(1)A novel framework which can automatically extract the

semi-transparent motion-blurred object from a single image is
proposed. This framework consists of two main parts: alpha
matte prediction and foreground prediction. The images of
extracted objects are calculated by multiplying the predicted
alpha mattes and foreground images.

(2)The proposed framework is employed in semi-transparent
motion-blurred hand extraction task. Alpha matte prediction
and foreground prediction are implemented by Xception-
based encoder-decoder networks and trained by L1-loss and
perceptual loss.

(3)We enlarge the synthetic motion-blurred hand dataset
proposed in [6], and use the enlarged dataset to train the

proposed model. Then we use the trained model to process real
videos. Experiments demonstrate that the proposed method has
promising performance.

II. METHOD

The architecture of the proposed method is shown in Fig. 2.
As shown in this figure, the CNN network outputs two kinds
of results: predicted alpha mattes and predicted foreground
images. The images of extracted hands are calculated by
multiplying these two kinds of results.

A. Network architecture

Encoder-decoder networks have demonstrated their great
performance on many pixel-to-pixel prediction tasks, such as
segmentation[17-19], depth prediction[20], matting[9, 21], and
so on. Encoder-decoder networks usually employ pre-trained
image recognition networks, such as VGG[22], ResNet[23],
and Xception[16], as the backbone of encoder, and employ
several upsampling blocks as decoder. Previous article [17]
has shown that encoder-decoder networks based on Xception
have better performance and faster speed. Therefore, in this
paper, we employ Xception based encoder-decoder networks
for alpha matte prediction and foreground prediction. As
shown in Fig. 2, the proposed alpha matte prediction network
and foreground prediction network share the same encoder,
which contains 4 downsampling steps. In each step, the down-
sampling ratio equals to 0.5. These two prediction networks
have two independent decoders. Each decoder contains 3
upsampling steps. The upsampling ratios equal to 4, 2, 2
respectively. In each upsampling step, skip connection is used
to recover spatial information. The decoders for alpha matte
prediction and foreground prediction have similar structure.
But the output of alpha prediction decoder has one channel,
while the output of foreground prediction decoder has three
channels, which are red channel, green channel, and blue
channel respectively.
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B. Loss function

For most of pixel-to-pixel prediction methods, including
matting methods [9-11, 13, 14], pixel-wise losses, such as
pixel-wise L1-loss and L2-loss, are generally used. However,
pixel-wise loss ignores the correlation among pixels. A solu-
tion to this problem is employing Conditional Random Fields
(CRF) [24-26]. However CRF runs slowly. Another solution is
employing perceptual loss. Perceptual loss has been success-
fully used for style transfer and super-resolution [15, 27]. It
calculates the differences between high-level features extracted
from predicted images and groundtruth images, and minimizes
these differences by backpropagation. High-level features can
be extracted by pre-trained convolutional networks.

In this paper, the overall loss Lo = Lα + Lf , where
Lα denotes alpha prediction loss, Lf denotes foreground
prediction loss. Both Lα and Lf are made up by combining
L1 losses and perceptual losses.

1) Alpha prediction loss: The alpha prediction loss used in
this paper contains three parts: alpha absolute loss lαab, alpha
compositional loss lαc , and alpha perceptual loss lαp . lαab is the
L1 loss between predicted alpha mattes and groundtruth alpha
mattes. lαc is the L1 loss between predicted compositional
images and groundtruth compositional images. Compositional
images are generated by Ic = α?·F+(1−α?)·B, where F and
B are given foreground images and background images, α?
denotes predicted alpha mattes or groundtruth alpha mattes.

The alpha perceptual loss lαp calculates the L2 loss between
high-level features extracted from predicted alpha mattes and
groundtruth alpha mattes. In our experiments, VGG-16 [22],
which is pretrained for image recognition and contains 5
convolutional blocks, is used as the feature extractor. All of the
5 level feature maps extracted by these 5 convolutional blocks
are used to calculate perceptual loss. It should be mentioned
that VGG-16 is just employed as a feature extractor, which is
only used during training.

The overall alpha prediction loss Lα = λαabl
α
ab + λαc l

α
c +

λαp l
α
p , where λαab, λ

α
c , and λαp are the loss weights. In our

experiments, λαab and λαc are set to 0.5. λαp is set to 0.001.
2) Foreground prediction loss: The foreground prediction

loss contains two parts: foreground absolute loss lfab and
foreground perceptual loss lfp . lfab is the L1 loss between
predicted foreground images and groundtruth foreground im-
ages. lfp is the L2 loss between high-level features extracted
from predicted foreground images and groundtruth foreground
images. For lfp , VGG-16 is also used as the feature extractor
and all of its 5 levels of feature maps are employed. The
overall foreground prediction loss Lf = λfabl

f
ab+λfp l

f
p , where

λfab and λfp are the loss weights. In our experiment, they are
set to 1 and 0.001 respectively.

III. EXPERIMENT

In motion-blurred object extraction task, it is almost impos-
sible for human to assign accurate alpha value and foreground
color to each image pixel. Therefore, it is very difficult to
generate real dataset to train the proposed motion-blurred hand
extraction model. In order to solve this problem, synthetic
dataset provided by [6] is employed. Besides, in order to

TABLE I
EVALUATION SCORES ON SYNTHETIC TESTING DATASET. SAD IS SHORT

FOR SUM OF ABSOLUTE DIFFERENCES. MSE IS SHORT FOR MEAN
SQUARED ERROR. PL IS SHORT FOR PERCEPTUAL LOSS. SE IS SHORT FOR

SHARING ENCODER.

Alpha prediction
Methods SE PL SAD(×103) MSE(×10−3)
Model 1 no no 2.57 1.29
Model 2 yes no 2.47 1.20
Model 3 no yes 2.08 0.73
Model 4 yes yes 2.02 0.71

Foreground prediction
Methods SE PL SAD(×103) MSE(×10−3)
Model 1 no no 8.84 2.30
Model 2 yes no 8.73 2.06
Model 3 no yes 8.08 1.71
Model 4 yes yes 7.94 1.58

Fig. 3. Compare the results predicted by the networks trained without
and with perceptual loss. (a) original images. (b) groundturth alpha mattes.
(c) alpha mattes predicted by Model 2(without perceptual loss). (d) alpha
mattes predicted by Model 4(with perceptual loss). (e) groundtruth foreground
images. (f) foreground images predicted by Model 2(without perceptual loss).
(g) foreground images predicted by Model 4(with perceptual loss).

increase the diversity of skin colors, we enlarge this dataset
by the same synthetic dataset generation method in [6], which
can generate synthetic motion-blurred hand images, and their
corresponding alpha mattes and foreground images. In our
experiment, we generate 3 synthetic datasets: training dataset,
validation dataset, and testing dataset. These 3 datasets contain
30279, 8283, and 10140 cases respectively. In this paper, all
of our models are trained on the synthetic training dataset.
The synthetic validation dataset is used to monitor the training
processes. The synthetic testing dataset is used to evaluate
the performance of our trained models. Then, according to
the evaluation results on synthetic testing dataset, the best
performing model is chosen to process real videos. In this
paper, real videos are captured by a camera on a mobile phone.

Our experiments are implemented under tensorflow with one
Nvidia RTX 2080ti GPU and one Intel Core i7 9700k CPU.

A. Evaluation on synthetic testing dataset

In this paper, four models are trained. These four models
are called as Model 1, Model 2, Model 3, and Model 4
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Fig. 4. Compare the hand extraction performance of different methods. (a)
original RGB frames. (b) hand images extracted by multiplying the predicted
alpha mattes and original frames. This strategy is popular used in human
extraction methods [12,13]. (c) hand images extracted by subtracting the
background component from the original frames. This method is employed
in [6]. (d) hand images extracted by the method proposed in this paper.

respectively. Particularly, Model 1 is trained without perceptual
loss and its two subtasks do not share the same encoder; Model
2 is trained without perceptual loss and its two subtasks share
the same encoder; Model 3 is trained with perceptual loss and
its two subtasks do not share the same encoder; Model 4 is
trained with perceptual loss and its two subtasks share the
same encoder. The alpha matte prediction network of Model
1 is the same matting network proposed in [6]. The evaluation
scores on the synthetic testing dataset are shown in Table 1.
As shown in this table, Model 4 has the best performance.
Therefore, Model 4 is chosen to process real videos in next
subsection. In our experiment, during training Model 4, the
learning rate was set to 3.5 × 10−3; the momentum was set
to 0.9; the weight decay was set to 4 × 10−5. The training
process ended after 80 epoches.

As shown in Table 1, sharing the same encoder can slightly
improve the prediction performance, while adding perceptual
losses can obviously improve the prediction performance. In
order to show the effectiveness of perceptual loss qualitatively,
several alpha prediction and foreground prediction examples
of Model 2 and Model 4 are shown in Fig. 3. Model 2 and
Model 4 have the same network structure and are trained
without and with perceptual loss respectively. Fig. 3 shows
that the results predicted by Model 4 have more accurate and
reasonable shapes and textures than Model 2.

B. Experiments on real videos

As described in last subsection, the best-performing model,
Model 4, is chosen to predict the alpha mattes and foreground
images of motion-blurred hands in real videos. The extracted
hand images are calculated by multiplying the predicted alpha
mattes and foreground images. Because it is very hard to
generate groundtruth for real datasets, in this subsection, we
just show and compare the motion-blurred hand extraction
performances qualitatively.

1) Compare with other methods: The proposed motion-
blurred hand extraction method is compared with other two
previous methods. One method extracts motion-blurred hands
simply by multiplying the predicted alpha mattes and original
frames. This strategy is popularly used in human extraction
methods [12, 13]. The other method extracts motion-blurred

Fig. 5. Some examples of modifying human segmentation results. (a) a
picture shows how we capture our videos. (b) original RGB frames. (c) human
segmentation results predicted by state-of-art image segmentation method
Deeplab v3+ [17]. (d) the motion-blurred hand images extracted by the
proposed method. (e) the modified human soft segmentation results. (f) new
frames with new background.

hands by subtracting the background component from the
original frames [6]. Its flow chart is shown Fig.1 (a). In the
following, the above two methods are called as Method 1
and Method 2 for convenience. As shown in Fig. 4, the hand
images extracted by Method 1 contains obvious background
information, and the hand images extracted by Method 2
contains obvious color distortions. In contract, the hand images
generated by our method are smooth and natural. In addition,
Method 2 needs background images, which are not convenient
to obtain, while our method doesn’t need any additional
information. Therefore, our method has the best performance
and can be applied more widely.

2) Modify human segmentation results: In previous work
[6], the extracted motion-blurred hand images were used to
modify human segmentation results. In this paper, we also do
the same job, in order to verify that the proposed motion-
blurred hand extraction method is useful in practical appli-
cations. The method used in [6] needs background images.
Therefore, in [6], videos were captured by static cameras in
order to obtain background images from the nearby frames.
In contrast, the method proposed in this paper doesnt need
background images and can be used in videos captured by
moving cameras. The examples shown in Fig. 5 are captured
by a hand-held camera. Particularly, we hold camera by one
hand and make hand gestures by the other hand. In Fig. 5, the
4 examples are captured at home, at workplace, in a park,
and near a road respectively. These examples demonstrate
that state-of-art segmentation method cant deal with motion-
blurred hands, and our motion-blurred hand extraction method
has good performance to modify human segmentation results
and change background.

IV. CONCLUSION AND FUTURE WORK

In this paper, a novel method which can automatically
extract the semi-transparent motion-blurred hand from a single
image is proposed. This novel method contains two main parts:
alpha matte prediction and foreground prediction. The images
of extracted hands are calculated by multiplying the predicted
alpha mattes and foreground images. In the future, we will
try to find an efficient method which can extract complete
motion-blurred objects, such as motion-blurred human.
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