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Abstract—Hybrid localization in GNSS-challenged environ-
ments using measured ranges and angles is becoming increasingly
popular, in particular with the advent of multimodal communi-
cation systems. Here, we address the hybrid network localization
problem using ranges and bearings to jointly determine the
positions of a number of agents through a single maximum-
likelihood (ML) optimization problem that seamlessly fuses all the
available pairwise range and angle measurements. We propose a
tight convex surrogate to the ML estimator, we examine practical
measures for the accuracy of the relaxation, and we comprehen-
sively characterize its behavior in simulation. We found that our
relaxation outperforms a state of the art SDP relaxation by one
order of magnitude in terms of localization error, and is amenable
to much more lightweight solution algorithms.

I. INTRODUCTION

Spatial awareness is a hallmark of contemporary real-world
systems and applications, particularly when multiple agents
collaborate to attain common goals. Location technologies
are key for operation in GNSS-challenged environments, like
underwater [1] or indoor [2] and city skyscraper areas [3],
and also in many applications in wireless communications [4],
sensor networks [5], IoT [6], medicine [7], [8], etc. Our work
addresses the network localization problem [9], where multiple
networked agents cooperate in sensing and computation to
jointly estimate their unknown positions.

Related work: There is a vast literature for range-based
network localization, from multidimensional scaling [10], [11]
to nonconvex ML estimation [12], [13], convexifications of
ML problems [14]–[16], and other convex heuristics to match
measured data to a data model [17], [18].

Several current technologies not only give access to accurate
distance measurements, but also provide angle information.
These added measurements can improve the quality of esti-
mates or reduce the amount of resources spent to obtain a
reasonable localization precision. 5G is an especially note-
worthy example where the value of hybrid measurements has
been noted [4], [19], and information-theoretic bounds are
available to characterize their impact [5], [20]. While the
topic of single-source range/bearing localization is reasonably
well covered in the technical literature, specific references
addressing network localization algorithms for that data model
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are surprisingly scarce [21]–[26] (see also the recent sur-
vey [5]). Yet, the potential usefulness of such algorithms,
e.g., in massive MIMO communication scenarios seems quite
obvious. Below, we focus our literature review on the subclass
of hybrid network localization algorithms derived from single
convex formulations, which avoid initialization issues affecting
other types of approaches. The importance of considering
hybrid measurements was emphasized early on in [21], but
a clear statement of the graphical conditions for localizability
of the network assuming range and bearing measurements was
only formalized in [23]. One of the first convex formulations
was a semidefinite program (SDP) proposed in [22] for 2D
scenarios. Angle constraints were manipulated into a form
similar to the one used for ranges, and incorporated into an
existing range-only SDP. Reference [27] addresses the single-
source and network localization problems through a convex
relaxation of a nonconvex least-squares cost function, and [25]
extends this to mobile setups. The very recent work in [28]
explores the problem using belief propagation, but relies on
linearized approximations. Recently, [26] takes the ML esti-
mator for the original static scenario and considers Gaussian
noise for ranges and von Mises–Fisher noise for bearings. This
very interesting work performs several approximations and
formulates the problem as an SDP. However, the manipulations
involve squaring of range and angular terms, which is known
to amplify noise and degrade localization accuracy [29], [30].

Another important line of work for hybrid network local-
ization, particularly in the scope of wireless communications,
uses RSS-based measurements as proxies for ranges (see [31],
[32] for an extensive list of references). The model for RSS
measurements is quite different from the one that we adopt
for ranges, and so are the manipulations and relaxations used
in localization algorithms.

Contributions: As in [26] we adopt a ML approach
assuming Gaussian noise for range measurements and von
Mises–Fisher noise for bearings, leading to a difficult to solve
nonconvex problem. Unlike [26] we do not approximate the
problem via squaring of range or angle terms, but instead adopt
an unconventional relaxation technique that in our simulations
attains one order of magnitude more accurate results. The
approach works in 2D and 3D (or in any ambient dimension).
As a second contribution, we provide certificates of optimality
that indicate if the minimizer of the convex surrogate coincides
with that of the nonconvex ML estimator. While our formu-
lation is amenable to parallelization, the derivation of tailored
solution algorithms is beyond the scope of this paper. Our
main goal here is to highlight and characterize the excellent
accuracy of the proposed approximate ML relaxation.
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II. PROBLEM STATEMENT

We model the network of agents as a graph G = (V, E)
where V = {1, · · · , n} denotes the set of n agents with
unknown positions, and each edge i ∼ j ∈ E indicates
that agents i and j can communicate, and can measure a
noisy version of their scalar distance dij , that we consider
symmetrical. We express the position of agent i in the ambient
space as xi ∈ Rp, where p ∈ {2, 3} in practical applications.
We also define an edge set Eu ∈ E as the set of edges providing
noisy angle measurements between agents. Bearing data is
measured as a unit vector uij expressed in the world frame. For
localization in a global reference frame, the problem assumes
the existence of a set A of landmarks or anchors whose
absolute positions {ak}k∈A are known. Each agent i can
measure noisy ranges {rik} for all k ∈ Ai ⊆ A and, possibly,
bearings {vik}k∈Ui , where Ui ⊆ Ai is the subset of anchors
reachable from node i that also provide bearing measurements.
We note that these assumptions differ from those of [31], e.g.,
where every range-like (RSS) measurement needs a matching
angular measurement. In some settings ranging devices are
much cheaper than those used to measure angles [1], so
requiring the latter only in a subset of nodes may be desirable.

Noise model: We model noisy range measurements dij ,
rik as independent and identically distributed (iid) normal
random variables centered at the true ranges with standard
deviations σij and ςik, respectively. Similarly, we model
noisy bearings as iid von Mises-Fisher random variables,
independent from ranges, centered at the true bearings with
concentration parameters κij , κik. In the following section
we formulate the ML estimator for the positions of all the
agents x = {xi}ni=1 as a nonconvex optimization problem.

Maximum likelihood localization with distance and angle
measurements: Assuming the noise models discussed above,
we can write the maximum likelihood estimator for the posi-
tions x of the overall network as

minimize
x

f(x) + fu(x), (1)

where f represents the range-related terms, and fu represents
the bearing terms. Specifically, we have, as f(x),∑
i∼j∈E

1

σ2
ij

(‖xi−xj‖−dij)2+
∑
i

∑
k∈Ai

1

ς2ik
(‖xi−ak‖−rik)2,

(2)
and, for the bearings, fu(x) is defined as∑
i∼j∈Eu

(
κiju

T
ij

xi − xj
‖xi − xj‖

)
+
∑
i

∑
k∈Ui

(
κikvTik

xi − ak
‖xi − ak‖

)
.

(3)
The unconstrained problem (1) is nonconvex due to both
terms (2), (3) and difficult to solve globally. Function f
in (2) is nonconvex because the argument of the square has
a negative region when ‖xi − xj‖ < dij (the same for
the anchor terms). Non-convexity of fu stems from xi − xj
appearing nonlinearly in the denominator. We will overcome
this difficulty by relaxing the problem to a convex one, as
presented in the next section. Later, we will see in numerical
results that the relaxation retains good estimation accuracy.

III. CONVEX RELAXATION

Following [15], we rewrite each term in (2) as

(‖xi − xj‖ − dij)2 = min
‖yij‖=dij

‖xi − xj − yij‖2, (4)

where the constraint set represents a sphere centered at the
origin with radius dij . When yij is placed optimally on the
circle with radius dij its distance to xi is |‖xi−xj‖−dij |, as
intended. The auxiliary variable is readily worked out in closed
form as yij = dij

xi−xj

‖xi−xj‖ . Focusing on inter-node terms only
for clarity, we have for the hybrid ML problem

p1 =min
x,y

∑
i∼j
‖xi − xj − yij‖2 − κijuTij

xi − xj
‖xi − xj‖

subject to ‖yij‖ = dij ,

(5)

where y is the concatenation of {yij , i ∼ j}, constraints are
on all edges of G, and p1 denotes the optimal value of the
nonconvex problem (1). This can be equivalently written as

p1 =min
x,y

∑
i∼j
‖xi − xj − yij‖2 −

κij
dij

uTijyij

subject to ‖yij‖ = dij , yij = dij
xi − xj
‖xi − xj‖

,

(6)

Note that the first constraint is redundant given the second
one. We will now relax our problem by dropping the second
constraint in (6), obtaining

p2 =min
x,y

∑
i∼j
‖xi − xj − yij‖2 − ũTijyij

subject to ‖yij‖ = dij ,

(7)

where ũij =
κij

dij
uij . As the constraint set was enlarged, we

have p2 ≤ p1.
Disk relaxation: Now we relax the constraint set from the

sphere to the ball {y : ‖y‖ ≤ dij}, its convex hull, to obtain
an approximation of the variational representation for range
terms (4)

min
‖yij‖≤dij

‖xi − xj − yij‖2. (8)

As discussed in [15], replacing the terms (4) in the range-only
cost function (2) with the modified ones (8) is beneficial for
outlier rejection; if yij can be placed anywhere on the ball,
not just on the border, this will limit the contribution of large
disks created by outliers with large values of dij . However,
placing xi and yij , yil anywhere inside the intersection area
of such disks will yield zero contribution to the cost.

Now consider the hybrid problem (7) after the same
disk relaxation of its constraint sets (relaxing ‖yij‖ = dij
to ‖yij‖ ≤ dij). The newly added angular terms will break
the flatness of range contributions discussed previously, bi-
asing the y variables back towards the borders of the disks
along the directions measured. Effectively, this formulation
approximates the intended behavior of the original one in (6)
with equality constraints, while doing so in a soft way that
preserves the ability to seamlessly reduce the impact of outliers
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in range measurements. The complete relaxed ML problem is
as follows

minimize
x,y,w

∑
i∼j
‖xi − xj − yij‖2 − ũTijyij

+
∑

i∈V,k∈Ai

‖xi − ak − wik‖2 − ṽTijwik

subject to ‖yij‖ ≤ dij , ‖wik‖ ≤ rik,

(9)

where wik have the corresponding role to yij regarding anchor-
node terms, and ṽik = κik

rik
vik. This non-standard relaxation is

the main contribution of this work.

IV. SUBOPTIMALITY ANALYSIS

After presenting a convex relaxation to the nonconvex
problem (1) we now perform a tightness analysis. From
the derivation of our relaxation we know that if the op-
timal edge variables y?ij , anchor-node variables w?ik, and
node positions x?i obey the dropped equality constraints
y?ij = dij

x?
i−x

?
j

‖x?
i−x?

j ‖
, w?ik = rik

x?
i−ak

‖x?
i−ak‖

, then the so-
lution (x?, y?, w?) of problem (9) is also the solution of
the original nonconvex problem (6), considering anchors. We
measure the suboptimality in the optimization variables by the
average p1-residual

E1 =
1

|E|
∑
i∼j

∥∥∥∥∥y?ij − dij x?i − x?j
‖x?i − x?j‖

∥∥∥∥∥
+

∑
i∈V,k∈Ai

1

|Ai|

∥∥∥∥w?ik − rik x?i − ak
‖x?i − ak‖

∥∥∥∥ . (10)

A weaker, but rather useful result, is the verification of ‖yij‖ =
dij and ‖wik‖ = rik, and the computation of the average p2-
residual

E2 =
1

|E|
∑
i∼j
|‖y?ij‖−dij |+

∑
i∈V,k∈Ai

1

|Ai|
|‖w?ik‖−rik|. (11)

Both results are important to understand how good our esti-
mate for the node positions x is. We point out that, in the
presence of noisy measurements, E1 will not be zero, but in
our simulations E2 is indeed very close to zero. As the value
of E2 is consistently very small in our numerical experiments,
the norms of edge variables yij and anchor-node variables wik
effectively equal the measured ranges. Thus, it is also useful
to consider the suboptimality angles defined by

θij = arccos

〈
y?ij
‖y?ij‖

,
x?i − x?j
‖x?i − x?j‖

〉
, (12)

where 〈·, ·〉 denotes the usual inner product of two (unit-norm)
vectors. We also define βik similarly to θij , but with node-
anchor variables. Jointly with E2, these angles show how much
our estimates deviate from optimality.

V. NUMERICAL EXPERIMENTS

To analyse performance and suboptimality, we randomly
generated geometric networks based on sensing ranges, and
tested each network for range localizability [33], to ascertain
that there is no ambiguity in the solution space inherent
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Fig. 1. The empirical CDF shows that, for all MC trials, average p2-
residuals E2 are below 10−15. Thus, for all our experiments, ‖y?ij‖ = dij ,
and ‖w?

ik‖ = rik so, for all practical purposes, there is no suboptimality gap
by approximating the nonconvex problem (7) with the convex relaxation (9).
We also observe that scaling the problem from 10 to 100 nodes slightly
increases performance. In fact, due to having a denser network and more
measurements — albeit with more unknowns — our estimator shows less
violation of the nonconvex ML constraint dropped in (9).

to network configurations. In the interest of visualization,
we chose a 2D environment to perform our experiments.
We stress, however, that our algorithm is agnostic to the
dimensionality of the ambient space.

Problem size: We test our method on networks with
n = 100, and networks of n = 10 nodes. The smaller
sized networks are used for comparison with a state-of-the-art
SDP relaxation. Larger networks could not be solved with a
generic SDP solver. Agents and anchors are randomly located
in a 7 × 7 m2 region, and, following the minimum number
of anchors allowed for range-only localization in 2D, we
set |A| = 3. We emphasize that our method, minimizing
a quadratic over a convex set, practically can accommodate
much larger problem sizes than SDP-based formulations.

Measurement data generation: Range measurements are
contaminated by noise with standard deviation of 0.5 m, while
bearing measurements are corrupted by noise with standard
deviation of 2◦. The concentration parameter associated with
each angular measurement is the inverse of the variance in
radians. These uncertainty values were drawn from [1], regard-
ing a relevant application of hybrid localization algorithms: the
underwater scenario.

Simulation parameters: The number of Monte Carlo
(MC) trials, M , in each experiment, was obtained by in-
stantiating problems, running estimators, computing metrics,
and stopping whenever the running averages across MC trials
〈H〉M = 1

M

∑M
m=1Hm were sufficiently stable. Here, H

stands for an error, for example, E1 in (10), E2 in (11) or
the angles θij and βik in (12), computed from data of MC
trial m.

Tightness measures: We first check in simulation that
the convex relaxation (9) is tight regarding the nonconvex
problem (7). For this experiment, the number of MC trials
was 209. The empirical Cumulative Distribution Function
(CDF) of the E2 residuals in Fig. 1 evidences that, for all
MC trials, the relaxation of the equality constraint on the edge
and node-anchor variables is tight, and that the solution of (9)
practically coincides with the solution of (7). This is a very
interesting result reinforcing the intuitive idea that if we add
new independent measurements we achieve better estimation.
Now we investigate p1-residuals, associated with dropping the
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Fig. 2. Empirical CDF for the average p1-residual for networks with 10 nodes.
Approximating the nonconvex problem (6) with the nonconvex relaxation (7)
represents an average error per measurement below 9 cm.
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Fig. 3. There is a strong correlation between the E1 residual error and
position error. In MC trial m, we compute the error of our estimate x̂m to
the numerical minimizer of the nonconvex original problem (1), x̃m when
initialized on the ground truth pre-noise node positions.

constraints yij = dij
xi−xj

‖xi−xj‖ and wik = rik
xi−ak
‖xi−ak‖ . Fig. 2

shows that the p1-residual E1 is smaller than range noise. The
approximation error E1 grows linearly with the error in the
estimates, as seen in Fig. 3. In fact, when plotted against the
average error over MC trials between our estimate x̂m, and
the numerical minimizer x̃m of (1) initialized with the true
positions before noise addition, we see that the two errors are
highly correlated. As we have seen in Fig. 1, there is negligible
error associated with the last relaxation. Whenever this is
true, it is more illuminating to observe the approximation
error in terms of the suboptimality angles θij (12) and βik.
Fig. 4 evidences that the relaxation from problem (6) to (7)
does not incur a large approximation error. We stress that
the suboptimality angles in (12), jointly with the verification
that E1 is virtually zero, are intuitive metrics of how far is the
optimum of the true ML estimator for hybrid localization.

Benchmark: So far we have studied the performance of
our relaxation with respect to the nonconvex ML estimator,
using our measures of suboptimality in the solution. This sec-

2 4 6 8 10 12
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0.8

1

Fig. 4. Empirical CDF for suboptimality angles (12). Angles are small. We
observe that more than 80% of the errors are below 4◦. We can, then, conclude
that the relaxation gives quite accurate results. The CDF shows more points
than the previous figures because all angles are shown (they are not averaged).

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0

0.2

0.4

0.6

0.8

1

Fig. 5. Empirical CDF of localization error for the proposed relaxation,
compared with the SDP relaxation [26]. Not only does our relaxation fare
better in minimum, average, and maximum error per node, but the slope of the
error CDF is also much steeper. This indicates low variance in the estimator
performance. The median is one order of magnitude smaller for the proposed
relaxation, and the maximum localization error is below 0.1 m, while the SDP
method can surpass 0.55 m of localization error per node.
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Fig. 6. CDF of the average p1 residual for the experiment with 100 nodes.
The span of values has of 0.035 m per measurement, slightly better than
the 0.085 m per measurement from the previous experiment in Fig. 2.

tion presents a comparison with a state of the art method [26],
using precisely the same data model as our proposal. We
used the generic solver CVX [34] to obtain the SDP estimate.
This time we will measure performance based on the average
localization error defined as e = 1

n

∑
i ‖x̂i − x?i ‖, where x̂i

is the optimum of the position of node i, given by one of the
relaxations, and x?i is the true position, before measurement
noise. Fig. 5 evidences the accuracy gain in using the proposed
approach. In our experiments, our approach always yielded
less than 0.1 m in localization error, while the SDP relaxation
resulted in a spreaded error from 0.1 m to 0.55 m. Summing
up, with one order of magnitude smaller error, our relaxation
has less variance and lower computational demands, offering
even a practical metric of suboptimality for our estimates.

Scalability: Next, we ran 120 MC trials with similar ran-
dom geometric networks, but now with 100 nodes. We could
not run the SDP relaxation for such large networks, so our
analysis will focus on the suboptimality measures discussed
in Section IV. The curve for 100 nodes in Fig. 1 shows that,
similarly to what we observed previously, the relaxation of (7)
is tight. A similar observation can be drawn from Fig. 6
regarding the more challenging of the two relaxations we
performed. We note that both of the residuals per measurement
are smaller with larger networks.

Conclusions: We presented a non-canonical relaxation
of the hybrid network localization problem, with excellent
accuracy, and where optimality certificates correlate with po-
sitioning error, informing on the quality of the approximate
solution.
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