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Real Signal Equalization for OQAM
Md Navid Akbar, and Mohammad Saquib

Abstract—This correspondence proposes the use of a real-
only equalizer (ROE), which acts on real signals derived from
the received offset quadrature amplitude modulation (OQAM)
symbols. For the same fading channel, we prove that both ROE
and the widely linear equalizer (WLE) yield equivalent outputs.
Hence, these exhibit the same performance. Our complexity
analysis finds that depending on the frame length, ROE can
be computationally less complex, and save significant signal
processing time over WLE. In the adaptive normalized least
mean square implementation, ROE performs better with lower
complexity than its counterpart, for a given number of pilot bits.

Index Terms—Real-only equalizer (ROE), widely linear equal-
izer (WLE), adaptive equalization, computational complexity.

I. INTRODUCTION

Offset quadrature amplitude modulation (OQAM) schemes

are widely used in the wireless communication scene, such

as in LTE [1], as well as in 5G protocols [2]. A particular

case of the OQAM scheme is the offset quadrature phase-shift

keying (OQPSK) signal. In applications where the transmitter

power is limited, OQPSK is used, as it is more compatible

than linear modulations, with RF power amplifiers operating

in full saturation [3]. Examples of systems employing OQPSK

include wideband code division multiple access (WCDMA)

mobile systems [4], satellite communication [5], and the IEEE

802.15.4 (Zigbee) networking protocol [6].

In wireless communication, a signal undergoes multipath

effects. The most common form of multipath mitigation is

equalization, performed at the receiver end. Equalization for

OQAM has been studied extensively, such as in [7]. Picinbono

and Chevalier in [8] first theorized that for complex signals,

widely linear equalizer (WLE) provides a better estimate com-

pared to the classical minimum mean square error (MMSE)

linear equalizer (LE), when the pseudo-autocorrelation of the

received symbols is non-zero. WLE has subsequently become

the most recommended receiver for the OQPSK scheme [9].

WLE performs two linear transformations: one on the sam-

pled matched filter output, and the other on its conjugate. It op-

erates by inverting the complex channel autocorrelation matrix.

Depending on the size, this matrix inversion could be compu-

tationally quite intense. This is where the proposed real-only

equalizer (ROE) could offer an advantage. A pre-processing

multiplier inside ROE converts the sampled matched filter

output to a real-valued input for ROE. Next, ROE inverts

the resulting (real-valued) channel autocorrelation matrix. This

fact assists ROE to be a reduced complexity equalizer, and

forms the basis for the following key results: 1) ROE and WLE

are proven to provide equivalent outputs. Hence, they will ex-

hibit the same bit error rate (BER) performance. 2) Presented
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analysis implies that ROE is expected to be computationally

less intense. For practical frame lengths, numerical results

demonstrate that ROE takes significantly less computational

time, compared to WLE. 3) In adaptive equalization involving

the normalized least mean square (NLMS) algorithm, ROE

is found superior to WLE, in terms of both complexity and

BER performance (for a given number of training bits). 4)

Performance of ROE is analyzed and found to outperform the

classical LE in terms of average MMSE.

The notations used in this paper are as: a boldface lowercase

variable (e.g., v) denotes a column vector, a boldface upper-

case variable (e.g., M) denotes a matrix; the transpose and

Hermitian operations are v⊤ (M⊤) and v† (M†), respectively;

v∗ and M∗ denote complex-conjugates; E[·] is the expectation

operator; diag[. . . ] is a diagonal matrix containing the ele-

ments specified; tr{M} contains the trace of M; 0n is a zero

vector of length n; v[a : b] contains elements a through b in v;

‖v‖2 is the ℓ2 norm of v; for a square matrix, M−1 denotes

the matrix inverse; I is the identity matrix whose dimensions

are determined by context.

II. SYSTEM MODEL

An OQAM signal x(t) consisting of 2N symbols (cor-

responding to M -QAM symbols, where M = N2 and

N = 2, 4, 8, ...) is transmitted through a channel with impulse

response hc(t), following a pulse shaping and modulating

filter p(t). In practice, this filter is a unit-energy, square-root

Nyquist pulse. For simplicity of analysis and simulation, a

rectangular window-based filter is considered in this work.

At the output of filter p(t), we have the continuous signal

x(t). A total of 2ν symbols are transmitted. This x(t) travels

through the channel and gets accompanied by an additive noise

z(t). After application of a low-pass anti-aliasing filter with

impulse response ha(t) and bandwidth 1/(2Ts) at the receiver,

as described in [10], an analog-to-digital (A/D) converter

produces Ts symbol-duration spaced samples

r(n) =

Ls∑

k=0

h(k)x(n − k) + z(n), (1)

where h(n) = hc(t) ∗ ha(t)|t=nTs
, x(n) = x(nTs) and

z(n) = z(t) ∗ ha(t)|t=nTs
.

The constellation points for a 2N -OQAM modulation are

x(n) =

{

a(n) n is even

ja(n) n is odd,

where for A > 0, a(n) ∈ {±A,±3A,± (N − 1)A} is the

amplitude of nth symbol, and the causal discrete-time channel

has support on 0 ≤ n ≤ Ls (i.e., the discrete-time equivalent

channel has Ls+1 taps, each spaced by Ts). In addition, a(n)
is an equally likely independent symbol sequence. The additive

noise z(t) is modeled as a zero-mean, circularly symmetric

complex-valued white Gaussian random process whose real

and imaginary parts have the same power spectral densities
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N0 W/Hz. We then apply a filter h∗(−n), matched to the

discrete-time equivalent channel, to produce:

y(n) = x(n) ∗ h(n) ∗ h∗(−n)
︸ ︷︷ ︸

γ(n)

+ z(n) ∗ h∗(−n)
︸ ︷︷ ︸

v(n)

. (2)

∴ y(n) =

Ls∑

k=−Ls

γ(k)x(n − k) + v(n), (3)

where v(n) is a complex-valued correlated noise sequence,

and x(n) = 0 for n < 0 or n >= 2ν. The vector formed from

stacking y(0), . . . , y((2ν − 1)Ts) becomes

y = Γx + v, (4)

where Γ is the 2ν×2ν complex channel autocorrelation matrix

formed from the complex-valued γ(k) as

Γ =








γ(0) γ(−1) . . . γ(−Lb) . . . 0
γ(+1) γ(0) . . . . . . . . . 0

...
...

. . .
...

. . .
...

0 0 . . . . . . . . . γ(0)







,

x and v are 2ν × 1 complex vectors formed from x(n) and

v(n), respectively. The autocorrelation matrix of the noise

vector v is 2N0Γ and E(v) = 0.

III. REAL-ONLY EQUALIZER

A. Receiver Structure and Equivalence

At the nth matched filter output, when n is even, the

imaginary part carries no information regarding the desired

symbol a(n), and similarly n is odd, the real part does not

have any information of a(n) [3]. Therefore, ROE eliminates

the non-useful parts from the outputs of the complex matched

filter, while estimating the transmitted symbols by processing

the remaining useful parts. Consequently, we are interested in

the real-valued vector ya derived from the useful parts of y as

ya =
[
Re{y(0)} Im{y(1)} . . . Im{y(2ν − 1)}

]⊤
. (5)

To derive the upcoming results, we first define two matrices:

A = diag

[
1

2
,
−j

2
,
1

2
, . . . ,

−j

2

]

; B = diag [1,−1, 1, . . . ,−1] ;

which have the following properties:

A† = AB; A−1 = 4AB; A = BAB; B = B−1; B2 = I.

Equation (5) can be rewritten using the relation between

OQAM symbols and binary bits, x = 2A†a, and (4) as

ya = A(y + By∗) = Γaa + va, (6)

where a is the 2ν × 1 real vector formed from a(n); va is

the equivalent, real-valued correlated noise with zero mean,

autocorrelation 2N0Γa; and Γa is the equivalent, real-valued

channel autocorrelation matrix given by

Γa = 2A(Γ+ BΓ⊤B)A† = Γ̂+ Γ̄; (7)

where

Γ̂ = 2(A)×
1

2
Γ× 2(A)†; Γ̄ = 2(AB)×

1

2
Γ⊤ × 2(AB)†.

Let us focus on the equalizers next. First, we take a look into

the classical LE. It provides an estimate (x̂LE) of any received

OQAM symbol, under the MMSE criterion, as

x̂LE =

[

Γ+
σ2

A2
N

I

]−1

y =
[
Γ+ σ2I

]−1
y, (8)

where A2
N = 2A2

N

{
12 + 32 + . . .+ (N − 1)2

}
, is the average

symbol energy (which, for convenience, set to 1) and σ2 =

2N0. The signal to noise ratio (SNR) thus becomes 1/σ2.

For ROE, noise power will be σ2/2 for the noise without

imaginary parts, the channel autocorrelation matrix becomes

Γa, and the effective new input is ya. The output of ROE

(x̂ROE) can thus be written as that of LE in (8)

x̂ROE = â =

[

Γa +
σ2

2
I

]−1

ya. (9)

Next, we will establish the relation between the outputs of

ROE and WLE, under known channel state information (CSI).

Claim 1. The output of ROE is the real-only equivalent of the

output of WLE (x̂WLE), and is given by x̂ROE = 2A× x̂WLE.

Proof. Using (6) and (7), x̂ROE in (9) may be rewritten as

x̂ROE =

[

2A(Γ+ BΓ⊤B)A† +
σ2

2
I

]−1

[Ay + ABy∗]. (10)

Applying the properties of A and B discussed earlier, we get

x̂ROE =

[
1

2

{

Γ+ BΓ⊤B + σ2I
}

(4AB)

]−1

(y + By∗)

= 2A(Γ+ BΓ⊤B + σ2I)−1(y + By∗). (11)

Structure of the WLE is derived in the Appendix. From there,

replacing C and D in (11) completes the proof:

x̂ROE = 2A[Cy + Dy∗] = 2A × x̂WLE. �

The result of Claim 1 will also hold when ROE and WLE

will be implemented using estimated CSI. Inter-symbol inter-

ference (ISI) seen by the symbols located at the beginning

or ending of a frame is very different than that seen by

the symbols in the middle of the frame. It is due to the

finite frame length. ISI is the main contributing factor behind

bit error, and it is different for the edge symbols than the

symbols close to the center. When the transmission block

length is sufficiently large, MMSE of every single symbol can

be reasonably approximated by average MMSE.

In the next section, we will analyze the performance of ROE

using average MMSE as the performance metric. Even though

BER is a more desirable metric, the closed-form expression

of BER is quite difficult to analyze for MMSE equalizers in

multipath channels. Nonetheless, the equalizer that yields a

lower MMSE is expected to perform better in terms of BER

[11].

B. Average MMSE Analysis of ROE
The instantaneous error vector for ROE is given by

e = (a − â) = a −

[

Γa +
σ2

2
I

]−1

[Γaa + va]

=

[

I −

(

Γa +
σ2

2
I

)−1

Γa

]

a −

(

Γa +
σ2

2
I

)−1

va, (12)

and its corresponding error covariance matrix is
Σ = E[ee†]. (13)

Now we use (13) to express average MMSE of ROE

(MMSEav,ROE) over all 2ν symbols as

MMSEav,ROE =
1

2ν
tr {Σ} . (14)

Using (7) and (12) in (13), and then applying to (14), we get

MMSEav,ROE =
σ2

4ν
tr

{[

Γ̂+ Γ̄+
σ2

2
I

]−1
}

. (15)
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Similarly, the expression for average MMSE of LE

(MMSEav,LE) can be written as

MMSEav,LE =
σ2

2ν
tr
{[

Γ+ σ2I
]−1

}

. (16)

The next claim establishes the relation between MMSEav,ROE

and MMSEav,LE.

Claim 2. MMSEav,ROE is less than, or equal to, MMSEav,LE.

Proof. Let Γ̃ = Γ̂ + σ2

2 I, and by using the matrix inversion

lemma, we can rewrite (15) as

MMSEav,ROE =
σ2

4ν
tr{Γ̃

−1
− Γ̃

−1
(Γ̄

−1
+ Γ̃

−1
)−1Γ̃

−1
}.

The autocorrelation matrix Γ is positive-definite, and thus

diagonalizable. From (7), we realize that the diagonal elements

of Γ̂ will be half of those in Γ. Consequently, we can identify

the first part of the above equation as

MMSEav,LE =
σ2

2ν
tr
{[

Γ+ σ2I
]−1

}

, (17)

and denote the second part as

ρ =
σ2

4ν
tr

[

Γ̃
−1

(

Γ̄
−1

+ Γ̃
−1

)−1

Γ̃
−1

]

≥ 0, (18)

since both Γ̃ and Γ̄ are also positive-definite matrices. Substi-

tuting (17) and (18) back into the original equation involving

the matrix inversion lemma completes the proof:

MMSEav,ROE = MMSEav,LE − ρ ≤ MMSEav,LE. �

This MMSE reduction (i.e. ρ) of ROE over LE can be zero:

1) when the channel is perfectly noiseless, i.e. σ2 is zero, and

2) in the case of real signal transmission over a real channel

when Γ becomes Γa and noise power σ2 changes to σ2/2 in

(16). This result is expected. When all the system parameters

are real, MMSE of WLE will also be the same as that of LE.

C. Alternative Implementation

Entire OQPSK received vector from (1) can be written as:

r = 2HA†a + z = Ĥa + z, (19)

where r and z are the (2ν +Lb)× 1 complex vectors formed

from r(n) and z(n), respectively, and H is the (2ν + Lb) ×
2ν complex channel matrix obtained from appending discrete-

time channel vector [0n h(0) · · ·h(Lb) 0(2ν−n−Lb−1)]
⊤ for

the nth transmission as columns. The real and imaginary parts

in (19) can be separated as:

rR + jrI = (ĤR + jĤI)a + (zR + jzI), (20)

where ĤR and ĤI are real matrices, and zR and zI are real

vectors. Stacking them as an augmented vector and applying

matched filter with real coefficients gives

yb =
(

Ĥ
⊤

R ĤR + Ĥ
⊤

I ĤI

)

a +
(

Ĥ
⊤

R zR + Ĥ
⊤

I zI

)

. (21)

Earlier in (6), ROE was realized by post-processing matched

filter output y to a real-valued stream. By proving the fol-

lowing claim, we will demonstrate an alternative realization

of ROE: by pre-processing the sampled received signal to a

real-valued input, and then applying a matched filter as in (21).

Claim 3. Linear transformation [Γa+
σ2

2 I]−1 on yb from (21)

will yield the same output, as that obtained from ya in (9).

Proof. To prove the above claim, we only need to show that

ya equals yb. Knowing that ĤR = (HA† + H∗A⊤) and ĤI =

j(H∗A⊤ − HA†), (21) can be simplified to

yb = 2(AH†HA† + A∗H⊤H∗A⊤)a + (AH†n + A∗H⊤n∗).

Recognizing that A∗ = AB, above equation can be written as

yb = A[Γ(2A†a) + H†n] + AB[Γ∗(2A⊤a) + H⊤n∗]. (22)

Ultimately, we obtain our desired equivalence from (22) as

yb = A[(Γx + v) + B(Γx + v)∗] = A(y + By∗) = ya.�

D. Adaptive Equalization

Guidelines for developing adaptive LE and WLE filters (wLE

and wWLE) are presented in [12] and [13], respectively. We

develop an adaptive filter (based on NLMS) for ROE (wROE),

using the result of pre-processing discussed in the previous

section, and the proof of Claim 3. Both NLMS and recursive

least squares (RLS) are popular adaptive algorithms. In this

work, we will primarily consider NLMS, which performs

comparably to RLS but is computationally less complex [14].

An adaptive equalizer provides symbol-wise output, unlike

the entire symbol vector decoding, described in the above

sections. The effective multipath channels are different for

odd and even transmitted symbols, and hence we need two

adaptive algorithms to adapt ROE. For procedural illustration,

the ROE filter corresponding to even symbols will only be

shown henceforward. Estimates for the nth even symbol are

given by the following relations:

â(n) = [wROE,n]
⊤

[
rR[n−mLb : n+mLb]
rI[n−mLb : n+mLb]

]

,

∴ â(n) = wROE,n
⊤uROE,n. (23)

Here length of each ROE filter and uROE,n (n
th input vector)

is (4m × Lb + 2) × 1, and filter length parameter m ≥ 3
[15]. The (n+ 2)

th
update of the ROE filter for the next even

symbol becomes:
wROE,n+2 = wROE,n + µ̃ROE(n)× {a(n)− â(n)} × uROE,n;

where µ̃ROE(n) = µROE/(δROE + ‖uROE,n‖
2
2) is the time-

varying step-size parameter, and µROE and δROE are constants

of choice. After all the equalizers (LE, WLE and ROE) have

been trained using pilot symbols, they are used to extract

information symbols from the sampled received signal.

IV. COMPLEXITY AND NUMERICAL STUDIES

In all subsequent analyses, complexity associated with the

multiplication operation is considered only. First, we will

analyze complexities of the block implementations of WLE,

LE and ROE: where sizes of the referred matrices and vectors

are k×k and k×1, respectively. Computational load of WLE

depends mainly in computing C from (28), where the complex

matrix inversion dominates. If the matrix was real, complexity

would be O(k3) [16]. On the contrary, a complex matrix inver-

sion is an equivalent multiplication of two complex matrices

[16]. Thus, effective computations can be approximated as

O(4k3). Complexity of LE will be slightly less than that of

WLE. However, since there is a complex inversion, as given by

(8), the computational load is still roughly O(4k3). Inversion

of the real matrix in (9) primarily dominates the complexity of

ROE. Hence, O(k3) is the approximate complexity of ROE.

Looking at the dominating terms, it may be inferred that

ROE is expected to be superior to WLE in terms of com-

plexity. For illustration, we have simulated the relative time
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complexities in MATLAB, for some practical frame lengths.

For purposes of numerical analyses, OQPSK is used as a

special case of the OQAM scheme. The workstation used was

equipped with a 4th generation core-i7, 2.2 GHz processor.

Fig. 1 depicts the results obtained. The plot at the left shows

savings achieved by ROE, when expressed as a percent of

WLE execution time. The graph to the right displays actual

savings in execution times. As can be observed, ROE provides

up to about 20 percent savings in execution time over WLE.

This percentage gain decreases with longer frame lengths.

However, it is important to note that optimal frame lengths

for contemporary environments, such as ZigBee in internet of

things (IoT), is less than 1024 bits [17]. Finally, even though

percentage gain decreases, savings in absolute time increases

for ROE at higher frame lengths.

In NLMS implementations, corresponding complexities of

ROE, WLE and LE are outlined in Table I. It is noticeable

that ROE has the least complexity, and it requires less than

one-third the number of computations needed for WLE.

Results from a numerical study of the NLMS equalizers

have been illustrated in Fig. 2: under randomly generated

3-tap (adjacently located) exponentially decaying channels,

1500 data bits, and m = 3. The graph to the left illustrates

convergence of the adaptive equalizers, by plotting the mean

squared error (MSE) for 1500 training bits, at an SNR of 10dB.

Rate of convergence and steady-state errors are both functions

of the convergence parameters µLE/ROE/WLE and δLE/ROE/WLE.

After an exhaustive empirical search, the numerical value 1

was found optimum for µLE/ROE/WLE, while 2 and 16 were

optimal for the δROE/WLE and δLE, respectively. This optimality

was assessed in terms of finding the minimum steady-state

errors for all the equalizers, for the given training sequence.

The graph to the right demonstrates comparative BER perfor-

mances among all the equalizers. ROE performs better than

both LE and WLE in the adaptive domain in terms of BER,

owing to its better convergence. Aside, as expected, BER

performances of the NLMS equalizers suffer compared to their

block implementations with known CSI.
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Fig. 1. Time complexity comparison between ROE and WLE.

Table I
COMPLEXITY COMPARISON IN NLMS IMPLEMENTATIONS.

To Get: x̂(n) µ̃(n) wn+1 Total

ROE 4mLb + 2 4mLb + 3 4mLb + 3 12mLb + 8
WLE 16mLb + 8 8mLb + 5 16mLb + 9 40mLb + 22
LE 8mLb + 8 4mLb + 3 8mLb + 5 20mLb + 16
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E
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E

R
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Fig. 2. Convergence and performance comparisons among the equalizers.

V. CONCLUSION

In this correspondence, ROE (real-only equalizer) for the

OQAM signaling scheme has been introduced. We have

proven that output of the new ROE is equivalent to that of the

popular WLE, in a complex channel. Hence, these equalizers

exhibit the same performance, and both outperform the LE.

Our complexity analysis finds that ROE is expected to be

less complex than WLE. Using OQPSK as a special case of

OQAM, the numerical results demonstrate that significant time

savings, for up to 20 percent for practical frame lengths, can be

achieved by ROE over WLE. For a given number of training

symbols in the adaptive NLMS implementations (without a

matched filter to the complex channel), ROE offers lower BER

and also at least 3 times savings in computations, than WLE.

Thus, ROE here performs better than WLE, which in turn

performs better than LE. Finally, in the case of a real channel,

all the three equalizers exhibit the same performance, with a

matched filter to the real channel.

APPENDIX

Let the output of the WLE be given by

x̂WLE = Cy + Dy∗, (24)

where C and D are WLE coefficients. The orthogonality

principle in [8] states that the estimation error is orthogonal

to the sampled matched filter vector. From that we obtain
E[(x − x̂)y†] = E[(x − Cy − Dy∗)(x†Γ† + v†)] = 0, (25)

which simplifies to

E[xx†Γ]− CE[(Γx + v)(x†Γ+ v†)]

−DE[(Γ∗x∗ + v∗)(x†Γ+ v†)] = 0,

where E[xx†] = I, E[x∗x†] = B, E[vv†] = σ2, E[v∗v†] = 0 .
Knowing that Γ∗ = Γ⊤, (25) becomes

D = [I − C(Γ+ σ2I)]B[Γ⊤]−1. (26)

The orthogonality principle also yields
E[(x− x̂)∗y†] = E[(x∗−C∗y∗−D∗y)(x†Γ†+v†)] = 0, (27)

which simplifies to

BΓ− D∗(Γ+ σ2I)Γ− C∗[Γ∗B]Γ = 0.

Replacing D and post-multiplying with (Γ⊤), we get
C = [BΓ⊤B + Γ+ σ2I]−1. (28)

Recall that (26) can also be written as

D = [CC−1 − C(Γ+ σ2I)]B[Γ⊤]−1,

and replacing C−1 from (28) gives

D = C[BΓ⊤B+Γ+σ2I−Γ− σ2I]B[Γ⊤]−1 = C×B. (29)
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