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Adaptive Reverberation Absorption using
Non-stationary Masking Components Detection for

Intelligibility Improvement
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Abstract—This letter proposes a new time domain absorption
approach designed to reduce masking components of speech sig-
nals under noisy-reverberant conditions. In this method, the non-
stationarity of corrupted signal segments is used to detect mask-
ing distortions based on a defined threshold. The non-stationarity
is objectively measured and is also adopted to determine the
absorption procedure. Additionally, no prior knowledge of speech
statistics or room information is required for this technique. Two
intelligibility measures (ESII and ASIIST) are used for objective
evaluation. The results show that the proposed scheme leads to a
higher intelligibility improvement when compared to competing
methods. A perceptual listening test is further considered and
corroborates these results. Furthermore, the updated version of
the SRMR quality measure (SRMRnorm) demonstrates that the
proposed technique also attains quality improvement.

Index Terms—Reverberation, absorption, non-stationarity, in-
telligibility

I. INTRODUCTION

SPEECH communication commonly takes place in en-
closed and urban environments such as concert halls,

kitchens and offices. Along with the direct acoustic signal
propagation between source and listener locations, the sound
reverberates due to reflection in walls and surfaces.While
the early reflections (ER) can improve speech intelligibility,
late reverberation (LR) may cause quality and intelligibility
reduction [1][2][3][4].

Room impulse response (RIR) typically describes the sound
propagation and is generally described by the reverberation
time (T60) and the direct-to-reverberant ratio (DRR). Speech
signals can also be degraded by background acoustic noises
(Babble, Chainsaw and Cafeteria) present in the urban space.
Such effects are non-stationary masking components and rep-
resent a major drawback to speech intelligibility improvement.

In the literature, speech enhancement solutions were
designed to cope with background non-stationary noises
[5][6][7][8] attaining interesting results for quality and in-
telligibility. However, room reverberation is not considered
by these techniques. Adaptive time-domain pre-processing
methods were proposed to improve speech intelligibility by
mitigating the reverberation effect. The Steady State Suppre-
sion (SSS) [9] solution considers the importance of transient
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regions of speech for intelligibility and suppresses steady-
state frames to reduce overlap masking effects. A more recent
approach, the Adaptive Gain Control (AGC) [10] method uses
prior knowledge of speech statistics and the RIR information
to adaptively improve or reduce the energy of speech frames.
Both methods operate prior to speech signal presentation in a
room, such that the resulting reverberated signal is similar to
its anechoic version.

This letter proposes a new time-domain method denomi-
nated Adaptive Reverberation Absorption with Non-Stationary
Detection (ARANSD). Different from SSS and AGC tech-
niques, the main idea of this proposal is to act similar to a
physical element, changing the low absorption characteristic
of materials that compose a room in the listener position. One
major advantage of ARANSD is that it adaptively absorbs mask-
ing components of corrupted speech signals. Thus, leading to
speech intelligibility improvement with no prior knowledge of
the RIR or speech statistics. The Index of Non-Stationarity
(INS) [11] is selected as an objective measure for the detec-
tion of masking components. A non-stationarity threshold is
defined for the proposed frame-by-frame absorption procedure.

Extensive experiments are conducted to objectively evaluate
the ARANSD method for speech intelligibility improvement.
The noisy-reverberant scenario is composed of two real re-
verberant rooms and four background non-stationary acoustic
noises with five different SNR values. The ESII [12] and
ASIIST [13] measures are adopted for the intelligibility predic-
tion. These measures are explicitly designed to deal with the
non-stationarity of speech and its distortions. The SRMRnorm
[14] measure is further considered as it is primarily used for
signals under reverberation effect. A subjective listening test
is also performed and results show that the proposed method
outperforms the competing techniques in terms of speech
intelligibility.

II. REVERBERATION AND NON-STATIONARITY

The reverberation effect is usually defined as a linear
filtering process such that, given a RIR h(n), the reverberated
signal can be obtained by convolution. In real environments,
acoustic noises are also a common distortion, which means
that the resultant noisy-reverberant speech signal s(n) can be
obtained by s(n) = x(n) ∗ h(n) + w(n), where x(n) is the
clean speech signal and w(n) is the background noise.

The Index of Non-Stationarity (INS) [11] is here defined
to objectively examine the non-stationarity of speech signals
under noisy-reverberant environments. This measure compares
the target signal with stationarity references called surrogates
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for different time scales Th/T , where Th is the short-time
spectral analysis length and T is the total signal duration. For
each length Th, a threshold γ is defined to keep the stationarity
assumption considering a 95% confidence degree as

INS

{
≤ γ, signal is stationary
> γ, signal is non-stationary. (1)

Figure 1 illustrates the spectrograms and INS values ob-
tained for a direct speech signal and its corresponding rever-
berated version in the Aula Carolina1 room with T60 = 4.9 s
in two conditions: without and with a background Chainsaw
noise at −3 dB. Note that reverberation and acoustic noise sig-
nificantly change the temporal and spectral structure of speech
signal. These masking effects can engender intelligibility re-
duction [1][2][3]. Furthermore, the non-stationary behavior of
the natural speech signal is considerably attenuated, varying its
maximum INS value from 200 to around 100. The background
Chainsaw noise increases the INS value in small scales, which
means that short-time segments become more distinct from the
overall signal. As INS alters on noisy-reverberant scenarios,
it can be a useful instrument for detection of such effects. In
this work, the INS is adopted for detection and reduction of
masking components.

III. ADAPTIVE REVERBERATION ABSORPTION WITH
NON-STATIONARY DETECTION

The ARASND method is presented in this section. The
technique is described in two main phases: reverberation
detection and acoustic absorption.

A. Reverberation Detection
A reverberation group (RG), denoted as sRG(m,n), is here

defined as the m-th segment composed of N = 8 consecu-
tive frames of the corrupted speech. This window duration
is selected to enable a long-term temporal observation of
the reverberation effect and detect noisy-reverberant masking
components. Successive RGs are obtained considering a 50%
overlap between signals.

For each sRG(m,n), the INS values are computed consid-
ering different scales of Th/T . The INS values obtained for all
scales are grouped into a vector vINS(m) which characterizes
the non-stationary behavior of the m-th RG. Consecutive
vectors are then used to compute a normalized variation of
the non-stationary property as

δINS(m) =
||vINS(m)− vINS(m− 1)||
||vINS(m)||+ ||vINS(m− 1)||

. (2)

Figure 2 shows the δINS values obtained for the reverberated
and noisy-reverberated speech signals of Figure 1. Note that
even with masking components, important speech regions, e.g.
the ones near 0.2 s, 1.1 s, 1.4 s and 2.7 s (refer to Fig.1
(top)), are still identified by the highest values of δINS in
both conditions. Moreover, masked regions closed to 0.7 s,
1.9 s and 3.0 s attain low δINS values. This demonstrates
that the proposed δINS is an interesting detection approach
for noise and reverberation masking components. The θINS

(black dashed line) in Figure 2 illustrates a threshold of non-
stationarity defined by the median value of δINS . In this

1RIR collected from the AIR database [15].
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Fig. 1. Spectrogram and related INS for direct signal (top), reverberated
signal with T60 = 4.9s and SRR = 7.1 dB (middle), and reverberated signal
with Chainsaw noise at −3 dB (bottom).
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Fig. 2. Non-stationarity variation (δINS) for the reverberated and noisy-
reverberated signals.
example, θINS value is 0.4 indicating the difference of the
speech and noisy-reverberant regions.

B. Acoustic Absorption
The proposed ARANSD absorption approach is implemented

on a frame-by-frame basis and is established depending on
the value of θINS . For each frame sfrm(l, n), a INS vector
vfrm(l) is extracted similarly as in Section III-A. A short-time
distance d(l) ∈ [0, 1] is then computed as in (2) and used to
determine the l-th frame absorption.

Sigmoid functions are selected to assign each value of
d(l) to a corresponding absorption A(m, l) because of their
smoothness and monotonic property. The proposed adaptive
absorption A(m, l) is therefore defined in every frame l by

A(m, l) =

{
F (l). L(m)−S

1+exp(−k.(d(l)−d0))
+ S, δINS ≤ θINS ;

L′

1+exp(−k′.(d(l)−d′0)
, δINS > θINS ,

(3)

where d0 and d′0 are the inflection points with corresponding
growth rate of k and k′. The S stands for a minimum shift
in order to avoid total absorption of signal frames. Moreover
L(m) and L′ are the maximum absorption values. As the
noisy-reverberant masking effect is non-stationary by nature it
is important to determine an adaptive upper bound absorption.
Both L(m) and the F (l) factor are considered for this task.
The first one is updated accounting the overlapped region as
L(m) = pδINS + (1 − p)L(m − 1), where p assigns the
importance of the present RG signal. The second term is
defined as the factor F (l) = d(l)1.2−d(l) to guarantee that
A(m, l) ≈ L(m) only for d(l) ≈ 1. As d(l) represents the
short-term non-stationarity behavior, the absorption maintain
a high value if d(l) ≈ 1 for it refers to an important speech
region. The processed signal s′(n) is obtained by overlap add
process of absorbed frames s′frm(l, n) = A(m, l).sfrm(l, n).
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Fig. 3. Spectrogram and related INS for noisy-reverberant signal processed
by SSS (top), AGC (middle) and ARANSD (bottom).

Figure 3 depicts the spectrograms and INS values of the
noisy-reverberant signal (refer to Figure 1 (bottom)) processed
by the baseline SSS, the AGC technique and the proposed
ARANSD. Note that, the ARANSD is able to absorb masking
components of the corrupted signal, e.g. near 0.7s and 1.5s,
which makes the resulting signal more similar to its anechoic
version. Moreover, the proposed method restores the natural
non-stationarity behavior raising the INS value from 100 up
to 150, which is closer to the direct signal.

IV. EXPERIMENTS AND DISCUSSION

Several noisy-reverberant conditions are used to evaluate the
SSS [9], the AGC [10] and the proposed ARANSD technique
in terms of intelligibility. A subset of 24 speakers (16 male
and 8 female) are randomly selected from the TIMIT speech
database [16], which leads to a total of 240 speech signals
(ten for each speaker). ¿From these, 100 are arbitrarily chosen
for the test signal and the remaining are used on the speech
modeling step of AGC. Each speech segment is sampled at 16
kHz and has, on average, 3 seconds. Two real reverberation
rooms from the AIR database [15] are considered in the
experiments. The Stairway is characterized by a medium
reverberation time (T60 = 1.1 s) and a small value of DRR
= −9.1 dB. The Aula Carolina room presents parameters of
T60 = 4.9 s and a higher value of DRR = 7.1 dB. Both
RIRs are equalized for a total energy of 17.9 dB. The Babble,
SSN, Cafeteria and Chainsaw additive background noises are
selected, respectively, from the RSG-10 [17], DEMAND [18]
and Freesound.org2 databases. Except for the SSN, all other
noises are characterized with non-stationary behavior.

Speech signals are corrupted considering five SNRs values
varying from −3 dB up to 1 dB, where the SNRs are measured
between the original unprocessed speech and the background
noise. The SNR range is adopted to guarantee ESII and ASIIST
scores between 0.45 and 0.75 for the unprocessed (UNP)
speech signal in all scenarios. These values are defined as
thresholds of poor and good intelligibility [19][20], respec-
tively. All UNP intelligibility scores are presented in Tables
I and II. The smallest value (ESII= 0.48) is achieved for the
Stairway room with the highly non-stationary Chainsaw noise
at −3 dB. The Aula Carolina room with Cafeteria noise at 1
dB presents the highest score of ASIIST= 0.71. The ARASND

2Available at www.freesound.org.

TABLE I
ESII INTELLIGIBILITY MEASURE [%] FOR UNP SPEECH SIGNALS

Stairway (T60 = 1.1 s) Aula Carolina (T60 = 4.9 s)
SNR (dB) -3 -2 -1 0 1 -3 -2 -1 0 1

N
oi

se
s Babble 0.53 0.53 0.54 0.55 0.56 0.64 0.65 0.66 0.67 0.67

Cafeteria 0.54 0.55 0.56 0.56 0.57 0.65 0.66 0.67 0.67 0.68
Chainsaw 0.48 0.49 0.50 0.51 0.52 0.57 0.58 0.59 0.61 0.62
SSN 0.52 0.52 0.53 0.54 0.55 0.62 0.63 0.64 0.65 0.66

TABLE II
ASIIST INTELLIGIBILITY MEASURE [%] FOR UNP SPEECH SIGNALS

Stairway (T60 = 1.1 s) Aula Carolina (T60 = 4.9 s)
SNR (dB) -3 -2 -1 0 1 -3 -2 -1 0 1

N
oi

se
s Babble 0.58 0.59 0.60 0.61 0.61 0.68 0.68 0.69 0.70 0.71

Cafeteria 0.60 0.61 0.61 0.62 0.62 0.69 0.70 0.70 0.71 0.71
Chainsaw 0.55 0.56 0.57 0.58 0.58 0.62 0.63 0.64 0.65 0.66
SSN 0.58 0.58 0.59 0.60 0.61 0.66 0.67 0.68 0.69 0.70
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Fig. 4. ∆ESII intelligibility improvement [x10−2] for (a) the Stairway (T60 =
1.1 s) and (b) the Aula Carolina (T60 = 4.9 s) rooms.
operates with 32 ms frames and θINS = 0.4. The maximum
value for relevant speech regions L′ is set to 1.2 and the RG
importance to p = 0.7 in all scenarios. The sigmoid parameters
are fixed to k = 17 for d = −0.2 and k′ = 13 for d′ = 0.5.
The minimum shift S is set to 0.05.

A. Objective Evaluation of Intelligibility
The ESII [12] and ASIIST [13] measures are adopted to

evaluate the intelligibility improvement under non-stationary
noisy-reverberant conditions. The direct path speech signal
sdir(n) is chosen as the reference signal. Since late reverber-
ation and additive background noise reduce intelligibility and
are uncorrelated to sdir(n), the jointly distortion is obtained
by the subtraction s(n) − sdir(n). These objective measures
are normalized by the intelligibility achieved for the clean un-
processed signal corrupted by SSN noise at 20 dB, considered
here as a good intelligibility reference.

The ESII intelligibility improvement (∆ESII) is presented
on Figure 4 for the Stairway and Aula Carolina rooms. In the
first case, the ARANSD outperforms the competing methods
accomplishing more than seven times the AGC value in
most of the cases. For the Cafeteria scenario at −1 dB the
proposed technique achieves an improvement of 13.6, which
corresponds to an assessment eight times the value of 1.7 for
the AGC method. As the Stairway room presents a DRR of
−9.1 dB, the reverberation energy in this room is considerably
higher than the energy related to the direct signal. This means
that the masking components are highlighted in this scenario.



4

-3 -2 -1 0 1
0

5

10

15

20

∆
A

S
II

S
T

 

-3 -2 -1 0 1
0

2

4

6

8

∆
A

S
II

S
T

 

-3 -2 -1 0 1
0

5

10

15

20

∆
A

S
II

S
T

 

-3 -2 -1 0 1
0

2

4

6

8

∆
A

S
II

S
T

 
-3 -2 -1 0 1

0

6

12

18

24

∆
A

S
II

S
T

 

-3 -2 -1 0 1
0

3

6

9

12

∆
A

S
II

S
T

 

-3 -2 -1 0 1
SNR (dB) 
      (a)

0

5

10

15

20

∆
A

S
II

S
T

 

-3 -2 -1 0 1
SNR (dB) 
      (b)

0

2

4

6

8

∆
A

S
II

S
T

 

Babble

Cafeteria

Chainsaw

SSN

Cafeteria

Chainsaw

SSN

Babble

Fig. 5. ∆ASIIST intelligibility improvement [x10−2] for (a) the Stairway
(T60 = 1.1 s) and (b) the Aula Carolina (T60 = 4.9 s) rooms.

As the proposed ARANSD is an absorption approach designed
to detect such effects, it is able to effectively reduce the
temporal coloration. The SSS technique presents the small-
est overall intelligibility improvement. Considering the Aula
Carolina room, the proposed method also achieves the highest
improvement for most of the cases. This is observed for all
noisy-reverberant conditions contemplating SNRs below or
equal to 0 dB. The best ∆ESII results are obtained by ARANSD
considering the most challenge condition of Chainsaw acoustic
noise. The ARANSD technique presents similar improvement
as AGC for both Babble and Cafeteria noises at 1 dB.

Figure 5 depicts the ∆ASIIST values for both reverber-
ation rooms. For the Stairway room, the proposed method
effectively attenuates masking components and attains the
highest intelligibility improvement results for all conditions
with ∆ASIIST values above 10. The ARANSD accomplished
the highest overall ∆ASIIST of 16.5 for the highly non-
stationary Chainsaw noise at −3 dB. Baseline technique SSS
is outperformed by the ARANSD and AGC algorithms in
all scenarios. The ARANSD also presents the best ∆ASIIST
intelligibility results for the Aula Carolina room. Once again,
the highly non-stationary Chainsaw noise leads to the most
challenge condition. In this case, the ARANSD is still able to
achieve an average improvement of 8.3, compared to 3.6 and
1.2 for the AGC and SSS techniques, respectively.

The SRMR quality metric [21] estimates the human per-
ceived reverberation effect on speech signals. Its updated
version, the SRMRnorm [14], is also selected for objective
evaluation. The goal is to distinguish among the three ap-
proaches the ones that can better mitigate temporal coloration
on speech signals. The direct signal is used as a reference for
normalization, such that the SRMRnorm presents values ranging
between [0, 1], where 1 determines a reverberation free signal.

Figure 6 illustrates the average SRMRnorm values for the
Stairway and Aula Carolina rooms under a noise-free rever-
beration condition (a) and a noisy-reverberation scenario with
SSN background noise at 0 dB (b). Note that the ARANSD
attains the best SRMRnorm values for all situations with a
mean of 0.85 and 0.89 for the Stairway and Aula Carolina
rooms, respectively. This implies that the proposed method
achieved an average quality increment of 0.16 and 0.08 for
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Fig. 7. Perceptual intelligibility evaluation for ISM room (T60 = 1.0 s) and
SSN additive acoustic noise.

these rooms when compared with the UNP case. The SSS and
AGC techniques present similar behavior, attaining the worst
average SRMRnorm values in these scenarios. These results re-
inforce the capacity of the proposed method to absorb masking
components providing intelligibility and quality improvement.
B. Subjective Intelligibility Evaluation

A listening test [22] with ten native male Brazilian volun-
teers was conducted considering a closed scenario of phonetic
balanced words3. Their ages ranged from 22 to 41 years with
an average of 32. A simulated room with 7.0 x 5.2 x 3.0 m3

and T60 = 1.0 s was generated by the image source method
(ISM) [23]. The SSN acoustic noise was adopted with SNRs of
−3 dB, 0 dB and 3 dB. Ten words were applied for each of
12 test conditions, i.e., three SNR levels for three methods
plus the unprocessed case. Participants were introduced to
the task in a training session with 8 words. The material
was diotically presented using a pair of Roland RH-200S
headphones. Listeners heard each word once in an arbitrary
presentation order.

The average intelligibility scores and standard deviations
values for each method are presented in Figure 7. The ARANSD
improves the intelligibility under all conditions over competing
techniques. The proposed method improves 9, 7 and 9 against
3, 1 and 5 for the AGC under SNR values of −3 dB, 0 dB
and 3 dB, respectively. In accordance with findings of [10][13],
SSS attains scores less than or equal to the UNP case.

V. CONCLUSION
This letter proposed a new time domain absorption ap-

proach designed to reduce masking components of speech
signals under noisy-reverberant conditions. In this method, the
non-stationarity of segments of the corrupted signal is used
to detect masking distortions based on a defined threshold.
The non-stationarity degree was objectively measured with
the INS and was also adopted to determine the absorption
procedure. Two reverberant rooms and four acoustic noises
were used to compose the noisy-reverberant scenarios. Two
intelligibility measures were used for objective evaluation.
The results showed that the proposed scheme leads to a
higher intelligibility improvement when compared to compet-
ing methods. A perceptual listening test corroborated these
results. An objective quality measure demonstrated that the
proposed technique attains quality improvement.

3 The complete test database is available at lasp.ime.eb.br.
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