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Matched Filtering Accelerated by Tensor Cores on
Volta GPUs With Improved Accuracy Using
Half-Precision Variables

Takuma Yamaguchi

Abstract—Matched Filtering can be applied to various fields
owing to its ability to compute a correlation coefficient of two
vectors and detect many template events. With an improvement
in observation techniques, massive observation data and templates
have been accumulated, in which a reduction of computation cost of
Matched Filtering has become an important issue. This computa-
tion is mainly matrix-matrix product and Tensor Core on NVIDIA
Volta GPU is expected to compute it rapidly. However, actual
performance of Tensor Core is usually limited by the bandwidth of
shared memory or global memory. In addition, only lower-precision
data types are supported in the current API for Tensor Core. There-
fore, we have to prevent a decline in accuracy in the computation. In
this letter, we designed a Matched Filtering algorithm to solve these
problems mentioned above and utilized high arithmetic capacity
on Tensor Core. Specifically, we reduced the number of memory
access to global memory and shared memory by using low-level
description. In addition, we introduced local normalization to
reduce the numerical error. We applied our developed kernel to
template matching of seismic observation data and compared the
performance and the accuracy with cuBLAS, a common library in
GPU computation. When we compared the performance with the
function in cuBLAS that offered almost the same accuracy as our
kernel, we reduced the elapsed time by a factor of 4.74.

Index Terms—Matched Filtering, GPU computation, Tensor
Core, half precision arithmetic.

1. INTRODUCTION

ATCHED Filtering [1] is a process of detecting specific
M pattern in a wave with noise, and it has been applied
to various fields, which include signal detection of radar [2],
detection of gravitational waves [3], and detection of earthquake
events [4]. With the improvement of measurement technology,
massive observation data have been accumulated; thus, reduc-
tion of the computation cost in Matched Filtering becomes an
important issue. Methods using GPUs are proposed by [5];
however, knowledge based on latest computer architectures can
achieve further speeding-up.
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Recently, NVIDIA Volta GPU [6] has Tensor Core [7] for
acceleration of dense matrix-matrix multiplication, which is one
of the biggest features of the architecture. Two problems to
accelerate computation with Tensor Core are identified. The first
point is that the performance is often memory bandwidth bound
as Tensor Core has extremely high peak theoretical performance.
The second point is that current Tensor Core supports only lower
precision data types, i.e., a 16-bit floating point number, an 8-bit
integer, and an 1-bit integer. For example, the 16-bit floating
point number is unable to guarantee the accuracy of more than
4 digits. In some specific fields where very high accuracy are
not required, it is easy to apply these data types; however, it
is challenging to apply them in general numerical simulations.
Numerical error in Matched Filtering can lead to detection of
unnecessary events or overlook of events; thus, the effect of
numerical error should be minimized. If we design the algorithm
which satisfies conditions mentioned above, we can achieve
benefits of very high performance by Tensor Core operations.

This letter proposes an algorithm to accelerate the core com-
putation in Matched Filtering using Tensor Core with 16-bit
floating point number. We issue Tensor Core operations with
lower memory access cost. Besides, we locally normalize the
components of matrices to reduce the effect of using lower
precision data types. We demonstrate that our algorithm attains
a reasonable speeding up and improvement in accuracy when
compared to cuBLAS [11], the common library for Tensor Core.
Matched filtering is mathematically a normalized 1D convolu-
tion, so our approach can be beneficial for other implementations
targeting convolutional neural networks [8].

The rest of this letter is organized as follows: Section II
describes our proposed algorithm. Section III describes the
performance measurement using seismic observation data.

II. METHODOLOGY

Matched Filtering detects waves similar to templates from
the observation data by calculating correlation coefficient as
follows:

>y Ti(R)S(k +1)
VIR T2 () S, 820k +1)

where T} is the j-th template wave, S is the observation wave, 4
is the initial time step of clipped observation wave, and K is the
length of template wave. We focused on the computation in the
time domain while the computation in the frequency domain is
also available. When computing CC/(i, j) for many templates
and for many time steps, calculation of the dot product in the

CC(i,j) = (1
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__device__ void tensor_core_matmul(
half *amat, half *bmat, float *cmat) {

wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> A;
wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::col_major> B;
wmma::fragment<wmma::accumulator, 16, 16, 16, float> C;
wmma::load_matrix_sync(A, amat, 16);
wmma::load_matrix_sync(B, bmat, 16);
wmma::mma_sync(C, A, B, C); // C+=A*B
wmma::store_matrix_sync(cmat, C, 16, wmma::row_major); }

Fig. 1. A common usage of Tensor Core operations by calling wmma API
in CUDA C. Each load_matrix_sync distributes a matrix on shared memory to
registers for Tensor Core multiplication.
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Fig. 2. Memory transaction for an observation matrix. The matrix has many

duplicated components. Shared memory is used as a buffer, and components of
the actual matrix are read from shared memory.

numerator of Eq. (1) accounts for the largest computation cost.
These dot products are a matrix-matrix multiplication when we
calculate them with many ¢ and j at the same time. Therefore,
we can introduce Tensor Core operations for this computation.

In this letter, we use warp matrix multiply-accumulate
(wmma) API [7] for Tensor Core operations to optimize the
performance and improve the accuracy using low-level descrip-
tions. This API facilitates the computation of the two 16 x 16
matrices multiplication using 32 threads as shown in Fig. 1.

As GPU has high peak theoretical performance, we must
provide data to cores rapidly to prevent memory bandwidth from
binding the performance.

In matrix-matrix multiplications, it is efficient to use shared
memory as a buffer and to reduce the amount of memory
access to global memory. We assume that K is at most 256;
therefore, we calculate a correlation coefficient by conducting 16
multiplications of 16 X 16 matrices. As the number of templates
depends on problems, we construct our algorithm to compute
correlation coefficients for 16 templates at a time, which is the
smallest configuration for Tensor Core operations. We assign
a 16 x 256 template matrix and a 256 x N matrix to each
thread block in computing on GPU. While we have to read all
components for template matrices, we can reduce the memory
access cost for reading observation matrix by applying the same
method as [5]. Observation matrix has duplicated components
as the matrix consists of multiple observation vectors which
slide initial time steps. Given the specific characteristic in this
problem, we store observation data required for each thread
block in shared memory as described in Fig. 2. Then, we reduce
the number of memory access to global memory. The number
of components of the observation matrix per thread block is
N x 256, proportional to the floating operation counts in the
multiplication. To generate this observation matrix, we require
N + 255-time steps of observation data. Since the size of the
observation matrix for each thread block N increases, higher
performance is expected as the amount of memory access per
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asm("{¥n¥t"
".reg .f32 f<1>;¥n¥t"
"mov.f32 f0, 0f00000000;¥n¥t"
"wmma.mma.sync.aligned.col.col. m8n32k16.f32.f32
{%0,%1,%2,%3,%4,%5,%6,%7}, {%8,%9,%10,%11,%12,%13,%14,%15},
{%16,%17,%18,%19,%20,%21,%22,%23}, {f0,f0,f0,f0,f0,f0,f0,f0}; ¥n¥t" "}"
=f"(c[0]),"=f"(c[1]),"=f"(c[2]),"=F"(c[3]),"=F"(c[4]),"=f"(c[5]),"=f"(c[6]),"=f"(c[7])
"r"(a[0]),"r"(a[1]),"r"(a[2]),"r"(a[3]),"r"(a[4]),"r"(a[5]),"r"(a[6]),"r"(a[7]),
"r"(b[0]),"r"(b[11),"r"(b[2]),"r"(b[3]),"r"(b[4]),"r"(b[5]),"r"(b[6]),"r"(b[7]));

Fig. 3. A simple example to call wmma API from PTX assembly in CUDA
C. 32 components of input 16 x 16 matrices in half precision and 8 components
of output 16 x 16 matrices in single precision are assigned per thread as input
arrays a and b and an output array c, respectively, as explained in [9].

the computation is reduced. However, the memory resources
per thread increase, and it is harder to overlap latencies in the
computation owing to a decline in the number of available
threads. We decide an appropriate matrix size through a per-
formance comparison of different matrix size. Our algorithm
can lead to a reduction in access cost of global memory.

However, computation using Tensor Core tends to be a shared
memory bandwidth bound for the following reasons. Tensor
Core requires cooperation of 32 threads for one matrix-matrix
multiplication. Here components of the matrices must be stored
in registers of the corresponding thread. Then, the data mapping
between threads is required before and after Tensor Core oper-
ations. This mapping is so complex that wmma API provides
functions to map values of registers. These functions are using
shared memory for the data distribution, that is, transferring
data between shared memory and registers. If we issue these
functions too frequently, the amount of memory access to shared
memory increases. To exhibit high peak performance on Tensor
Core, we must reduce the memory access mentioned above.

We construct observation matrix reading values in shared
memory. The components of the matrix in shared memory
are transferred to registers using load_matrix_sync function of
wmma API as shown in Fig. 1; however, we can map values to
registers based on the distribution of thread mapping as analyzed
by [9]. Thus, we use PTX assembly to pass the variables,
required for each thread, for the Tensor Core operations, which
is difficult to implement by CUDA C. Fig. 3 shows an example
of PTX assembly in CUDA C. This implementation has skipped
the mapping of matrices from shared memory to registers that
would occurred when we used the function load_matrix_sync in
wmma API as described in Fig. 1, so very high peak performance
on Tensor Core can be utilized since the memory access cost in
shared memory as well as the memory access cost in global
memory is reduced.

In the Tensor Core multiplication, 16 X 16 input matrices
are in half precision whereas the output matrix is stored in
single precision to avoid numerical error in the summation of
the results. Furthermore, we introduce localized normalization
to reduce numerical error when input matrices are converted
into half precision. Template matrices are normalized per 16
components, and the observation matrix is normalized for the
components stored in shared memory, as shown in Fig. 4. When
we call the kernel, template waves are stored in half precision
and the observation wave is stored in single precision. The
observation data are converted into half precision with local
normalization in each thread block. In our computations, thread
block includes only 32 threads; thus normalizations including
searches of the maximum value can be computed only by using
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Fig. 4. Rough scheme of normalization. v and (3 are single-precision scaling

factors for matrices surrounded by dash lines.

warp shuffle functions. We must add results of 16 x 16 matrix
multiplication in single precision after reflecting the values of
scaling factors, involved in the template matrices. Components
of 16 x 16 matrix are distributed among registers in 32 threads
and usage of shared memory via the function load_matrix_sync
makes it easy to identify rescaling factors; however, data trans-
fer between shared memory and registers for rescaling also
decreases the performance. Therefore, we have to rescale the
results on registers. We specify which scaling factor must be
multiplied with registers, considering distribution of matrix and
using PTX assembly. It is not until we introduce low-level
description considering register allocation between threads that
we can carry out our fine normalization without decreasing the
performance greatly.

III. APPLICATION EXAMPLE

We apply our proposed kernel to the seismic waveforms and
evaluate the performance and the accuracy via comparison with
a common library. In recent years, nation-wide seismic observa-
tion networks have been operated (e.g., MOWLAS [10] in Japan)
with a lot of continuously recorded data; besides, the amount of
datais expected to increase. For instance, MOWLAS is currently
providing about million template waves and observation data
of around 2,100 channels consisting of 4.32 x 10° time steps
per day for approximately 10 years. Using Matched Filtering
for these massive data requires much computation cost; thus, a
faster algorithm is necessary to lower the cost. We use a subset of
observation data provided by MOWLAS. We target calculation
using 16 template waves and observation wave with 4.32 x 10°
time steps; we also target matrices with the sizes of 16 x 256
and 256 x (4.32 x 10°).

NVIDIA Tesla V100 GPU is used as our computing en-
vironment. Its peak FLOPS are 7.8 TFLOPS in double pre-
cision, 15.7 TFLOPS in single precision, 31.4 TFLOPS in
half precision, and 125 TFLOPS in half precision with Tensor
Core. The peak memory bandwidth is 900 GB/s. Our code is
written with CUDA Fortran/C and complied with PGI 18.10
and nvee 10.0.130. Elapsed time and actual memory band-
width of kernels are measured by nvprof, whereas FLOPS are
counted manually. cuBLAS is provided by cuda 10.0.130. With
multiplication using cuBLAS, we generate the entire matrices
explicitly. A function cublasGemmEXx is provided by cuBLAS
for dense matrix-matrix multiplication [11], and we prepare
four types of kernels in which data types of matrices and pre-
cision in each operation are different. We must note that the
elapsed time required to construct the input matrices including
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normalization prior to cuBLAS functions is not included. We en-
tirely normalize input matrices when we use cuBLAS with half
precision variables, by searching the maximum value in matrices
as a scaling factor. Without normalization, multiplication caused
an overflow. We prepare two versions of our proposed kernel:
the first computes without PTX assembly, and the second skips
the data transfer between shared memory and registers using
PTX assembly. Targeting kernels are shown in Table I. In the
next section, we compare the performance and accuracy of each
kernel.

A. Evaluation of Performance

The middle part of Table I summarizes the elapsed time of
the kernel and actual bandwidth of shared memory and global
memory. When comparing cuBLAS ver. 1, ver. 2, and ver. 3
kernels, the computation time decreased as the precision of
input data reduced. General dense matrix-matrix multiplication
is known as dense computation; however, the performance of our
targeting multiplication was not arithmetic bound and limited by
the memory access cost. While cuBLAS ver. 2 and ver. 3 partly
used half precision variables and required data conversion cost,
cuBLAS ver. 4 kernel entirely used half precision variables and
improved the performance as the data conversion was unnec-
essary and Tensor Core operations were enabled. In our case,
Tensor Core operations were disabled even when we specified
options to use Tensor Cores except for cuBLAS ver. 4. The
actual bandwidth of global memory in the kernel cuBLAS ver. 4
reached 768 GB/s. This was close to the result of the benchmark
by [12], which was 900 GB/s x 83.3% = 750 GB/s; thus, the
performance of this kernel was limited by the global memory
bandwidth. On the other hand, the proposed kernels increased
the bandwidth of shared memory and reduced the bandwidth
of global memory. This was because we took components of
the observation matrix from shared memory instead of global
memory, reducing the memory access cost of global memory
and increasing the cost of shared memory. Our proposed kernel
used Tensor Core operations; thus, data transfer between shared
memory and registers was issued to distribute components of
matrices and additional memory access cost was required if we
used only wmma API. Accordingly, the performance was bound
by the bandwidth of shared memory, increasing the elapsed time.
Contrarily, when we used assembly shown in Section II, the
performance significantly improved as the memory access to
shared memory reduced.

We chose the optimal size of matrix per thread block in the
kernel. Elapsed time and the register usage for different sizes of
matrices are described in Fig. 5. By increasing the size of the
matrix per thread block, memory access cost for computation
cost was reduced as we reused template matrices many times.
However, the register usage per thread increased as the size of
the matrix increased because the results of multiplication must
be stored in registers. This made it difficult to overlap latencies
involved in memory accesses because the number of available
threads is declined. For our developed kernel, N = 96 was the
equilibrium point of these factors.

Our kernel attained 28.4 TFLOPS that was higher than
the peak FP32 FLOPS. This performance was 22.7% of
125 TFLOPS, which was theoretical peak performance when
using Tensor Core on V100 GPU. This was because our
kernel included operations without Tensor Core required for
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TABLE I
PERFORMANCE USING CUBLAS AND OUR DEVELOPED KERNEL. MATRICES ARE INPUT OR OUTPUT IN THE PRECISION NOTED IN THE ROW
OF “INPUT” OR “OUTPUT” AND MULTIPLICATION IS DONE IN THE PRECISION NOTED IN THE ROW OF “COMPUTATION”
cuBLAS proposed
ver.1 ver.2 ver.3 ver.4 w/o PTX with PTX
Input (Template wave) FP32 FP16 FP16 FP16 FP16 FP16
Input (Observation wave) FP32 FP16 FP16 FP16 FP32 FP32
Output FpP32 FP32 FP16 FP16 FP32 FpP32
Computation FP32 FP32 FP32 FP16 FP16 FP16
Tensor Core operation Disabled Disabled Disabled Enabled Enabled Enabled
Elapsed Time 12.775 ms 5.894 ms 5.540 ms 3.032 ms 3.365 ms 1.243 ms
Device Memory Bandwidth 447 GB/s 619 GB/s 594 GB/s 768 GB/s 89 GB/s 232 GB/s
Shared Memory Bandwidth 3296 GB/s 8159 GB/s 8468 GB/s 6384 GB/s 10978 GB/s 9882 GB/s
Error in actual data 7T5x 1077 3.0x107% 54x10"% 43x107% [ 3.0x10~%* 1.8x 10~ %
Error in dummy data 29x1077 92x107%° 16x107% 13x1073 | 92x107° 9.2x107°
2771 register usage data, respectively are shown in the lower part of Table I. Error
=o—clapsed time (ms) in actual data was larger than in dummy data for all kernels.
1.600 Targeting waves in MOWLAS had a wide dynamic range and
1.336 1243 1.297 their values increased locally; thus, results of actual data were
more affected by numerical errors. The proposed method re-
130 duced the numerical error by introducing local normalization
56 64 78 96 96 98 with low-level description. This approach can work for improv-
ing the accuracy unless values change too rapidly even within
16 32 48 64 96 128 172 . . .
N (Th ber of thread block tens of time steps. By contrast, numerical error in cuBLAS
(The number of rows per thread block) increased as the precision of variables decreased. To attain the
Fig. 5. Performance of our proposed kernel when the size of matrix per same degrees of accuracy as our pI’OpOSGd method, internal

thread changes.

normalization and data conversions required for PTX assembly.
Performance measurement by [7] showed that Tensor Core on
V100 GPU targeting 512 x 512 matrices attained no more than
20 TFLOPS in any implementations. In that multiplication, the
number of components of matrices was 3 x 512 x 512 and the
number of floating point operations was 2 x 512 x 512 x 512.
On the other hand, for our targeting matrices, the number of
components of matrices was 16 x 256 + 256 x (4.32 x 10°) +
(4.32 x 10°%) x 16, and the number of floating point operations
was 2 x 16 x 256 x (4.32 x 10°). As the number of matrices
components was 1,500 times larger and computation cost was
only 132 times larger, it was more difficult to attain higher
performance with our targeting matrices. Considering these
conditions, we demonstrated that our developed kernel attained
reasonable performance. We computed each template that had
256-time steps in 1.243 ms/16 = 77.7 us with observation data
that had 4.32 x 10°-times steps.

B. Evaluation of Accuracy

We evaluated the numerical error in the result C'C}; ; obtained
by each kernel based on the result CC} 7% computed in double

precision variables. We used an Error defined below:

Error = max |CC; ; — C’C’Z-Fjp64 ,
2] ’

)

which is the absolute maximum value of each error. We used
the same data as the previous subsection. We refer to this data
as actual data. In addition, we generated data from a uniform
pseudorandom number with the interval [—50,50]. We refer
to this data as dummy data. The numerical error of cuBLAS
functions and proposed methods using actual data and dummy

single-precision computation such as cuBLAS ver. 2 was re-
quired. This kernel cuBLAS ver. 2 took 5.894 ms; therefore,
we evaluated that our kernel attained 4.74-fold speeding up
(5.894 ms/1.243 ms) compared to the common library with
returned equally accurate results. When we detected patterns
that had CC}; ; > 0.7, there was no erroneous detection in all
kernels. This result can change depending on the problem set-
tings; therefore more verification for accuracy is required as a
future task.

IV. CONCLUSION

We focused on Matched Filtering in the time domain. The
largest proportion of the computation cost of Matched Filtering
is in matrix-matrix product. Considering massive observation
data, the reduction of computation cost was a critical issue.
Using Tensor Core on NVIDIA Volta GPUs, we designed an
algorithm to use fast matrix-matrix product. When we computed
using Tensor Core, memory access to global memory or shared
memory became the bottleneck for the performance. Thus, we
reduced the memory access cost reusing the data and skipping
unnecessary data movement. In addition, current Tensor Core
only supported lower precision data types; thus, we had to reduce
the effect of numerical errors in the computation. We introduced
localized normalization for the target matrices to improve the
accuracy of the computation. This normalization was issued by
low-level description to minimize the data transfer cost. With
the appropriate algorithm design, we achieved 28.4 TFLOPS in
the kernel, which was reasonable performance for the sizes of
our targeting matrices. We confirmed that our proposed kernel
had a smaller numerical error than matrix-matrix multiplication
on Tensor Core in cuBLAS, which was a common linear algebra
library on NVIDIA GPUs. When we compared our kernel and a
function of cuBLAS that exhibited the same degree of accuracy,
our kernel was 4.47 times faster.
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