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Optimal Decision Rules for Simple Hypothesis

Testing under General Criterion Involving Error
Probabilities

Berkan Dulek, Cuneyd Ozturk, Student Member, IEEE, and Sinan Gezici, Senior Member, IEEE

Abstract—The problem of simple M−ary hypothesis testing
under a generic performance criterion that depends on arbitrary
functions of error probabilities is considered. Using results from
convex analysis, it is proved that an optimal decision rule can be
characterized as a randomization among at most two determin-
istic decision rules, of the form reminiscent to Bayes rule, if the
boundary points corresponding to each rule have zero probability
under each hypothesis. Otherwise, a randomization among at
most M(M −1)+1 deterministic decision rules is sufficient. The
form of the deterministic decision rules are explicitly specified.
Likelihood ratios are shown to be sufficient statistics. Classical
performance measures including Bayesian, minimax, Neyman-
Pearson, generalized Neyman-Pearson, restricted Bayesian, and
prospect theory based approaches are all covered under the
proposed formulation. A numerical example is presented for
prospect theory based binary hypothesis testing.

Index Terms– Hypothesis testing, optimal tests, convexity,
likelihood ratio, randomization.

I. PROBLEM STATEMENT

Consider a detection problem with M simple hypotheses:

Hj : Y ∼ fj(·), with j = 0, 1, . . . ,M − 1, (1)

where the random observation Y takes values from an obser-

vation set Γ with Γ ⊂ R
N . Depending on whether the observed

random vector Y ∈ Γ is continuous-valued or discrete-valued,

fj(y) denotes either the probability density function (pdf) or

the probability mass function (pmf) under hypothesis Hj . For

compactness of notation, the term density is used for both

pdf and pmf. In order to decide among the hypotheses, we

consider the set of pointwise randomized decision functions,

denoted by D, i.e., δ := (δ0, δ1, . . . , δM−1) ∈ D such that
∑M−1

i=0 δi(y) = 1 and δi(y) ∈ [0, 1] for 0 ≤ i ≤ M − 1 and

y ∈ Γ. More explicitly, given the observation y, the detector

decides in favor of hypothesis Hi with probability δi(y). Then,

the probability of choosing hypothesis Hi when hypothesis Hj

is true, denoted by pij with 0 ≤ i, j ≤ M − 1, is given by

pij := Ej [δi(y)] =

∫

Γ

δi(y)fj(y)µ(dy), (2)

where Ej [·] denotes expected value under hypothesis Hj and

µ(dy) is used in (2) to denote the N−fold integral and sum for

continuous and discrete cases, respectively. Let p(δ) denote

the (column) vector containing all pairwise error probabilities
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pij for 0 ≤ i, j ≤ M − 1 and i 6= j corresponding to the

decision rule δ. It is sufficient to include only the pairwise

error probabilities in p(δ), i.e., pij with i 6= j. To see this,

note that (2) in conjunction with
∑M−1

i=0 δi(y) = 1 imply
∑M−1

i=0 pij = 1, from which we get the probability of correctly

identifying hypothesis Hi as pii = 1−
∑M−1

i=0,i6=j pij .
For M -ary hypothesis testing, we consider a generic de-

cision criterion that can be expressed in terms of the error

probabilities as follows:

minimize
δ∈D

g0(p(δ))

subject to gi(p(δ)) ≤ 0, i = 1, 2, . . . ,m

hj(p(δ)) = 0, j = 1, 2, . . . , p (3)

where gi and hj denote arbitrary functions of the pairwise er-

ror probability vector. Classical hypothesis testing criteria such

as Bayesian, minimax, Neyman-Pearson (NP) [1], generalized

Neyman-Pearson [2], restricted Bayesian [3], and prospect

theory based hypothesis testing [4] are all special cases of

the formulation in (3). For example, in the restricted Bayesian

framework, the Bayes risk with respect to (w.r.t.) a certain

prior is minimized subject to a constraint on the maximum

conditional risk [3]:

minimize
δ∈D

rB(δ)

subject to max
0≤j≤M−1

Rj(δ) ≤ α (4)

for some α ≥ αm, where αm is the maximum conditional

risk of the minimax procedure [1]. The conditional risk when

hypothesis Hj is true, denoted by Rj(δ), is given by Rj(δ) =
∑M−1

i=0 cijpij and the Bayes risk is expressed as rB(δ) =
∑M−1

j=0 πjRj(δ), where πj denotes the a priori probability

of hypothesis Hj and cij is the cost incurred by choosing

hypothesis Hi when in fact hypothesis Hj is true. Hence, (4)

is a special case of (3).
In this letter, for the first time in the literature, we provide

a unified characterization of optimal decision rules for simple

hypothesis testing under a general criterion involving error

probabilities.

II. PRELIMINARIES

Let v be a real (column) vector of length M(M−1) whose

elements are denoted as vij for 0 ≤ i, j ≤ M − 1 and

i 6= j. Next, we present an optimal deterministic decision rule

that minimizes the weighted sum of pij ’s with arbitrary real

weights v.1

1In classical Bayesian M−ary hypothesis testing, vij = πj(cij − cjj).
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A. Optimal decision rule that minimizes vTp(δ)

The corresponding weighted sum of pairwise error proba-

bilities can be written as

vTp(δ) =

M−1
∑

i=0

M−1
∑

j=0,j 6=i

vijpij

=

∫

Γ

M−1
∑

i=0

δi(y)





M−1
∑

j=0,j 6=i

vijfj(y)



µ(dy), (5)

where (2) is substituted for pij in (5). Defining Vi(y) :=
∑M−1

j=0,j 6=i vijfj(y), we get

vTp(δ) =

∫

Γ

M−1
∑

i=0

δi(y)Vi(y)µ(dy)

≥

∫

Γ

min
0≤i≤M−1

{Vi(y)} µ(dy) (6)

The lower bound in (6) is achieved if, for all y ∈ Γ, we set

δℓ(y) = 1 for ℓ = argmin
0≤i≤M−1

Vi(y) (7)

(and hence, δi(y) = 0 for all i 6= ℓ), i.e., each observed vector

y is assigned to the corresponding hypothesis that minimizes

Vi(y) over all 0 ≤ i ≤ M−1. In case where there are multiple

hypotheses that achieve the same minimum value of Vℓ(y) for

a given observation y, the ties can be broken by arbitrarily se-

lecting one of them since the boundary decision does not affect

the decision criterion vTp(δ). However, pairwise probabilities

for erroneously selecting hypotheses Hi and Hj will change

if the set of boundary points

Bi,j(v) := {y ∈ Γ : Vi(y) = Vj(y) ≤ Vk(y)

for all 0 ≤ k ≤ M − 1, k 6= i, k 6= j} (8)

occurs with nonzero probability. We also define the set of all

boundary points

B(v) :=
⋃

0≤i≤M−1
i<j≤M−1

Bi,j(v) (9)

and the complimentary set where Vi(y) for some 0 ≤ i ≤
M − 1 is strictly smaller than the rest:

B̄(v) := Γ \ B(v) = {y ∈ Γ : Vi(y) < Vj(y), for some

0 ≤ i ≤ M − 1 and all 0 ≤ j ≤ M − 1, j 6= i} (10)

B. The set of achievable pairwise error probability vectors

Let P denote the set of all pairwise error probability vectors

that can be achieved by randomized decision functions δ ∈ D,

i.e., P := {p(δ) : δ ∈ D}. In this part, we present some

properties of P.

Property 1: P is a convex set.

Proof: Let p1(δ1) and p2(δ2) be two pairwise error prob-

ability vectors obtained by employing randomized decision

functions δ1 and δ2, respectively. Then, for any θ with

0 ≤ θ ≤ 1, pθ = θp1(δ1) + (1 − θ)p2(δ2) ∈ P since pθ

is the pairwise error probability vector corresponding to the

randomized decision rule θδ1 + (1 − θ)δ2 as seen from (2).

Property 2: Let p0 be a point on the boundary of P. There

exists a hyperplane {p : vTp = vTp0} that is tangent to P

at p0 and vTp ≥ vTp0 for all p ∈ P.

Proof: Follows immediately from the supporting hyperplane

theorem [5, Sec. 2.5.2].

III. CHARACTERIZATION OF OPTIMAL DECISION RULE

In order to characterize the solution of (3), we first present

the following lemma.

Lemma: Let p0 be a point on the boundary of P and {p :
vTp = vTp0} be a supporting hyperplane to P at the point

p0.

Case 1: Any deterministic decision rule of the form given in (7)

corresponding to the weights specified by v yields p0 if B(v),
defined in (9), has zero probability under all hypotheses.

Case 2: p0 is achieved by a randomization among at most

M(M−1) deterministic decision rules of the form given in (7),

all corresponding to the same weights specified by v, if B(v),
defined in (9), has nonzero probability under some hypotheses.

Proof: See Appendix A.

It should be noted that the condition in case 1 of the lemma,

i.e., B(v) has zero probability under all hypotheses, is not

difficult to satisfy. A simple example is when the observation

under hypothesis Hi is Gaussian distributed with mean µi and

variance σ2 for all 0 ≤ i ≤ M − 1. Furthermore, the lemma

implies that any extreme point of the convex set P, i.e., any

point on the boundary of the convex set P that is not a convex

combination of any other points in the set, can be achieved

by a deterministic decision rule of the form (7) without any

randomization. The points that are on the boundary but not

extreme points can be obtained via randomization as stated in

case 2.

Next, we present a unified characterization of the optimal

decision rule for problems that are in the form of (3). We

suppose that the problem in (3) is feasible and let δ∗ and

p∗(δ∗) denote an optimal decision rule and the corresponding

pairwise error probabilities, respectively.

Theorem: An optimal decision rule that solves (3) can be

obtained as

Case 1: a randomization among at most two deterministic

decision rules of the form given in (7), each specified by some

real v, if B(v), defined in (9), has zero probability under all

hypotheses for all real v; otherwise

Case 2: a randomization among at most M(M − 1) + 1
deterministic decision rules of the form given in (7), one

specified by some real v and the remaining M(M − 1)
correspond to the same weights specified by another real v.

Proof: If the optimal point p∗(δ∗) is on the boundary of P,

then the lemma takes care of the proof. Here, we consider the

case when p∗(δ∗) is an interior point of P. First, we pick an

arbitrary v1 ∈ R
M(M−1) and derive the optimal deterministic

decision rule according to (7). Let p1 denote the pairwise error

probability vector corresponding to the employed decision

rule. Then, we move along the ray that originates from p1

and passes through p∗(δ∗). Since P is bounded, this ray will

intersect with the boundary of P at some point, say p2. If the

condition in case 1 is satisfied, then by lemma-case 1, there

exists a deterministic decision rule of the form given in (7)

that yields p2. Otherwise, by lemma-case 2, p2 is achieved
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by a randomization among at most M(M − 1) deterministic

decision rules of the form given in (7), all sharing the same

weight vector v2. Since p∗(δ∗) resides on the line segment

that connects p1 to p2, it can be attained by appropriately

randomizing among the decision rules that yield p1 and p2.�

When the optimization problem in (3) possesses certain

structure, the maximum number of deterministic decision rules

required to achieve optimal performance may be reduced

below those given in the theorem. For example, suppose that

the objective is a concave function of p and there are a total of

n constraints in (3) which are all linear in p (i.e., the feasible

set, denoted by P
′, is the intersection of P with halfspaces and

hyperplanes). It is well known that the minimum of a concave

function over a closed bounded convex set is achieved at an

extreme point [5]. Hence, in this case, the optimal point p∗ is

an extreme point of P′. By Dubin’s theorem [6], any extreme

point of P′ can be written as a convex combination of n+1 or

fewer extreme points of P. Since any extreme point of P can

be achieved by a deterministic decision rule of the form (7),

the optimal decision rule is obtained as a randomization among

at most n+ 1 deterministic decision rules of the form (7). If

there are no constraints in (3), i.e., n = 0, the deterministic

decision rule given in (7) is optimal and no randomization is

required with a concave objective function.

An immediate and important corollary of the theorem is

given below.

Corollary: Likelihood ratios are sufficient statistics for

simple M−ary hypothesis testing under any decision criterion

that is expressed in terms of arbitrary functions of error

probabilities as specified in (3).

Proof: It is stated in the theorem that a solution of the

generic optimization problem in (3) can be expressed in terms

of decision rules of the form given in (7). These decision

rules only involve comparisons among Vi(y)’s, which are

linear w.r.t. the density terms fi(y)’s. Normalizing fi(y)’s
with f0(y) and defining Li(y) := fi(y)/f0(y), we see that an

optimal decision rule that solves the problem in (3) depends

on the observation y only through the likelihood ratios. �

IV. NUMERICAL EXAMPLES

In this section, numerical examples are presented by consid-

ering a binary hypothesis testing problem; i.e., M = 2 in (1).

Suppose that a bit (0 or 1) is sent over two independent binary

channels to a decision maker, which aims to make an optimal

decision based on the binary channel outputs. The output of

binary channel k is denoted by yk ∈ {0, 1}, k = 1, 2, and the

decision maker declares its decision based on y = [y1, y2]. The

probability that the output of binary channel k is i when bit j

is sent is denoted by p
(k)
ij for 0 ≤ i, j ≤ 1 with p

(k)
0j +p

(k)
1j = 1.

Then, the pmf of y under Hj is given by

fj(y) =



















p
(1)
0j p

(2)
0j , if y = [0, 0]

p
(1)
0j p

(2)
1j , if y = [0, 1]

p
(1)
1j p

(2)
0j , if y = [1, 0]

p
(1)
1j p

(2)
1j , if y = [1, 1]

(11)

for j ∈ {0, 1}. As in the previous sections, the pairwise error

probability vector of the decision maker for a given decision

rule δ is represented by p(δ), which is expressed as p(δ) =

[p10, p01]
T in this case. It is assumed that the decision maker

knows the conditional pdfs in (11).
In this section, a special case of (3) is considered based on

prospect theory by focusing on a behavioral decision maker

[4], [7]–[9]. In particular, there exist no constraints (i.e., m =
p = 0 in (3)) and the objective function in (3) is expressed as

g0(p(δ)) =
1

∑

i=0

1
∑

j=0

w(P (Hi is selected & Hj is true))v(cij)

(12)
where w(·) is a weight function and v(·) is a value function,

which characterize how a behavioral decision maker distorts

probabilities and costs, respectively [4], and P (·) denotes the

probability of its argument. In the numerical examples, the fol-

lowing weight function is employed: w(p) = pκ

(pκ+(1−p)κ)1/κ

[4], [7]–[9]. In addition, the other parameters are set as

v(c00) = 3, v(c01) = 10, v(c10) = 20, and v(c11) = 7.

Furthermore, the prior probabilities of bit 0 and bit 1 are

assumed to be equal.

The aim of the decision maker is to obtain a decision

rule that minimizes (12). In the first example, κ is set to

5, and the parameters of the binary channels are selected as

p
(1)
10 = p

(2)
10 = 0.4 and p

(1)
01 = p

(2)
01 = 0.1. In this case, it can

be shown via (11) that there exist 6 different deterministic

decision rules in the form of (7), which achieve the pairwise

error probability vectors marked with blue stars in Fig. 1.

The convex hull of these pairwise error probability vectors is

also illustrated in the figure. Over these deterministic decision

rules (i.e., in the absence of randomization), the minimum

achievable value of (12) becomes 0.1901, which corresponds

to the pairwise error probability vector shown with the green

square in Fig. 1. If randomization between two deterministic

decision rules in the form of (7) is considered, the resulting

minimum objective value becomes 0.0422, and the corre-

sponding pairwise error probability vector is indicated with

the red triangle in the figure. On the other hand, in compliance

with the theorem (case 2), the minimum value of (12) is

achieved via randomization of (at most) three deterministic

decision rules in the form of (7) (since M(M − 1) + 1 = 3).

In this case, the optimal decision rule randomizes among δ1,

δ2, and δ3, with randomization coefficients of 0.41, 0.51, and

0.08, respectively, as given below:

δ1(y) = 0 for all y

δ2(y) =

{

0 , if y ∈ {[0, 1], [1, 0], [1, 1]}

1 , if y = [0, 0]
(13)

δ3(y) =

{

0 , if y = [1, 1]

1 , if y ∈ {[0, 0], [0, 1], [1, 0]}

This optimal decision rule achieves the lowest objective value

of 0.0400, and the corresponding pairwise error probability

vector is marked with the black circle in Fig. 1. Hence, this

example shows that randomization among three deterministic

decision rules may be required to obtain the solution of (3).
In the second example, the parameters are taken as κ = 1.5,

p
(1)
10 = 0.3, p

(2)
10 = 0.2, p

(1)
01 = 0.4, and p

(2)
01 = 0.25. In this

case, there exist 8 different deterministic decision rules in the

form of (7), which achieve the pairwise error probability vec-

tors marked with blue stars in Fig. 2. The minimum value of
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Fig. 1: Convex hull of pairwise error probability vectors corresponding to
deterministic decision rules in (7), and pairwise error probability vectors
corresponding to decision rules which yield the minimum objectives attained
via no randomization (marked with square), randomization of two (marked
with triangle) and three deterministic decision rules (marked with circle),

where p
(1)
10 = p

(2)
10 = 0.4, p

(1)
01 = p

(2)
01 = 0.1, and κ = 5.
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Fig. 2: Convex hull of pairwise error probability vectors corresponding to
deterministic decision rules in (7), and pairwise error probability vectors
corresponding to decision rules which yield the minimum objectives attained
via no randomization (marked with square), randomization of two (marked
with triangle) and three deterministic decision rules (marked with circle),

where p
(1)
10 = 0.3, p

(2)
10 = 0.2, p

(1)
01 = 0.4, and p

(2)
01 = 0.25, and κ = 1.5.

(12) among these deterministic decision rules is 3.9278, which

corresponds to the pairwise error probability vector shown

with the green square in the figure. In addition, the pairwise

error probability vectors corresponding to the solutions with

randomization of two and three deterministic decision rules are

marked with the red triangle and the black circle, respectively.

In this scenario, the minimum objective value (3.8432) can be

achieved via randomization of two deterministic decision rules,

as well. This is again in compliance with the theorem (case 2),

which states that an optimal decision rule can be obtained as

a randomization among at most M(M − 1) + 1 deterministic

decision rules of the form given in (7).

V. CONCLUDING REMARKS

This letter presents a unified characterization of optimal

decision rules for simple M−ary hypothesis testing under

a generic performance criterion that depends on arbitrary

functions of error probabilities. It is shown that optimal per-

formance with respect to the design criterion can be achieved

by randomizing among at most two deterministic decision

rules of the form reminiscent (but not necessarily identical)

to Bayes rule when points on the decision boundary do not

contribute to the error probabilities. For the general case, the

solution for an optimal decision rule is reduced to a search

over two weight coefficient vectors, each of length M(M−1).
Likelihood ratios are shown to be sufficient statistics. Classical

performance measures including Bayesian, minimax, Neyman-

Pearson, generalized Neyman-Pearson, restricted Bayesian,

and prospect theory based approaches all appear as special

cases of the considered framework.
Finally, we point out that the form of optimal local sensor

decision rules for the problem of distributed detection [10]–

[13] with conditionally independent observations at the sensors

and an arbitrary fusion rule can be characterized using the

proposed framework.

APPENDIX A

PROOF OF LEMMA

Since {p : vTp = vTp0} is a supporting hyperplane to

P at the point p0, we get vTp ≥ vTp0 for all p ∈ P.

Furthermore, the deterministic decision rule given in (7),

denoted here by δ∗, minimizes vTp among all decision rules

δ ∈ D (and consequently over all p ∈ P). Since p0 ∈ P

as well, the deterministic decision rule given in (7) achieves

a performance score of vTp0. Any other decision rule that

does not agree with δ∗ on any subset of B̄(v) with nonzero

probability measure will have a strictly greater performance

score than vTp0 (due to the optimality of δ∗), and hence,

cannot be on the supporting hyperplane.

Case 1: We prove the first part by contrapositive. Suppose

that the deterministic decision rule δ∗ given in (7) yields

p∗ 6= p0 meaning that p0 is achieved by some other decision

rule δ0 ∈ D. Since δ∗ minimizes vTp over all p ∈ P,

vTp∗ = vTp0 holds and both p∗ and p0 are located on the

supporting hyperplane {p : vTp = vTp0}. This implies that

δ∗ and δ0 must agree on any subset of B̄(v) with nonzero

probability measure. As a result, the difference between the

pairwise probability vectors p∗ and p0 must stem from the

difference of δ∗ and δ0 over B(v). Consequently, the set B(v)
cannot have zero probability under all hypotheses.

Case 2: Suppose that the set of boundary points specified by

B(v) has nonzero probability under some hypotheses. In this

case, each point in Bi,j(v) can be assigned arbitrarily (or in

a randomized manner) to hypotheses Hi and Hj . Since the

way the ties are broken does not change vTp, the resulting

error probability vectors are all located on the intersection of

the set P with the M(M − 1) − 1 dimensional supporting

hyperplane {p : vTp = vTp0}. By Carathéodory’s Theorem

[14], any point (including p0) in the intersection set, whose

dimension is at most M(M − 1)− 1, can be represented as a

convex combination of at most M(M − 1) extreme points of

this set. Since these extreme points can only be obtained via

deterministic decision rules which all agree with δ∗ on the set

B̄(v), p0 can be achieved by a randomization among at most

M(M − 1) deterministic decision rules of the form given in

(7), all corresponding to the weights specified by v. �
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