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Spectral Estimation for Multivariate
Locally Time-Warped Signals

Adrien Meynard

Abstract—Spectral estimation generally aims at determining
from a single realization of a given signal, the distribution of
its power as a function of frequency. In this paper, we focus
on multivariate, locally time-warped signals. We show that the
spectral estimation problem can also be interpreted as a doubly
nonstationary blind source separation (BSS) problem, where
both the mixing matrix and the original sources contribute to
nonstationarity. We then introduce a BSS algorithm for joint
spectral estimation of nonstationary sources. The performance
of the proposed approach is evaluated on numerical simulations,
and compared with other nonstationary BSS algorithms.

Index Terms—Nonstationarity, spectral analysis, blind source
separation, time warping, wavelet transform.

I. INTRODUCTION

IN time series analysis or statistical signal processing,
spectral estimation is generally understood as the problem

of estimating the frequency content of a signal. Many spectral
estimation techniques have been proposed in this context, that
can handle estimation from a single signal realization [1]. A
familiar example is the so-called Welch estimator. In a more
general nonstationary context, spectral estimation can also be
interpreted as the problem of estimating and diagonalizing the
covariance operator of the signal. Both notions coincide in the
stationary case, where the covariance operator is a convolution
operator, which is diagonalized by a suitable version of the
Fourier transform. To depart from the stationary situation,
several classes of locally stationary random processes have
been proposed and studied in the literature [2], [3], [4],
[5], each of them being characterized by a specific form of
covariance operator. In this paper, we focus on a specific,
physically relevant model of nonstationarity: the locally de-
formed signals. In a few words, those signals are stationary
signals transformed by some stationarity-breaking operator. In
particular, we focus on time warping, which is a specific type
of deformation introduced in [6]. Such a model, combined with
amplitude modulation, can account for physical phenomena
as diverse as Doppler effect, speed variations of an engine,
animal vocalization [7], or speech. The covariance operator
of locally deformed signals only depends on the spectrum of
the underlying stationary signal and the deformation operator.
In this case, spectral analysis can be regarded as the joint
estimation of these two quantities. We introduced in [8] the
JEFAS algorithm (Joint Estimation of Frequency Amplitude
and Spectrum), which performs this estimation.

In this paper, we extend the results of [8] to the multivariate
case where the amplitude modulation is matrix-valued and
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mixes decorrelated locally time-warped signals. We formulate
this problem as a joint blind source separation (BSS) and
nonstationary spectral analysis problem, which we call doubly
nonstationary BSS: sources and mixing matrix are nonstation-
ary.

Most BSS algorithms assume stationarity of the sources,
and often also address instantaneous linear mixtures, where
the mixing matrix is constant over time (see [9] for a thor-
ough review of the field). For such problems, SOBI [10]
is a reference approach that exploits second-order statistics
and performs approximate joint diagonalization of covariance
matrices for the estimation. Several adaptations to the BSS
of nonstationary signals mixed by a constant matrix have
been proposed. Many of them are based on quadratic time-
frequency analysis [11], [12] and rely on a selection of specific
points of the time-frequency domain where a single source is
active. In this paper we will use a specific one of these termed
QTF-BSS, for comparison. BSS algorithms relying on local
approximations of the observations by piecewise stationary
signals have also been studied [13]. These methods include the
piecewise SOBI estimation on non-overlapping subintervals,
called p-SOBI in the article. Models of non-instantaneous
mixtures have also been considered. In [14], the authors review
the general case of time-varying convolutive mixing (including
instantaneous time-varying mixing). The proposed method
assumes the existence of a sparse representation of the sources,
which is not relevant for the situation considered here.

We tackle here the doubly nonstationary BSS problem, in
the framework of Gaussian models. Based on prior works
on locally time-warped signals [15], [8], we use an ap-
proximation of the wavelet transforms of the observations,
and formulate an approximate maximum likelihood approach
for the joint estimation of the mixing matrix and the time
warping functions. The corresponding BSS algorithm consists
in the alternate estimation of these two quantities, the latter
being estimated via the above mentioned JEFAS method. The
resulting algorithm is termed JEFAS-BSS. Its performance is
evaluated on a synthetic example.

II. MODEL OF NONSTATIONARITY

A. A class of nonstationary signals
In the following, we consider nonstationary signals gener-

ated by deformation of stationary signals. Various classes of
deformation operators have been studied before: time warping,
frequency modulation [15], or amplitude modulation [8]. As
mentioned above, we focus here on time warping combined
with amplitude modulation, which allows addressing physi-
cally relevant situations.
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More precisely, let x denote a stationary signal, modeled
as a realization of a stationary random process X with power
spectrum SX . Acting on x with a time warping operator Dγ
yields a signal y given by

y(t) = Dγx(t)
∆
=
√
γ′(t)x(γ(t)) , (1)

where γ ∈ C2 is a strictly increasing smooth function. If γ
is not an affine function, y is nonstationary. Time warping
is combined with an amplitude modulation operator Aα, the
observed signal is then of the form

z(t) = Aαy(t)
∆
= α(t)y(t) where α ∈ C1 . (2)

In [8], we showed that the wavelet transform is a natural
tool to analyze such signals. Given a wavelet function ψ, let
Wx denote the wavelet transform of a signal x, defined as

Wx(s, τ) =

∫
R
x(t)q−

s
2ψ

(
t− τ
qs

)
dt with q > 1 . (3)

When the deformation functions α and γ′ are slowly varying
compared to variations of x, the respective wavelet transforms
Wz and Wx of z and x are approximately related by:

Wz(s, τ) ≈ α(τ)Wx(s+ logq(γ
′(τ)), γ(τ)) . (4)

This mappingWx 7−→ Wz can be interpreted in terms of local
time-scale shifts of the wavelet coefficients: the time warping
function γ′ yields a translation along the scale axis, while the
amplitude modulation function α modifies the magnitude. In
the setting of random processes, we showed (Theorem 1 in [8])
that the approximation error in (4) is a zero-mean complex
random field, whose variance is controlled by the decay
properties of the wavelet ψ, and the slowness of variations
of γ′ and α.

B. Nonstationary instantaneous mixture

From now on, we assume that Nz observed signals zi(t)
are available, each of which is an instantaneous linear mixture
of Ny nonstationary signals, called sources, modeled as in
equation (1). The number of mixtures is assumed to be at
least equal to the number of sources (i.e. Nz ≥ Ny). The
under-determined case (i.e. Nz < Ny) is out of the scope of
the present work. In addition, these sources are assumed to be
uncorrelated.

More formally, let y(t) ∈ RNy , z(t) ∈ RNz denote the
column vectors containing respectively all the nonstationary
sources and observations at time t. Then, the linear instanta-
neous mixture is written as follows:

z(t) = A(t)y(t) , (5)

where A(t) ∈ RNz×Ny denotes the mixing matrix at time
t. This model extends the amplitude modulation model (2),
which corresponds to the special case where all matrices
A(t) are diagonal. The aim of the spectral analysis of the
multivariate locally deformed signal z is to determine jointly:

– the mixing matrices A(t);
– the time warping functions γi;
– the spectra of the stationary sources SXi .

In other words, we aim at performing a doubly nonstationary
blind source separation. Indeed, this problem consists of the
estimation of the nonstationary mixing matrix A(t) and the
spectral analysis of the nonstationary sources y.

Let us consider a fixed time τ . For each observation zi, we
denote by wzi,τ = Wzi(s, τ) the row vector containing the
values of the wavelet transform for a vector of scales s (of size
denoted by Ms). These vectors are gathered into the Nz×Ms

matrix wz,τ =
(
wT
z1,τ · · ·w

T
zN ,τ

)T
. We use the same notation

for the wavelet transform of the sources wy,τ . The matrix A(t)
is assumed to vary slowly with respect to the oscillations of the
signals. Then the wavelet transforms of y and z approximately
satisfy a linear relationship of the type (5), i.e.

wz,τ ≈ A(τ)wy,τ . (6)

The following theorem provides a quantitative bound for the
approximation error in equation (6).

Theorem 1. With the above notations, let ετ ∈ CNz×Ms be
the approximation error in the wavelet domain, defined as:

ετ = wz,τ −A(τ)wy,τ . (7)

Let the underlying stationary sources Xi (i = 1, . . . , Ny) be
second-order zero-mean stationary random processes of power
σ2
X . Then the approximation error ετ is a second-order zero-

mean, complex circular random matrix. Besides, the variance
of the error matrix coefficients is bounded as follows:

E
{
|ετ |2

}
≤ σ2

Xk
2
ψA′ ◦2∞ γ′∞(q3s)T , (8)

where A◦2 is the entrywise square of the matrix A, and kψ =∫
R |tψ(t)|dt, A′∞ ∈ RNz×Ny+ , and γ′∞ ∈ RNy+ are such that:

(A′∞)ij = sup
t
|A′ij(t)| , (γ′∞)i = sup

t
|γ′i(t)| .

A proof of Theorem 1 is provided in the Supplementary
material. A Taylor expansion of A centered on τ enables the
construction of the bound (8). Aside from the terms controlling
the error bound for (4), the error bound for (6) is also
controlled by the variations of the mixing matrix coefficients.

III. ESTIMATION PROCEDURE

The estimation procedure relies on the approximation equa-
tions (4) and (6), which we assume to be valid, i.e. A and γ′

are supposed to be slowly varying enough. Assuming a Gaus-
sian signal, the wavelet coefficients follow a complex Gaussian
law, from which a likelihood can be evaluated. Time-varying
parameters are therefore estimated on a discrete-time grid D
by maximizing the likelihood. In this section, we describe the
estimation procedure for a given τ ∈ D. For simplicity, we
set θi,τ = logq (γ′i(τ)) and θτ = (θ1,τ · · · θNy,τ )T .

A. Dimension reduction

Our approach requires the mixing matrix to be invertible
(see section III-B). The first step is then a dimension reduction
step so that A is a square matrix. We first perform the singular
value decomposition of consecutive segments of z and set Ny
to the number of significant singular values. We then select
Ny observations out of the Nz available (this selection is
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further discussed in section III-C). Let zl denote the retained
observations, Al,τ the restriction of A(τ) to the corresponding
rows, and Bl,τ = A−1

l,τ the corresponding separation matrix.

B. Probabilistic setting

The underlying stationary signals Xi are henceforth as-
sumed to be Gaussian. It follows that the wavelet trans-
form of the i-th source Yi is a complex circular Gaussian
random matrix (see Proposition 3 in [15]). Then, wyi,τ ∼
CN (0,Σi(θi,τ )), where

[Σi(θi,τ )]kk′= q
sk+s

k′
2

∫
R
SXi(q

−θi,τ ξ)ψ̂ (qskξ) ψ̂ (qsk′ ξ) dξ.

Therefore, the sources independence hypothesis yields the
following negative log-likelihood of wz,τ :

`τ (Bl,τ ,θτ ) =−Ms log |det(Bτ )|+ 1

2

N∑
i=1

log |det Σi(θi,τ ))|

+
1

2

N∑
i=1

[Bl,τwz,τ ]i·Σi(θi,τ )−1[Bl,τwz,τ ]Hi· ,

where [M]i· denotes the i-th row of the matrix M, and MH is
its conjugate transpose. Maximum likelihood (ML) estimates,
i.e. minimizers of `τ (Bl,τ ,θτ ), can be evaluated numerically.
These estimates are respectively denoted by B̃l,τ and θ̃τ .

C. Estimation algorithm

The algorithm performs the same estimation strategy on
all possible combinations of Ny observations. It consists of
an alternating estimation of Bl,τ , θτ , and the underlying
spectra. Algorithm 1 (named JEFAS-BSS) synthesizes all the
estimation steps, which are detailed below.

a) Initialization: Piecewise SOBI estimation (named p-
SOBI) provides a baseline method, which is also used to
determine the initial time-varying mixing matrix.

b) Mixing matrix estimation: We numerically solve the
ML problem using Newton’s method. Besides, because of the
assumption of slow variations of the matrix coefficients, we
estimate Bl,τ with a time step ∆τ greater than the sampling
period of the observations. Then, the unmixing is performed
approximating Bl,τ by a constant matrix on the interval Iτ =[
τ − ∆τ

2 , τ + ∆τ

2

)
. The estimated sources ỹ are obtained via

ỹ(t) = B̃l,τzl(t) when t ∈ Iτ . Besides, continuity of B̃l,τ

coefficients is ensured by initializing the Newton’s method
with B̃l,τ−∆τ . This prevents the descent from converging to
another minimum of `τ caused by the BSS indeterminacies.

c) Deformations and spectra estimations: For each
source, we obtain the joint estimation of {θi,τ}τ∈D and SXi

via the JEFAS algorithm (which we detail in [8]) where the
input wavelet transform wyi of the source yi is replaced with
its estimate

{[
B̃l,τwzl,τ

]
i·

}
τ∈D

.
d) Stopping criterion: The Source to Interference Ratio

(SIR), introduced in [16], quantifies the interference in an
estimated source originating from the other sources. The
weaker the interference, the larger the SIR. As we do not
have access to the ground truth sources, we measure the
SIR between ỹ(k−1) and ỹ(k) (instead of y), which gives

Algorithm 1 JEFAS-BSS
Dimension reduction: Estimate the number of sources Ny
for the l-th combination of Ny observations do

Initialization: Evaluate B̃
(0)
l,τ by means of p-SOBI. De-

rive the estimated sources ỹ(0)(τ) = B̃
(0)
l,τ zl(τ).

• k ← 1
while stopping criterion is false and k ≤ kmax do
• Spectral estimation: For i ← 1, . . . , Ny , estimate
parameters θ̃(k)

i,τ , ∀τ ∈ D and spectrum S̃
(k)
Xi

applying
JEFAS to ỹ(k−1)

i .
• BSS: For τ ← 0,∆τ , . . . , T , estimate B̃

(k)
l,τ : solve the

ML problem replacing θτ and SXi with their current
estimations θ̃

(k)

τ and S̃
(k)
Xi

. Derive the sources ỹ(k).
• k ← k + 1

end while
end for
• Estimate the averaged separation matrix B̃τ . Derive ỹ.
• Apply JEFAS to ỹ to get final estimates of SXi and γi.
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Fig. 1. Top: scalograms of the nonstationary sources. Bottom: scalograms of
the observations.

an evaluation of the BSS update and is, therefore, a relevant
convergence assessment. Practically, the convergence criterion
consists in the comparison of the SIR averaged over sources
with a given threshold, which is chosen sufficiently large.

e) Algorithm estimations: Finally, each row of the global
separation matrix Bτ is estimated

(
Nz−1
Ny−1

)
times. The final es-

timation B̃τ is naturally obtained by averaging those different
estimations. This enables us to get the final estimation ỹ of the
sources. Finally, JEFAS applied to ỹ gives the final estimations
of the time warping functions and spectra.

IV. RESULTS

We evaluate the performance of JEFAS-BSS on a synthetic
example with Ny = 3 and Nz = 4. Observations are 1 second
long, and sampled at Fs = 44.1 kHz. The power spectra of the
three underlying Gaussian sources consist of non-overlapping
Hann windows. The time-varying mixing matrix coefficients
are sinusoidally varying over time (with different frequencies).
The wavelet transforms of the locally time-warped sources, as
well as those of the observations, are displayed in Fig. 1.

JEFAS-BSS is applied to the observations. It leads to 4
different estimates based on the 4 available combinations
of 3 observations. Each of these estimations converges in 5
to 10 iterations. Each iteration takes about 60 seconds of
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Fig. 2. Top: scalograms of the estimated sources. Middle: estimated time
warping functions. Bottom: estimated spectra of the stationary sources.

CPU time on a computer running an Intel Xeon E5-2680 v4
processor. Notice that the computing time increases linearly
with the observations length and dramatically increases with
Ny , which limits the number of sources that we can handle.
The scalograms of the estimated sources and the corresponding
estimated time warping functions and spectra are displayed in
Fig. 2. The estimated spectra are of good quality, even though
one can notice a slight overestimation of the bandwidth and
residual interference. For a complete study on the performance
of JEFAS (i.e. spectra and time warping functions), we refer
to [8], which in particular gives bounds on the variance of the
time warping estimator and the bias of the spectrum estimator.
In the following, we focus on the BSS performance.

To evaluate the quality of the BSS obtained via JEFAS-BSS,
we compare it with other BSS algorithms (SOBI, p-SOBI,
QTF-BSS). It is also compared with the strategy consisting in
applying JEFAS-BSS on a single combination of Ny observa-
tions, called Single JEFAS-BSS. We apply those algorithms to
20 independent realizations of the above synthetic example.
We evaluate the quality of the BSS algorithms thanks to the
mean over 20 simulations of the SIR between the ground
truth sources and their estimations. We give the results in
Table I, together with the corresponding standard deviations
(SD). Nonetheless, this quantity is a global indicator of BSS
quality. To follow the temporal evolution of the BSS quality,
we introduce the so-called normalized Amari index, initially
constructed in [17] and called here ρ(t). The Amari index
takes values in [0, 1] and actually measures the departure from
B̃l,τAl,τ to the identity matrix. The smaller the Amari index,
the better the BSS. The mean over 20 simulations of ρ(t) is
displayed in Fig. 3 for each of the algorithms. Amari indices
averaged with respect to time and simulations are also given in
Table I, with the corresponding SD with respect to simulations.

As expected, the Amari indices and SIR clearly show that
JEFAS-BSS outperforms all other algorithms. JEFAS-BSS
takes advantage of the a priori knowledge of the nonsta-
tionarity class involved in the observations. p-SOBI allows
improving the Amari index compared to SOBI, but the SIR is

TABLE I
MEAN OVER 20 REALIZATIONS OF THE SIR AND THE AVERAGED AMARI

INDEX FOR DIFFERENT BSS STRATEGIES.

Algorithm SIR (dB) Averaged ρ (dB)
Mean SD Mean SD

SOBI 5.93 0.60 −6.04 1.56
p-SOBI 4.54 1.62 −7.18 2.37
QTF-BSS −0.13 3.05 −3.84 0.95
Single JEFAS-BSS 29.40 2.16 −15.43 3.08
JEFAS-BSS 29.96 2.61 −15.33 3.90
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Fig. 3. Mean over 20 realizations of the temporal evolution of the Amari
index (in dB) for various BSS algorithms.

impaired because of the imposed trade-off on the subintervals
lengths: they must be long enough to ensure the relevance of
SOBI, but must not be too long so that the mixing matrix
can be approximately considered as piecewise constant. More
surprisingly, QTF-BSS performance is of the same order as
that of SOBI. This may be due to the fact that QTF-BSS and
SOBI estimations rely on a constant mixing matrix model, then
the time-varying mixing matrix deteriorates in the same way
for both algorithms even though QTF-BSS is adapted to BSS
of nonstationary sources while SOBI is not. Lastly, the results
show that the strategy consisting in taking into account all the
available combinations of Ny does not really improve the BSS
quality in comparison with Single JEFAS-BSS, where a single
combination of sources is considered. Nevertheless, JEFAS-
BSS remains valuable thanks to its robustness in situations
where one of the submatrices Al,τ is ill-conditioned. In
contrast, Single JEFAS-BSS could diverge in such a case, as
illustrated on an extra example available online1.

V. CONCLUSION

We have introduced JEFAS-BSS, a spectral estimation al-
gorithm for a class of multivariate nonstationary signals. We
have shown that the problem can also be interpreted as a
doubly nonstationary BSS problem. We evaluated JEFAS-BSS
on a synthetic example on which it outperforms concurrent
BSS methods, which were not designed to handle double
nonstationarity. We believe the model is general enough to
be applied to real situations, including audio and EEG signals.
Such applications are ongoing works. Extension to other types
of stationarity-breaking deformations [18] is also of interest.

The code and datasets used to produce the numerical results
of this paper are available online1. Another illustration on a
synthetic mixture of real audio signals, where we evaluate
the influence of the speed variation of the mixing matrix on
JEFAS-BSS results, is given in Supplementary material.

1MATLAB code at https://github.com/AdMeynard/JEFAS
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I. PROOF OF THEOREM 1

The notations are the same as in the main body of the article.

Proof. The approximation error is given by:

ετ = wz,τ −A(τ)wy,τ = 〈Ay, ψsτ〉 − 〈A(τ)y, ψsτ〉
= 〈(A−A(τ))y, ψsτ〉 .

The Taylor-Lagrange formula states that for all the values of t,
there exists a value uτ(t) between t and τ such that:

A(t)−A(τ) = A′(uτ(t))(t− τ) .

Let Mτ(t) denote the real matrix given by: Mτ(t) =
A′(uτ(t))(t− τ) ∈ RNz×Ny . Then:

[ετ ]im =
Ny

∑
j=1

〈
[Mτ ]ijDγj Xj, ψsmτ

〉
=

Ny

∑
j=1

〈
Xj,Dγ−1

j
[Mτ ]ijψsmτ

〉
.

Let us denote gij,sτ = Dγ−1
j
[Mτ ]ijψsτ , then

E
{
|[ετ ]im|2

}
=

Ny

∑
j=1

Ny

∑
k=1

E

{〈
Xj, gik,smτ

〉 〈
Xk, gij,smτ

〉}
.

Since the stationary sources Xj are two-by-two independent,
only the terms where k = j are non zero. Besides, by definition
of the power spectrum, we have the following relation:

Ny

∑
j=1

E

{〈
Xj, gij,smτ

〉 〈
Xj, gij,smτ

〉}
=

Ny

∑
j=1

〈
SXj ,

∣∣∣ĝij,smτ

∣∣∣2〉 .

Let us find an upper bound for
∣∣∣ĝij,sτ

∣∣∣:∣∣∣ĝij,smτ(ξ)
∣∣∣ = ∣∣∣∣∫

R
[Mτ ]ij(t)ψsmτ(t)

√
γ′j(t)e

−2iπγj(t)ξ dt
∣∣∣∣

≤
∫

R
[A′∞]ij|t− τ| |ψsmτ(t)| ‖γ′j‖

1
2
∞ dt = [A′∞]ij[γ

′
∞]

1
2
j q

3sm
2 kψ .

Then, we obtain:

E
{
|[ετ ]im|2

}
≤

Ny

∑
j=1

q3sm σ2
X [A

′ ◦2
∞ ]ij[γ

′
∞]jk2

ψ = q3sm σ2
X [A

′ ◦2
∞ ]i·γ

′
∞k2

ψ ,

and finally, we get the main result of the theorem:

E
{
|ετ |◦2

}
≤ σ2

Xk2
ψA′ ◦2∞ γ′∞(q3s)T .

II. ILLUSTRATION ON A SYNTHETIC MIXING OF AUDIO

SIGNALS

We complement the results of the paper with a performance
evaluation on a synthetic mixture of two audio signals in the
determined case i.e. Nz = Ny = 2. We stress that a full quanti-
tative assessment is not possible here, as the underlying spectra
are not available. The code and datasets used to produce the
numerical results of this example are available online1.

The two nonstationary sources we have mixed are the
sound produced by the wind blowing through a door and
the sound of a singing woman. The mixing matrix coefficients
are sinusoidally time-varying. The wavelet transforms of the
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Fig. 4. Synthetic mixing of audio signals. Top: Scalograms of both
observations. Middle: Scalograms of both estimated sources. Bottom:
Estimated power spectra of both underlying stationary sources.
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Fig. 5. Evolution of the SIR (left) and the Amari index (right) in
function of the speed variation of the mixing matrix.

observations are displayed on the top of Fig. 4. The interest
of this example comes from the fact that each observation is
composed of two source signals whose wavelet transforms are
superimposed on large time-scale zones. Therefore, it high-
lights JEFAS-BSS ability to separate broadband sources.

The scalograms of both estimated sources are displayed on
the middle of Fig. 4, the one on the left corresponds to the
estimated wind sound, while the one on the right corresponds
to the voice sound. JEFAS-BSS also estimates the associated
time warping functions and power spectra. Both estimated
power spectra are superimposed on the bottom of Fig. 4. This
figure shows the superposition of the spectral contents of the
two sources, notably between 0 and 2 kHz (beyond 2 kHz, the
values of the singing spectrum remain significant, and strongly
dominate the values of the wind spectrum). The harmonic
structure of the voice spectrum appears clearly.

Besides, we apply the same BSS algorithms on mixtures ob-
tained from the same sources where the oscillation frequencies
of the coefficients of the mixing matrix are evenly increased. We
display on Fig. 5 the evolution of the performance indices as
functions of the speed variation of the mixing matrix (quan-
tified by ‖A′‖∞). This highlights the ability of JEFAS-BSS to
outperform the other BSS algorithms when the variations of
the mixing matrix are controlled, whereas JEFAS-BSS is not
able to capture the variability of A(t) when the speed variation
increases. Therefore, its SIR and Amari index converge to those
of a stationary-based BSS algorithm, namely SOBI.

1MATLAB code at https://github.com/AdMeynard/JEFAS


