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Abstract— In this paper, we consider channel estimation
for intelligent reflecting surface (IRS)-assisted millimeter wave
(mmWave) systems, where an IRS is deployed to assist the data
transmission from the base station (BS) to a user. It is shown
that for the purpose of joint active and passive beamforming,
the knowledge of a large-size cascade channel matrix needs to be
acquired. To reduce the training overhead, the inherent sparsity
in mmWave channels is exploited. By utilizing properties of Katri-
Rao and Kronecker products, we find a sparse representation of
the cascade channel and convert cascade channel estimation into
a sparse signal recovery problem. Simulation results show that
our proposed method can provide an accurate channel estimate
and achieve a substantial training overhead reduction.

Index Terms— Intelligent reflecting surface, millimeter wave
communications, channel estimation.

I. INTRODUCTION

Intelligent reflecting surface (IRS) comprising a large num-

ber of passive reflecting elements is emerging as a promising

technology for realizing a smart and programmable wireless

propagation environment via software-controlled reflection

[1]–[4]. With a smart controller, each element can indepen-

dently reflect the incident signal with a reconfigurable ampli-

tude and phase shift. By properly adjusting the phase shifts of

the passive elements, the reflected signals can add coherently

at the desired receiver to improve the signal power. Recently,

IRS was introduced to establish robust mmWave connections

when the line-of-sight (LOS) link is blocked by obstructions

[5], [6]. To reach the full potential of IRSs, accurate channel

state information (CSI) is required for joint active and passive

beamforming. There are already some works on channel

estimation for IRS-aided wireless systems, e.g. [7]–[11]. In [7],

to facilitate channel estimation, active elements were used at

the IRS. These active elements can operate in a receive mode

so that they can receive incident signals to help estimate the

BS-IRS channel and the IRS-user channel. IRSs with active

elements, however, need wiring or battery power, which may
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not be feasible for many applications. For IRSs with all passive

elements, least square (LS) estimation methods [8], [9] were

proposed to estimate uplink cascade channels. The problem

lies in that the cascade channel usually has a large size. These

methods which do not exploit the sparse structure inherent in

wireless channels may incur a considerable amount of training

overhead. In [10], a sparse matrix factorization-based channel

estimation method was developed by exploiting the low-rank

structure of the BS-IRS and IRS-user channels. The proposed

method requires to switch off some passive elements at each

time. Implementing the ON/OFF switching, however, is costly

as this requires separate amplitude control of each IRS element

[11].

In this paper, we consider the problem of channel estimation

for IRS-assisted mmWave systems. To reduce the training

overhead, sparsity inherent in mmWave channels is exploited.

By utilizing properties of the Khatri-Rao and Kronecker

products, we find a sparse representation of the concatenated

BS-IRS-user (cascade) channel. Channel estimation can then

be cast as a sparse signal recovery problem and existing

compressed-sensing methods can be employed. Simulation

results show that our proposed method, with only a small

amount of training overhead, can provide reliable channel

estimation and help attain a decent beamforming gain.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an IRS-assisted mmWave downlink system,

where an IRS is deployed to assist the data transmission from

the BS to a single-antenna user. Suppose the IRS is a planar

array with M reflecting elements. The BS is equipped with

N antennas. Let G ∈ CM×N denote the channel from the

BS to the IRS, and hr ∈ CM denote the channel from the

IRS to the user. To better illustrate our idea, we neglect the

direct link from the BS to the user. Nevertheless, the extension

to the scenario with direct link from the BS to the user

is straightforward. Each reflecting element of the IRS can

reflect the incident signal with a reconfigurable phase shift

and amplitude via a smart controller [3]. Denote

Θ , diag(β1e
jθ1 , . . . , βMejθM ) (1)

as the phase-shift matrix of the IRS, where θm ∈ [0, 2π] and

βm ∈ [0, 1] denote the phase shift and amplitude reflection

coefficient associated with the mth passive element of the IRS,

respectively. For simplicity, we assume βm = 1, ∀m in the

sequel of this paper.
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Let w ∈ CN denote the beamforming vector adopted by

the BS. The signal received by the user at the tth time instant

is given by

y(t) = hH
r Θ(t)Gw(t)s(t) + ǫ(t)

(a)
= vH(t)diag(hH

r )Gw(t)s(t) + ǫ(t)

(b)
= vH(t)Hw(t)s(t) + ǫ(t) (2)

where s(t) is the transmitted symbol, ǫ(t) denotes the additive

white Gaussian noise with zero mean and variance σ2, in (a),
we define v , [ejθ1 . . . ejθM ]H ∈ CM , and in (b), we

define H , diag(hH
r )G. Here H is referred to as the cascade

channel. An important observation based on (2) is that, in

the beamforming stage, we only need the knowledge of the

cascade channel H for joint active and passive beamforming,

i.e. optimizing w and v to maximize the received signal

power at the receiver. Therefore, in the channel estimation

stage, our objective is to estimate the cascade channel H from

the received measurements {y(t)}Tt=1. Note that to facilitate

channel estimation, different precoding vectors {w(t)} are

employed at different time instants, while the phase shift

vector v can either be time-varying or remain time-invariant

over different time instants. Without loss of generality, we

use v(t) to represent the phase shift vector used at the tth
time instant. We also would like to clarify that the channel

estimation algorithm is implemented at the receiver (i.e. user),

no operation or algorithm needs to be executed at the IRS.

The cascade channel matrix H has a dimension of M ×N .

Both N and M could be large for mmWave systems, which

makes channel estimation a challenging problem. Hopefully,

real-world channel measurements [12], [13] have shown that

mmWave channels exhibit sparse scattering characteristics,

which can be utilized to substantially reduce the training

overhead.

III. CHANNEL MODEL

Following [14], a narrowband geometric channel model is

used to characterize the BS-IRS channel G and the IRS-user

channel hr. Specifically, the BS-IRS channel can be modeled

as

G =

√

NM

ρ

L
∑

l=1

̺lar(ϑl, γl)a
H
t (φl) (3)

where ρ denotes the average path-loss between the BS and

IRS, L is the number of paths, ̺l denotes the complex gain

associated with the lth path, ϑl (γl) denotes the azimuth

(elevation) angle of arrival (AoA), φl is the angle of departure

(AoD), ar and at represent the receive and transmit array

response vectors, respectively. Suppose the IRS is an Mx×My

uniform planar array (UPA). We have [15]

ar(ϑl, γl) = ax(u)⊗ ay(v) (4)

where ⊗ stands for the Kronecker product, u ,

2πd cos(γl)/λ, v , 2πd sin(γl) cos(ϑl)/λ, d denotes the

antenna spacing, λ is the signal wavelength, and

ax(u) ,
1√
Mx

[1 eju . . . ej(Mx−1)u]T

ay(v) ,
1

√

My

[1 ejv . . . ej(My−1)v]T (5)

Due to the sparse scattering nature of mmWave channels, the

number of path L is small relative to the dimensions of G.

Hence we can express G as

G = (F x ⊗ F y)ΣFH
L , F PΣFH

L (6)

where FL ∈ CN×NG is an overcomplete matrix (NG ≥ N )

and each of its columns has a form of at(φl), with φl

chosen from a pre-discretized grid, F x ∈ CMx×MG,x (F y ∈
CMy×MG,y ) is similarly defined with each of its columns

having a form of ax(u) (ay(v)), and u (v) chosen from a

pre-discretized grid, Σ ∈ CMG×NG is a sparse matrix with L
non-zero entries corresponding to the channel path gains {̺l},

in which MG = MG,x×MG,y. Here for simplicity, we assume

that the true AoA and AoD parameters lie on the discretized

grid. In the presence of grid mismatch, the number of nonzero

entries will become larger due to the power leakage caused by

the grid mismatch [16].

The IRS-user channel can be modeled as

hr =

√

M

ε

L′

∑

l=1

αlar(ϑl, γl) (7)

where ε denotes the average path-loss between the IRS and the

user, αl denotes the complex gain associated with the lth path,

and ϑl (γl) denotes the azimuth (elevation) angle of departure.

Due to limited scattering characteristics, the IRS-user channel

can be written as

hr = F Pα (8)

where α ∈ C
MG is a sparse vector with L′ nonzero entries.

IV. PROPOSED METHOD

A. Channel Estimation

We now discuss how to develop a compressed sensing-based

method to estimate the cascade channel H . Let • denote the

“transposed Khatri-Rao product”, we can express the cascade

channel as

H = diag(hH
r )G

(a)
= h∗

r •G
(b)
= (F ∗

Pα
∗) • (F PΣFH

L )

(c)
= (F ∗

P • FP )(α∗ ⊗ (ΣFH
L ))

(d)
= (F ∗

P • F P )(α
∗ ⊗Σ)(1 ⊗ FH

L )

(e)
= D(α∗ ⊗Σ)FH

L (9)

where in (a), (·)∗ denotes the complex conjugate, (b) comes

from (6) and (8), (c) follows from the property of Khatri-Rao

product (see (1.10.27) in [17]), (d) is obtained by resorting

to the property of Kronecker product (see (1.10.4) in [17]),

and we define D , F ∗
P • F P in (e). Since both α and

Σ are sparse, their Kronecker product is also sparse. We see
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that after a series of transformation, a sparse representation of

the cascade channel H is obtained. This sparse formulation

can be further simplified by noticing that the matrix D

contains a considerable amount of redundant columns due to

the transposed Khatri-Rao product operation. Specifically, we

have the following result regarding the redundancy of D.

Proposition 1: The matrix D ∈ CM×M2

G only contains

MG distinct columns which are exactly the first MG columns

of D, i.e.

Du = D(:, 1 : MG) (10)

where Du denotes a matrix constructed by the MG distinct

columns of D.

The proof is easily verified and thus omitted. Based on this

result, the cascade channel H can be further expressed as

H = D(α∗ ⊗Σ)FH
L = DuΛFH

L (11)

where Λ ∈ CMG×NG is a merged version of (α∗ ⊗Σ) , J ,

with each of its rows being a superposition of a subset of rows

in J , i.e. Λ(i, :) =
∑

n∈Si
J(n, :), where Λ(i, :) denotes the

ith row of Λ, Si denotes the set of indices associated with

those columns in D that are identical to the ith column of D.

Clearly, there are at most L× L′ nonzero entries in Λ.

Assuming the pilot signal s(t) = 1, ∀t, the received signal

y(t) in (2) can be written as

y(t) =vH(t)Hw(t)s(t) + ǫ(t)

(a)
=

(

wT (t)⊗ vH(t)
)

vec(H) + ǫ(t)

(b)
=

(

wT (t)⊗ vH(t)
)

(F ∗
L ⊗Du) vec(Λ) + ǫ(t)

(c)
=

(

wT (t)⊗ vH(t)
)

F̃ x+ ǫ(t) (12)

where (a) and (b) follow from the property of Kronecker

product, and in (c) we define F̃ , F ∗
L⊗Du and x , vec(Λ).

Stacking the measurements collected at different time instants

y , [y(1) . . . y(T )]T , we arrive at

y = Φx+ ǫ (13)

where Φ , W vF̃ and

W v ,







wT (1)⊗ vH(1)
...

wT (T )⊗ vH(T )






(14)

So far we have converted the channel estimation problem

into a sparse signal recovery problem, and many classical com-

pressed sensing algorithms such as the orthogonal matching

pursuit (OMP) [18] can be employed to estimate the sparse

signal x. After x is recovered, the cascade channel H can be

accordingly obtained via (11).

In the following, we analyze the sample complexity of our

proposed compressed sensing-based method. According to the

compressed sensing theory, for an underdetermined system

of linear equations y = Ax, the number of measurements

required for successful recovery of x is at the order of

O(k logn), where n is the dimension of x, and k denotes

the number of nonzero elements in x. For the sparse signal

recovery problem (13), we have n = MGNG and k ≤ LL′.

Therefore our proposed method has a sample complexity of

O(LL′ log(MGNG)). Due to the sparse scattering nature of

mmWave channels, LL′ is much smaller than MN . Therefore

a substantial training overhead reduction can be achieved.

B. Extension To Multi-Antenna Receiver

We briefly discuss the extension of the proposed method

to the multi-antenna receiver scenario. Suppose the user is

equipped with Nr antennas. Let R ∈ CNr×M denote the

channel from the IRS to the user. Due to the sparse scattering

nature of mmWave channels, we can write R = F rΓF
H
P

where F r ∈ CNr×NGr is an overcomplete matrix and each

of its columns has a form of ar(φi), with φi chosen from a

pre-discretized grid, and Γ ∈ C
NGr×MG is a sparse matrix

with L′ nonzero elements. For the MIMO scenario, the signal

received by the user at the tth time instant is given by

y(t) = fH(t)H̄w(t)s(t) + ǫ(t) (15)

where f(t) and w(t) denote the combining vector at the re-

ceiver and the precoding vector at the transmitter respectively,

and H̄ is defined as

H̄ , RΘG = F rΓF
H
P ΘF PΣFH

L

, F rΓΞΣFH
L (16)

in which Ξ , FH
P ΘF P . Furthermore, we have

vec(H̄) =vec(F rΓΞΣFH
L ) = (F ∗

L ⊗ F r)vec(ΓΞΣ)

=(F ∗
L ⊗ F r)(Σ

T ⊗ Γ)vec(Ξ)

=(F ∗
L ⊗ F r)(Σ

T ⊗ Γ)(F T
P ⊙ FH

P )v∗ (17)

where ⊙ denotes the Khatri-Rao product. Similarly, the matrix

D̄ , F T
P ⊙ FH

P ∈ CM2

G×M contains only MG distinct rows

which are exactly the first MG rows of D̄. Thus we can rewrite

(17) as

vec(H̄) = (F ∗
L ⊗ F r)Λ̄D̄uv

∗ (18)

where D̄u , D̄(1 : MG, :), Λ̄ is a merged version of J̄ ,

Σ
T ⊗Γ, i.e. Λ̄(:, i) =

∑

n∈Qi
J̄(:, n), where Qi is the set of

indices associated with those rows in D̄ that are identical to

the ith row of D̄. Hence, we can move on to write

vec(H̄) =(F ∗
L ⊗ F r)Λ̄D̄uv

∗

=
(

(D̄uv
∗)T ⊗ (F ∗

L ⊗ F r)
)

vec(Λ̄)

,Kx̄ (19)

where K , (D̄uv
∗)T ⊗ (F ∗

L ⊗ F r) and x̄ , vec(Λ̄) is

a sparse vector to be estimated. Let s(t) = 1, and define

y = [y(1) y(2) . . . y(T )]T , we have

y = W fKx̄+ ǫ (20)

where W f ∈ CT×NM , W f (t, :) = wT (t) ⊗ fH(t), and

W f (t :) is the tth row of W f . We see that estimation of the

channel vector x̄ is converted to a conventional sparse signal

recovery problem. Note that although we cannot obtain Γ (i.e.

R) and Σ (i.e. G) from x̄, the knowledge of x̄ itself is enough

for joint beamforming for the MIMO scenario as the joint

beamforming problem can be converted to an optimization

problem which maximizes ‖H̄‖2F = ‖vec(H̄)‖22 with respect

to v [19], [20].



4

20 40 60 80 100 120

T

10-3

10-2

10-1

100

N
M

S
E

OMP
GAMP
Oracle LS

(a) NMSE.

0 20 40 60 80 100 120 140

T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
R

P
S

R

OMP
GAMP
Oracle LS

(b) ARSPR.

Fig. 1. NMSEs and ARSPRs of respective algorithms vs. T
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Fig. 2. NMSEs and ARSPRs of respective algorithms vs. SNR

V. SIMULATION RESULTS

In this section, we present simulation results to evaluate the

performance of our proposed channel estimation method. Two

different compressed sensing algorithms, namely, the OMP

[18] and GAMP [21] are employed to solve (13). To provide

a benchmark for our proposed method, we compare with the

oracle least-squares (Oracle-LS) estimator which assumes the

knowledge of the support of the sparse signal. Clearly, the

oracle LS estimator provides the best achievable performance

for any compressed sensing-based method. Also, we compare

with the conventional LS estimator proposed in [8], which

sets T ≥ NM and formulates channel estimation as an over-

determined system of equations: y = W vvec(H) + ǫ (cf.

(12)). We assume that the BS employs a uniform linear array

(ULA) with N = 16 antennas and the IRS is a UPA consisting

of M = 8× 8 passive reflecting elements. In our simulations,

we set NG = 64, MG,x = 32 and MG,y = 32. Also, we

assume a Rician channel comprising a LOS path and a number

of NLOS paths [22]–[24]. The Rician factor is set to 13.2dB

according to [24]. The number of paths for mmWave channels

G and hr are respectively set to L = 3 and L′ = 3, where

the AoA and AoD parameters are uniformly generated from

[−π/2, π/2] and not necessarily lie on the discretized grid.

The performance is evaluated via two metrics, i.e. normal-

ized mean squared error (NMSE) and average receive signal

power ratio (ARSPR). The NMSE is defined as E[‖(Ĥ −
H)‖2F /‖H‖2F ]. The ARSPR is defined as the ratio of the

actual receive signal power to the ideal receive signal power,

i.e. E[‖vHH‖2F/‖(v⋆)HH‖2F ], where v and v⋆ are respec-

tively obtained via solving the joint beamforming problem [25]

based on the estimated cascade channel Ĥ and the real channel

H . In Fig. 1, we plot the NMSEs and ARSPRs of respective

algorithms as a function of T , where the signal-to-noise ratio

(SNR) is set as 10dB. From Fig. 1, we see that GAMP only

needs about 100 measurements to attain an NMSE as low as

0.04, thus achieving a substantial overhead reduction. Fig. 2

depicts the NMSEs and ARSPRs versus the SNR, where we

set T = 110 for GAMP, OMP and the oracle LS estimator,

and T = 1524 > NM for the conventional LS estimator

[8]. Our results show that our proposed method can achieve

performance (in terms of ARPSR) close to that of the oracle

LS estimator in scenarios of practical interest, e.g. T > 40 and

SNR > −5dB. Meanwhile, it can be observed that the conven-

tional LS estimator [8] requires much more measurements to

achieve a performance similar to the proposed method. Also,

the conventional LS estimator has a computational complexity

of O(T (NM)2) with T ≥ NM , while the complexity of

OMP and GAMP is of O(TNM) with T < NM . Hence our

proposed method is more computationally efficient than the

conventional LS estimator [8].

VI. CONCLUSIONS

We studied the problem of channel estimation and joint

beamforming design for IRS-assisted mmWave systems. We

proposed a compressed sensing-based channel estimation

method by exploiting the inherent sparse struccture of the

cascade channel. Simulation results showed that our pro-

posed method can provide an accurate channel estimation and

achieve a substantial training overhead reduction.
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