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Abstract

The fundamental multidimensional line spectral estimation problem is addressed utilizing the Bayesian

methods. Motivated by the recently proposed variational line spectral estimation (VALSE) algorithm,

multidimensional VALSE (MDVALSE) is developed. MDVALSE inherits the advantages of VALSE

such as automatically estimating the model order, noise variance and providing uncertain degrees of

frequency estimates. Compared to VALSE, the multidimensional frequencies of a single component is

treated as a whole, and the probability density function is projected as independent univariate von Mises

distribution to perform tractable inference. Besides, for the initialization, efficient fast Fourier transform

(FFT) is adopted to significantly reduce the computation complexity of MDVALSE. Numerical results

demonstrate the effectiveness of the MDVALSE, compared to state-of-art methods.

keywords: Variational Bayesian inference, line spectral estimation, von Mises distribution, multidi-

mensional frequency estimation

I. INTRODUCTION

The problem of multidimensional (MD) frequency estimation arises in many applications. For the

2-D frequency estimation in wireless communication systems, the two dimensions correspond to the

delay and angle of each path. Physical arguments and a growing body of experimental evidence suggest

that utilizing the structures benefits and improves the channel reconstruction performance [1]. Another

application is for the 3-D frequency estimation in radar systems, one can interpret one dimension as

time delays, one dimension as Doppler shifts, and the other as spatial frequencies. Since each pair of

time delay, Doppler shift and spatial frequency specifies the localization, speed and direction of arrival

(DOA) of a scatter, respectively, estimating these parameters is of great importance for target localization

and tracking [2]. Traditional methods including N -D Discrete Fourier Transform (DFT), subspace based
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approaches such as 2D MUSIC [3], 2D ESPRIT [4], Matrix Enhancement Matrix Pencil (MEMP) [5]

and the multidimensional folding (MDF) techniques [6, 7].

Recently, compressed sensing based approaches have been proposed for N -D frequency estimation,

especially for 2-D frequency estimation. Provided that the frequencies lie on the DFT grid, the signal can

be recovered via efficient l1 minimization [8]. However, due to spectral leakage of the off-grid frequencies,

the signal is not exactly sparse and conventional compressed sensing (CS) algorithms may result in

significant performance degradation [9]. Consequently, grid refinement and continuous CS approaches

have been developed. In [10, 11], the Newtonalized orthogonal matching pursuit (NOMP) is proposed for

2-D frequency estimation, which first detects the grid and then iteratively refines the frequencies. Besides,

the model order is estimated by the constant false alarm (CFAR) criterion with the knowledge of the

noise variance. The computation complexity of NOMP is low, and the estimation performance is good.

For the latter, [12] proposes a nuclear norm minimization over multi-fold Hankel matrices approach,

[13] develops a reweighted trace minimization (RWTM) plus matrix pencil and (auto-)pairing (MaPP)

method, where RWTM fully exploits the multilevel Toeplitz (MLT) structure and utilizes the sparsity

to obtain the covariance estimates, and MaPP calculates the Vandermonde decomposition. As [12, 13]

involve solving a semidefinite programming (SDP), their computation complexities are very high.

A more recent approach is the variational line spectral estimation (VALSE) algorithm, which uses a

complete Bayesian treatment by imposing the frequencies as random variables [14]. Such method naturally

allows for representing and operating with the uncertainty of the frequency estimates, in addition to only

that of the weights. Numerically, accounting for the frequency uncertainty benefits the line spectral

estimation performance. VALSE automatically estimates the model order, noise variance, and provides

the uncertain degrees of the frequency estimates. Besides, the computation is low, compared to the

nuclear norm minimization based approaches. It was also extended to the multi-snapshot case in array

signal processing [15] and quantized setting in high-speed sampling [16]. In contrast, this work develops

MDVALSE to deal with the multidimensional (MD) frequency estimation problem.

The main contribution of this work is as follows: Firstly, MDVALSE is rigorously developed, which

is nontrival from the following two aspects: one is that the multifrequencies are treated and updated as a

whole, another aspect is that even the probability density function (PDF) of the multifrequencies can be

approximated as a multivariate von Mises distribution, computing expectations of
∏
i e

jmiφi is still hard.

We novelly project the PDF of the multifrequencies as independent vonMises distribution, which allows

computation of
∏
i e

jmiφi . Secondly, the N -D fast Fourier transform (FFT) approach is adopted to reduce

the computation complexity significantly. Finally, numerical experiments are conducted to demonstrate

the excellent performance of MDVALSE.
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II. PROBLEM SETUP

Consider a measurement model for D dimensional line spectra estimation problem expressed as

Y = X + N, (1)

where X is the noiseless line spectral composed of K complex sinusoids

X =

K∑
k=1

wkA(θk), (2)

wk denotes the complex amplitude of the kth frequency, A(θk) ∈ CM1×···×MD and the (m1, · · · ,mD)

th element is
∏D
d=1 e

j(md−1)θk,d , θk,d ∈ [−π, π] is the dth element of θk and θ = [θ1, · · · ,θK ], N is the

additive white Gaussian noise (AWGN) and NM ∼ CN (NM; 0, ν), where

M = (m1, · · · ,mD). (3)

For simplicity, we define

a(M,θk) =

D∏
d=1

ej(md−1)θk,d . (4)

Since the number of spectral K is unknown, an overcomplete model is adopted, where the number of

spectral is supposed to be N and N > K [14]. Consequently, the binary hidden variables s = [s1, ..., sN ]
T

are introduced to characterize whether the ith component is active or not. The probability mass function

(PMF) is p(s; ρ) =
∏N
k=1 p(sk; ρ), where sk ∈ {0, 1} and

p(sk; ρ) = ρsk(1− ρ)(1−sk). (5)

Besides, p(w|s; τ) =
∏N
k=1 p(wk|sk; τ), where p(wk|sk; τ) follows a Bernoulli-Gaussian distribution

p(wk|sk; τ) = (1− sk)δ(wk) + skCN (wk; 0, τ), (6)

where δ(·) is the Dirac delta function. From (5) and (6), it can be seen that ρ controls the probability of

the ith component being active. For measurement model (1), the likelihood p(Y|X; ν) is

p(Y|X; ν) =
∏
M
CN (YM;XM, ν). (7)

Let β = {ν, ρ, τ} and Φ = {θ,w, s} be the model and estimated parameters. In general, one should

first find the maximum likelihood (ML) estimates of β by marginating the posterior PDF of Φ, then find

the maximum a posterior (MAP) or minimum mean squared error (MMSE) estimates of Φ. However, the

above approach is computationally intractable and thus an iterative algorithm is developed in the ensuing

section.
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III. MDVALSE ALGORITHM

The variational approach tries to find a surrogate PDF q(Φ|Y;β) via minimizing the Kullback-Leibler

(KL) divergence between q(Φ|Y) and p(Φ|Y), which is equivalent to maximize

L(q(Φ|Y);β) = Eq(Φ|Y)

[
ln p(Y,Φ;β)

q(Φ|Y)

]
. (8)

Similar to [14], q(Φ|Y;β) is imposed to have the following structures

q(Φ|Y) =

N∏
k=1

q(θk|Y)q(w|Y, s)δ(s− s0). (9)

Maximizing L(q(Φ|Y)) with respect to all the factors is also intractable. Similar to the Gauss-Seidel

method, L is optimized over each factor q(θk|Y), k = 1, . . . , N and q(w, s|Y) separately with the others

being fixed. Let z = (θ1, . . . ,θN , (w, s)) be the set of all latent variables. Maximizing L(q(Φ|Y);β)

(8) with respect to the posterior approximation q(zn|Y) of each latent variable zn, n = 1, . . . , N + 1

yields

ln q(zn|Y) = Eq(z\zn|Y)[ln p(Y, z)] + const, (10)

where the expectation is with respect to all the variables z except zn and the constant ensures normal-

ization of the PDF.

Due to the factorization property of (9), the frequencies θk, k ∈ {1, ..., N} can be estimated from the

marginal distribution q(Φ|Y) as

θ̂k,d = arg(Eq(θk|Y)[e
jθk,d ]), (11a)

âM,θk
= Eq(θk|Y)[a(M,θk)], d ∈ {1, ..., D}, (11b)

where arg(·) returns the angle.

Given that q(s|Y) = δ(s− s0), the posterior PDF of w is

q(w|Y) =

∫
q(w|Y, s)δ(s− s0)ds = q(w|Y; s0). (12)

For the given posterior PDF q(w|Y), the mean and covariance of the weights is estimated as

ŵ = Eq(w|Y)[w], (13a)

Ĉ = Eq(w|Y)[wwH]− ŵŵH. (13b)

Let S be the set of indices of the non-zero components of s, i.e., S = {k|1 ≤ k ≤ N, sk = 1}. In the

following, we detail the procedures.

December 30, 2019 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

A. Inferring the frequencies

For each k = 1, ..., N , we maximize L with respect to the factor q(θk|Y). For k /∈ S, q(θk|Y) remains

unchanged. For k ∈ S, substituting (11) and (13) in (10), ln q(θk|Y) is obtained as

ln q(θk|Y) = ln p(θk) +
∑
M
<{ηk,Ma(M,θk)}+ const, (14)

where ηk,M is

ηk,M = 2ν−1(Y ∗Mwk −
∑

i∈Ŝ\k

â∗M,θi
(Ĉi,k + ŵkŵ

∗
i )), (15)

where ()∗ denotes the conjugate operation. While it is hard to obtain the analytical results of (11) for

the PDF (14), q(θk|Y) is projected as the D independent von Mises distribution. A Newton step is

implemented to refine the previous estimates, i.e.,

θ̂t+1
k = θ̂tk − (∇2f(θ̂tk))

−1∇f(θ̂tk), (16a)

κ̂t+1
k = A−1

(
exp(2diag((∇2f(θ̂t+1

k ))−1))
)
, (16b)

where f(θk) is the exponential part of q(θk|Y) and the detail of the inverse of A(·) , I1(·)
I0(·) is given in

[17], diag(·) returns a vector with elements being the diagonal of the matrix. As a result, q(θk|Y) and

âM,θk
can be approximated as

q(θk|Y) ≈
D∏
d=1

fVM(θd; η̂k,d), (17a)

âM,θk
≈

D∏
d=1

IMd
(κ̂(k,d))

I0(κ̂(k,d))
aM,θ̂k

. (17b)

In Section IV, the accuracy of the approximation (17a) is demonstrated numerically.

B. Inferring the weights and support

Next q(θk|Y), k = 1, ..., N are fixed and L is maximized w.r.t. q(w, s|Y). Define the matrices J and

H as

Jij =


∏D
d=1Md, i = j∑
M â∗M,θi

âM,θj
, i 6= j

, i, j ∈ {1, 2, · · · , N}, (18a)

hi =
∑
M

YMâ
∗
M,θi

, i ∈ {1, · · · , N}, (18b)

where Jij denotes the (i, j)th element of J. It can be shown that updating ŵS , ĈS and s are the same

as [14] and details are omitted here.
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C. Estimating the model parameters

After updating the frequencies and weights, the model parameters β = {ν, ρ, τ} are estimated via

maximizing the lower bound L(q(Φ|Y);β) for fixed q(Φ|Y). Plugging the postulated PDF (9) in (8)

and set ∂L
∂ν = 0, ∂L

∂ρ = 0, ∂L
∂τ = 0, we have

ν̂ =

[
ŵH
Ŝ

ĴŜŵŜ +
∑
M Y ∗MYM + tr(JŜĈŜ)− 2<(ŵH

Ŝ
hŜ)

]
∏D
d=1Md

,

ρ̂ =
||̂s||0
N

, τ̂ =
ŵH
Ŝ

ŵŜ + tr(ĈŜ)

||̂s||0
. (19)

D. Summary of MDVALSE algorithm

The initialization of MDVALSE algorithm is presented. For the first step of initialization, we randomly

extract one dimensional data from Y and use the method in [14] to initialize β̂. For the later, we choose

to initialize {q(θk|Y)}Nk=1 in a sequential manner. For the kth step, the noncoherent PDF

q(θk|Y) ∝ exp{−|
∑
M

Y∗M,ra(M,θk)|2/(ν
D∏
d=1

Md)} (20)

is projected to D independent von Mises distribution, where YM,r = YM−
k−1∑
i=1

âM,θi
ŵi. Here N-D FFT

is implemented to obtain the approximated D independent von Mises distribution. Then the MDVALSE

can be obtained and the procedures are similar to [14, Algorithm 3].

Now we analyze the computation complexity of MDVALSE. The complexity of initialization is domi-

nated by D dimensional FFT. For the ith dimension, the number of grid is γMi where γ can be viewed

as the oversampling factor. Thus the initialization has complexity O(N
∏D
d=1Md log(

∏D
d=1Md)). For

each iteration, the complexity is dominated by the estimate of s and the projection of {q(θk|Y)}k∈Ŝ
as D independent VM. According to [14], the calculation of ŝ has complexity O(NK̂3) and in general

N = mindMd. For the projection operation, the complexity is O(K̂D2
∏D
d=1Md + K̂D3) which are

mainly dominated by the calculation and inverse of Hessian matrix in (16b). Therefore, the computational

complexity of MDVALSE is O(N
∏D
d=1Md log(

∏D
d=1Md) + T (K̂D2

∏D
d=1Md + K̂D3)) where T

denotes the number of whole iterations. For M1 =M2 · · · =MD =M , the computation complexity can

be simplified as O(NDMD logM + T (NK̂3 + K̂D2MD + K̂D3)) .

IV. NUMERICAL SIMULATION

In this section, substantial numerical experiments are conducted to evaluate the performance of MD-

VALSE algorithm. The normalized mean squared error (NMSE) of X̂, MSE of θ̂ and the correct

model order estimated probability P(K̂ = K) are adopted as the performance metrics. The frequencies
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(a)

(b)

Fig. 1. The logarithm of the true PDFs (noncohent PDF (20) and coherent PDF (14)) and their approximations for different

oversampling factor γ: (a) γ = 1.6, (b) γ = 52.
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Fig. 2. Recovery performance of RWTM and MDVALSE algorithms for 2D case. (a) Noiseless case and MSE of frequencies

is -221 dB and -115 dB for RWTM and MDVALSE, respectively. (b) Noisy case for SNR = 40 dB, and MSE of frequencies

is -70 dB for MDVALSE.
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Fig. 3. Performance of MDVALSE for 4D case.

estimation error is averaged over the trials in which K̂ = K for a given simulation point. We define

nominal signal-to-noise ratio (SNR) as SNR , 10log(‖ X ‖2F / ‖ N ‖2F). The Algorithm stops when

||X̂(t−1) − X̂(t)||F/||X̂(t−1)||F < 10−6 or t > 500, where t is the number of iterations.

At first, the approximations of noncohent PDF (20) and coherent PDF (14) as D independent von

Mises distribution are validated numerically and results are shown in Fig. 1. Note that for γ = 1.6, the

approximation deviates a little away from the true PDF due to the inaccuracy of the FFT results. As γ

increases to 52, the approximation is high and the two PDFs are indistinguishable around the peak.

A. Estimation from 2D case

In this simulation, we consider a 2D case with K = 8 signals and true frequencies are [(0.94, 1.26),

(1.26,−2.51), (1.89, 1.89), (2.83,−1.26), (−2.51, 1.57), (−2.51,−2.51), (−1.57, 2.51), (−1.45, 2.76)]. The

complex weight coefficients are generated i.i.d. from complex normal distribution CN (0, 1). The number

of measurements is M1 = M2 = 10. As for performance comparison, reweighted trace minimization

(RWTM) algorithm proposed in [13] is chosen and the performances of RWTM and MDVALSE are

investigated in Fig. 2. It can be seen that for noiseless case in Fig. 2(a), MDVALSE and RWTM algorithms

both estimate well. Numerically, the MSE of frequencies of RWTM is lower than that of MDVALSE.

For noisy case in Fig. 2(b), MDVALSE still performs well, while RWTM overestimates the model order.

This demonstrates that MDVALSE is more robust against noise than RWTM.

B. Estimation from 4D case

The performance of MDVALSE algorithm for 4D case versus SNR is investigated. The magnitudes

and phases of the complex weight coefficients are generated i.i.d. from normal distribution N (1, 0.2)

and uniform distribution U(−π, π), respectively. The number of sinusoids is K = 3 and the wrap-

around distance between any two frequencies is at least 2π
N radians for each dimension. 100 MC trails
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are performed and results are shown in Fig. 3. MDVALSE works well and performs better as SNR or

number of measurements increases.

V. CONCLUSION

This paper develops the MDVALSE for multidimensional line spectral estimation, where the multi-

dimensional frequencies are treated as a whole and their PDF are projected as independent von Mises

distribution for tractable inference. MDVALSE inherits the advantages of automatically estimating the

model order, number of nuisance parameters such as noise variance, and providing the uncertain degree

of frequency estimates. Numerical results demonstrate the effectiveness of MDVALSE.
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