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Joint Design of Measurement Matrix and Sparse

Support Recovery Method via Deep Auto-encoder
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Abstract—Sparse support recovery arises in many applications
in communications and signal processing. Existing methods tackle
sparse support recovery problems for a given measurement ma-
trix, and cannot flexibly exploit the properties of sparsity patterns
for improving performance. In this letter, we propose a data-
driven approach to jointly design the measurement matrix and
support recovery method for complex sparse signals, using auto-
encoder in deep learning. The proposed architecture includes two
components, an auto-encoder and a hard thresholding module.
The proposed auto-encoder successfully handles complex signals
using standard auto-encoder for real numbers. The proposed
approach can effectively exploit properties of sparsity patterns,
and is especially useful when these underlying properties do
not have analytic models. In addition, the proposed approach
can achieve sparse support recovery with low computational
complexity. Experiments are conducted on an application ex-
ample, device activity detection in grant-free massive access
for massive machine type communications (mMTC). Numerical
results show that the proposed approach achieves significantly
better performance with much less computation time than classic
methods, in the presence of extra structures in sparsity patterns.

Index Terms—Sparse support recovery, auto-encoder, deep
learning, device activity detection, grant-free massive access

I. INTRODUCTION

Sparse support recovery refers to the estimation of the

locations of non-zero elements of a sparse signal of dimension

N based on a limited number of noisy linear measurements

L ≪ N . Sparse support recovery problems are of broad

interest, with applications arising in various areas, such as

subset selection in regression, structure estimation in graphical

models, sparse approximation and signal denoising [1]. There

are two key challenges in sparse support recovery: designing

a measurement matrix that can retain the information on

sparsity while reducing the signal dimension, and recovering

the support with low computational complexity based on the

under-sampled linear measurements for a given measurement

matrix. Existing works deal with these two challenges sepa-

rately. Intuitively, jointly designing the measurement matrix

and sparse support recovery method can maximally improve

the performance of sparse support recovery. However, how to

carry out such a joint design remains an open problem. In
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addition, existing works do not exploit structures of sparsity

patterns. For many sparse support recovery problems in com-

munications and signal processing, sparse signals have specific

structures which may help improve the performance of sparse

support recovery if properly used. However, many sparsity

structures arising in practice do not have analytic models. In

this letter, we address the aforementioned challenges using a

data-driven approach.

Most existing works on sparse support recovery focus on

tackling sparse support recovery problems for a given mea-

surement matrix [1]–[6]. For example, in [1], [2], exhaustive

methods are considered to derive conditions for exact sparse

support recovery under the assumption that the sparsity level

of the signal (i.e., the number of non-zero elements) is known

in advance. The exhaustive methods have limited applications

in practice due to their combinatorial complexity. In [3], [4], an

optimization-based method, referred to as LASSO, is adopted

for sparse support recovery with polynomial complexity in

O(N3). In particular, [3] directly deals with noisy linear

measurements, while [4] operates on the covariance matrix

of noisy linear measurements. In [5], [6], assuming that the

sparsity [5] or the power order of the signal elements [6] is

known, the authors propose heuristic sparse support recovery

algorithms which achieve lower computational complexity

than LASSO at the cost of recovery performance loss. Note

that none of [1]–[6] consider measurement matrix design, or

exploit characteristics of sparsity patterns.

A closely related and more widely investigated topic is to

estimate the sparse signal itself instead of its support. Most

studies focus on recovering sparse signals under Gaussian

measurement matrices which have certain performance guar-

antee [7]–[10]. Classic compressed sensing methods, such as

LASSO [7] with computational complexity of O(N3) and

AMP [8], [9] with (per iteration) computational complexity

of O(LN), do not exploit hidden structures of the sparsity

patterns. The performance of sparse signal recovery may be

improved if additional properties of the sparsity patterns can

be effectively exploited. For example, Group-LASSO [10]

utilizes group sparsity which is assumed to be known a

priori. The authors in [11]–[14] exploit properties of sparsity

patterns of real signals [11]–[13] and complex signals [14]

from training samples using data-driven approaches based on

deep learning. To further improve performance, recent works

[15]–[21] consider joint design of signal compression and

recovery methods using auto-encoder [15]–[19], [21] and Gen-

erative Adversarial Networks (GAN) [20] in deep learning. In

particular, [15]–[18] study linear compression for real signals;

[19]–[21] consider nonlinear compression for real signals [19],
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[20] and complex signals [21]. Note that existing joint signal

compression and recovery methods [15]–[21] cannot provide

linear compression for complex signals, and the extensions to

joint linear compression and recovery methods for complex

signals estimation are not trivial. In addition, the optimal

measurement matrix and recovery method for sparse signal

estimation are not necessarily always the best for support

recovery.

In this letter, we propose a data-driven auto-encoder archi-

tecture to jointly design the measurement matrix and support

recovery method for complex sparse signals, using deep auto-

encoder. The proposed architecture includes an auto-encoder

and a hard thresholding module. The auto-encoder consists

of an encoder which mimics the noisy linear measurement

process, and a decoder which approximately performs sparse

support recovery from the under-sampled linear measurements.

The proposed auto-encoder successfully handles complex sig-

nals using standard auto-encoder for real numbers. The data-

driven approach is especially useful when the underlying

structures of sparsity patterns are hard to model, and can

achieve sparse support recovery with low computational com-

plexity due to the parallelizable neural network architecture.

Experiments are conducted on an application example: device

activity detection in grant-free massive access for massive

machine type communications (mMTC). Numerical results

show that the proposed approach achieves significantly better

performance with much less computation time than classic

methods, in the presence of additional properties of sparsity

patterns. The substantial gains derive from the effective joint

design that exploits these structures.

II. SUPPORT RECOVERY

The support of sparse signal x , (xn)n∈N ∈ CN is defined

as the set of locations of non-zero elements of x, denoted

by supp(x) , {n ∈ N|xn 6= 0}, where N , {1, · · · , N}.

We say x is sparse if the number of non-zero elements of

x is much smaller than its total number of elements, i.e.,

|supp(x)| ≪ N . Consider L ≪ N noisy linear measurements

y ∈ CL of x:

y = Ax+ z (1)

where z ∼ CN (0, σ2IL) is the additive white Gaussian noise

(AWGN), IL denotes the L × L identity matrix, and A ∈
CL×N is the measurement matrix. Let α , (αn)n∈N , where

αn , I[xn 6= 0] and I[·] represents the indicator function. That

is, supp(x) = {n ∈ N|αn = 1}. The problem of support

recovery is that of estimating supp(x) (or α) based on y.

Sparse support recovery arises in several signal processing

areas and has vast applications. As an important application

example, we consider grant-free massive access, which is

recently proposed to support mMTC for IoT [8]. Specifically,

we consider a single cell with one single-antenna base station

(BS) and N single-antenna devices. Consider one coherent

time slot. We use αn ∈ {0, 1} to denote the active state of

device n, where αn = 1 means that device n accesses the

channel, and αn = 0 otherwise. The device-activity patterns

for IoT traffic are typically sporadic. Thus, the number of

active devices, denoted by K ,
∑

n∈N αn, is usually much

Fig. 1. Proposed architecture.

smaller than N , i.e., K ≪ N . We use hn ∈ C to denote

the complex channel between the BS and device n. We can

view αnhn as xn. Therefore, x , (xn)n∈N is sparse, as

|supp(x)| = K ≪ N . In grant-free massive access, there

are two phases, i.e., the pilot transmission phase and the data

transmission phase, and each device n has a unique pilot

sequence an ∈ CL, where the pilot length L ≪ N . In the

pilot transmission phase, active devices synchronously send

their pilot sequences to the BS. The received signal vector at

the BS can be expressed as (1) with A = [an]n∈N ∈ CL×N

representing the pilot matrix. Based on y and A, the BS

detects device activities α

(

i.e., estimates supp(x)
)

. Once

device activities are detected, the channels of the active devices

can be estimated through the classic MMSE method. Thus, we

shall focus on detecting device activities α, which is a sparse

support recovery problem.

III. PROPOSED APPROACH

In this section, we propose a data-driven approach to jointly

design the measurement matrix and support recovery method

for sparse complex signals. The proposed architecture consists

of two components, an auto-encoder and a hard thresholding

module, as illustrated in Fig. 1.

A. Auto-encoder

Currently, standard neural networks can process only real

numbers. However, sparse support recovery in many applica-

tions involves complex numbers. In this part, we introduce

an auto-encoder for complex numbers using standard auto-

encoder for real numbers in deep learning.

First, we introduce the encoder which mimics the noisy lin-

ear measurement process. The equation for complex numbers

in (1) can be equivalently expressed via the following two

equations for real numbers:

ℜ(y) = ℜ(A)ℜ(x) −ℑ(A)ℑ(x) + ℜ(z) (2)

ℑ(y) = ℑ(A)ℜ(x) + ℜ(A)ℑ(x) + ℑ(z) (3)

where ℜ(·) and ℑ(·) represent the real part and imaginary part

of a complex number. Based on (2) and (3), we build two fully-

connected neural networks, each with two layers, to mimic

two linear relations with coefficient matrices ℜ(A) and ℑ(A),
respectively. For each neural network, the input layer has N
neurons and the output layer has L neurons; the weight of the

connection from the n-th neuron in the input layer to the l-th
neuron in the output layer represents the (l, n)-th element of

the corresponding coefficient matrix; activation functions are

not used in the output layer, to realize the linear relation. When
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ℜ(x) and ℑ(x) are input to the neural network corresponding

to the linear relation with coefficient matrix ℜ(A) (or ℑ(A)),
ℜ(A)ℜ(x) and ℜ(A)ℑ(x) (or ℑ(A)ℜ(x) and ℑ(A)ℑ(x))
can be obtained as the outputs. By summing ℜ(A)ℑ(x),
ℑ(A)ℜ(x) and ℑ(z), ℑ(y) can be obtained using the encoder.

By subtracting ℑ(A)ℑ(x) from ℜ(A)ℜ(x) and then adding

ℜ(z), ℜ(y) can also be obtained using the encoder.

Next, we introduce the decoder which approximates the

sparse support recovery process. We build a fully-connected

neural network with four layers, i.e., one input layer, two

hidden layers and one output layer. The input layer has 2L
neurons with ℜ(y) being input into the first L neurons and

ℑ(y) being input into the last L neurons. Each of the two

hidden layers has Q neurons and takes the rectified linear

unit (ReLU), i.e., ReLU(x) = max(x, 0), as the activation

function. The output layer has N neurons and uses Sigmoid

function (Sigmoid(x) = 1
1+e−x ) as the activation function to

produce output α̃ ∈ [0, 1]N which is used to estimate α. We

use matrixes Θ1 ∈ RQ×2L, Θ2 ∈ RQ×Q and Θ3 ∈ RN×Q to

denote the weights of the connections from the input layer to

the first hidden layer, the weights of the connections from the

first hidden layer to the second hidden layer, and the weights

of the connections from the second hidden layer to the output

layer, respectively. We use vectors b1 ∈ RQ, b2 ∈ RQ and

b3 ∈ RN to denote the bias values corresponding to the first

hidden layer, the second hidden layer and the output layer,

respectively. We use W , ((Θi,bi))i=1,2,3 to denote the

parameters of the decoder.

We introduce the training procedure for the auto-encoder.

Consider I training samples (x(i),α(i)), i = 1, · · · , I . We use

α̃
(i) to denote the output of the auto-encoder corresponding to

input x(i), which depends on (W,A). To measure the distance

between α
(i) and α̃

(i), we use the cross-entropy loss function:

L(W,A) = 1
NI

∑
I

i=1

∑
N

n=1 −(α
(i)
n log(α̃

(i)
n ) + (1−α

(i)
n ) log(1−

α̃
(i)
n )). We train the auto-encoder using the ADAM algorithm

which is a first-order gradient-based optimization algorithm

for stochastic objective functions [22]. After training, we

obtain the measurement matrix by extracting the weights of

the encoder. In addition, we can directly use the decoder to

perform sparse support recovery.

B. Hard Thresholding Module

Note that even after training, there is no guarantee that

the proposed architecture can produce an output α̃ that

is in {0, 1}N . Thus, we build a hard thresholding module

parameterized by threshold r to convert the output of the

auto-encoder α̃ ∈ [0, 1]N to the final output of the pro-

posed architecture α̂ , (α̂n)n∈N ∈ {0, 1}N , where α̂n ,

I[α̃n ≥ r]. Let PE(r) , 1
I

∑I
i=1

‖α(i)−α̂
(i)‖1

N denote the

error rate for a given threshold r. Given I training samples

(x(i),α(i)), i = 1, · · · , I , we choose the optimal threshold

r∗ = argminr PE(r), and use the optimized error rate

P ∗
E = PE(r

∗) as the performance metric for the proposed

approach.

IV. NUMERICAL RESULTS

In the simulation, we consider device activity detection in

grant-free massive access with N single-antenna devices each

TABLE I
SAMPLE SIZES

Training Validation Testing

Case 1, Case 2 4.5× 105 5× 104 1× 104

Case 3 9× 104 1× 104 1× 105

with a pilot sequence of length L and one single-antenna BS.

We show the average error rate of the proposed data-driven

approach and five baseline schemes1 over the same set of

testing samples. Specifically, we consider classic methods, i.e.,

LASSO with the optimal regularization parameter [7], Group

LASSO [10], Sparse Group LASSO [23] and AMP [9]. In

addition, to demonstrate the effectiveness of the measurement

matrix design via the encoder in the proposed architecture,

we also consider a deep learning (DL) method, relying on the

same structure as the decoder and hard thresholding module

in the proposed architecture but without measurement matrix

design [14].2 All baseline schemes adopt the same set of pilot

sequences for the N devices whose entries are independently

generated from CN (0, 1). To guarantee that the power of each

pilot is the same as that for the baseline schemes, we require

‖an‖2 =
√
L in training the proposed architecture.

In the simulation, we choose hn ∼ CN (0, 1) and σ2 = 0.1.

To show how the proposed data-driven approach benefits from

exploiting the structures of the sparsity patterns, we consider

three cases. In Case 1, N = 40 devices randomly access the

channel in an i.i.d. manner with access probability Pr[αn =
1] = p, n ∈ N . In Case 2, N = 40 devices are divided

into two groups, i.e., N1 and N2 of the same size with the

devices in Ni accessing the channel in an i.i.d. manner with

access probability Pr[αn = 1] = pi, n ∈ Ni, i = 1, 2, and let

p = p1+p2

2 . In Case 3, N = 200 devices are divided into 40

groups of the same size, and 40 Bernoulli random variables

ξj , j ∈ {1, · · · , 40} are i.i.d. with Pr[ξj = 1] = pg , for all j ∈
{1, · · · , 40}; if ξj = 1, all devices in the j-th group access the

channel in an i.i.d. manner with access probability pu ∈ [0, 1].
Thus, pu can be treated as the conditional access probability

for each device, and p = pupg represents the access probability

for each device. Note that the active states of the devices in

one group are correlated for all pu ∈ [0, 1], and are the same

when pu = 1. Table I shows the sizes of training samples

and validation samples for training the architectures in the

proposed approach and the DL method, and the sizes of testing

samples for evaluating the proposed approach and the baseline

schemes. All testing samples are excluded from the training

and validation samples. The maximization epochs, learning

rate and batch size in training the proposed architecture are

set as 100000, 0.001 and 128, respectively. When the value of

the loss function on the validation set does not change for five

epoches, the training process is stopped and the corresponding

parameters of the auto-encoder are saved.

Fig. 2(a), Fig. 3(a) and Fig. 4(a),(b) illustrate the error

rate of device activity detection versus the undersampling rate

1The deep learning based methods in [11]–[13], [15]–[21] are not applicable
in our setup.

2Note that the obtained measurement matrix is in general not necessarily
suitable for other sparse support recovery methods. The proposed measure-
ment matrix design using auto-encoder is applicable to cases where a sparse
support recovery method can be approximated using a neural network.
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(b) Error rate versus p at L/N = 0.3.

Fig. 2. Error rate versus undersampling ratio (L/N ) and access
probability (p) in Case 1.
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(c) Error rate versus p1/p2 at p = 0.1,

L/N = 0.3.

Fig. 3. Error rate versus undersampling ratio (L/N ), access proba-
bility (p) and access probability ratio (p1/p2) in Case 2.

L/N at p = 0.1 in Case 1, Case 2 and Case 3, respectively.

Fig. 2(b), Fig. 3(b) and Fig. 4(c) illustrate the error rate of

device activity detection versus the access probability p at

L/N = 0.3 in Case 1, Case 2 and Case 3, respectively. In

each case, the error rate of each scheme decreases with L/N
and increases with p; LASSO outperforms AMP when L/N is

small or when p is large, owing to its optimization framework,

and performs similarly to AMP in the other regimes; the

proposed data-driven approach outperforms DL, demonstrating

the importance of measurement matrix design in improving

sparse support recovery. In Case 1, the proposed data-driven

approach has similar performance as LASSO, because no extra

properties of the sparsity patterns can be extracted from the

training samples to improve sparse support recovery. In Case 2,

the gain of the proposed data-driven approach over LASSO is

larger than that in Case 1, and the gain increases with p1/p2
as shown in Fig. 3(c), which shows that the proposed data-

driven approach can exploit the difference in device activity

for the two groups to improve sparse support recovery. In Case

3 with pu = 1, we additionally consider Group LASSO [10],

which is specifically designed for group-wise sparse signals

and explicitly utilizes the values of the group size and the

number of groups. In Case 3 with pu ∈ (0, 1), we additionally

consider Sparse Group LASSO [23], which is specifically
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Fig. 4. Error rate versus undersampling ratio (L/N ), access proba-
bility (p) and conditional access probability (pu) in Case 3.

designed for group-wise and within group sparse signals and

explicitly utilizes the values of the group size and the number

of groups. By making use of group sparsity, Group LASSO

and Sparse Group LASSO significantly outperform LASSO.

In Case 3 with large pu, the proposed data-driven approach

overwhelmingly outperforms LASSO and even significantly

outperforms Group-LASSO and Sparse Group LASSO, as it

successfully exploits the properties of the sparsity patterns

based on the training samples in designing both the measure-

ment matrix and support recovery method; the performance

of the proposed data-driven approach increases with pu, while

the performance of LASSO and Sparse Group LASSO remains

almost the same, as shown in Fig. 4(d). Table II shows that

the proposed sparse support recovery method (corresponding

to the decoder and hard thresholding module in the proposed

architecture implemented in tensorflow) runs much faster than

the classic methods in all three cases.3

TABLE II
CPU RUNNING TIMES (SEC) FOR ONE SAMPLE AT p = 0.1 AND

L/N = 0.3
Proposed method LASSO AMP

Cases 1,2 1.1× 10
−5

1.3× 10
−2

8.4× 10
−2

Case 3 1.3× 10−5 1.2× 10−1 3.9× 10−1

V. CONCLUSION

In this letter, we propose a data-driven approach to jointly

design the measurement matrix and support recovery method

for complex sparse signals using the concept of auto-encoder

in deep learning. Due to the effective joint design and

the ability to exploit the structures of sparsity patterns, the

proposed approach achieves a much lower error rate than

classic methods. Furthermore, the proposed approach is able

to achieve sparse recovery with high computational efficiency.

3LASSO and AMP are conducted using MATLAB, while the proposed
method is implemented using Python. The corresponding running times are
evaluated on the same server.
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