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Tracking Performance of Online Stochastic Learners
Stefan Vlaski, Member, IEEE, Elsa Rizk, and Ali H. Sayed, Fellow, IEEE

Abstract—The utilization of online stochastic algorithms is
popular in large-scale learning settings due to their ability to
compute updates on the fly, without the need to store and process
data in large batches. When a constant step-size is used, these
algorithms also have the ability to adapt to drifts in problem
parameters, such as data or model properties, and track the

optimal solution with reasonable accuracy. Building on analogies
with the study of adaptive filters, we establish a link between
steady-state performance derived under stationarity assumptions
and the tracking performance of online learners under random
walk models. The link allows us to infer the tracking performance
from steady-state expressions directly and almost by inspection.

Index Terms—Online learning, stochastic learning, tracking
performance, non-stationary environment.

I. PROBLEM FORMULATION

Most online learning algorithms compute an estimate wi at

time i by recursively updating the prior estimate wi−1 using

data xi observed at that same time instant i. We consider in

this work a general mapping (i.e., learning rule) of the form:

wi = T (wi−1;xi) (1)

where T (·, ·) maps the iterate wi−1 to wi using the data xi.

Throughout this manuscript, we allow for the mapping to be

stochastic and time-varying due to the potentially time-varying

distribution of the random variable xi. One popular instance

of this recursion is the stochastic gradient algorithm [1]:

T (wi−1;xi) , wi−1 −µ∇Q(wi−1;xi) (2)

which can be used to estimate the minimizer of stochastic risks

of the form:

wo
i , argmin

w∈RM

Exi
Q(w;xi) (3)

where we write wo
i , with a subscript i, to allow for the

possibility of the minimizer drifting with time due to changes

in the distribution of the streaming data xi. Of course, descrip-

tion (1) captures many more algorithm variations, besides the

stochastic gradient algorithm (2), such as proximal [2], [3],

empirical [4], variance-reduced [5], [6], distributed [7]–[10],

and second-order constructions [11]. We restrict ourselves in

this work to the important class of mappings that satisfy the

following mean-square contractive property. We illustrate later

by means of examples that several popular learning mappings

already satisfy this condition.

Definition 1 (Mean-square contraction). We say that a map-

ping wi = T (wi−1;xi) is “mean-square contractive” around

a “mean-square fixed-point” w∞
i if for any wi generated by

the mapping it holds that:

E ‖w∞
i −wi‖2 ≤ γiE ‖w∞

i −wi−1‖2 + δi (4)
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with γi < 1. In general, the point w∞
i , the rate of contraction

γi, and the additive term δi will be a function of the distri-

bution of xi, and are hence allowed to be time-varying to

account for non-stationarity.

We refer to the point w∞
i as the “mean-square fixed-

point” of the mapping T (wi−1;xi), since applying T (·;xi)
at wi−1 = w∞

i yields in light of (4):

E ‖w∞
i −T (w∞

i ;xi)‖2 ≤ γiE ‖w∞
i −w∞

i ‖2+δi = δi (5)

and hence T (w∞
i ;xi) ≈ w∞

i for small δi in the mean-square

sense.

If the mapping happens to be deterministic and δi = 0, we

can drop the additive term, as well as the expectation, and

recover after taking square-roots:

‖w∞
i − wi‖ ≤ γ

1

2

i ‖w∞
i − wi−1‖ (6)

which corresponds to the traditional definition of a contractive

mapping [12]. As we shall show, a number of stochastic

algorithms are mean-square contractive, allowing our expo-

sition to cover them all. In the case of the stochastic gradient

descent algorithm (2), the point w∞
i will correspond to the

minimizer of (3), in which case wo
i and w∞

i can be used

interchangeably. In general, however, such as the decentralized

strategies (21)–(22) listed further ahead, we will need to make

a subtle distinction.

In addition to the stochastic nature of the mapping T (·;xi)
resulting from its dependence on the random variable xi, we

allow for T (·;xi) to be time-varying due to drifts in the

distribution of xi, which results in a drift of the fixed-point

w∞
i over time (this explains why we are using a subscript

i in w∞
i ). Relations similar to (4) frequently appear as

intermediate results in the performance analysis of stochastic

algorithms in stationary environments, although stationarity is

not necessary for establishing (4). By establishing a general

tracking result for mean-square contractive mappings, and

subsequently appealing to prior results establishing (4), we can

recover known results, and also establish some new results on

the tracking performance of stochastic learners for general loss

functions.

A. Related Works

The tracking performance of adaptive filters, focusing pri-

marily on mean-square error designs is fairly well established

(see, e.g., [11], [13]). In the decentralized setting, though

generally restricted to deterministic optimization with exact

gradients, the tracking performance of primal and primal-dual

algorithms has been studied in [14]–[16]. In the stochastic

setting, the tracking performance of the diffusion strategy is

established in [17], while the work [18] considers a federated

learning architecture. The purpose of this work is to establish

http://arxiv.org/abs/2004.01942v1
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a unified tracking analysis for the broad class of mean-square

contractive mappings, which includes many algorithms as

special cases, and will allow us to efficiently recover new

tracking results as well.

II. TRACKING ANALYSIS

A. Non-stationary environments

We consider a time-varying environment, where the fixed-

point w∞
i evolves according to some random-walk model.

Such models are prevalent in the study of non-stationary

effects.

Assumption 1 (Random Walk). We assume that the mean-

square fixed point of the mapping (1) evolves according to a

random walk:

w∞
i = w∞

i−1 +qi (7)

where qi is independent of w∞
i−1. We will allow the random

variable qi to be non-stationary, with potentially non-zero

mean, and only require a global bound on its second-order

moment, namely E ‖qi‖2 ≤ ξ2.

Note that, by allowing qi to be non-stationary with non-zero

mean, the assumption is more relaxed than typically assumed

in the adaptive filtering literature [11], [17]. On the other hand,

by only imposing a bound on the second-order moment of qi,

rather than on its norm with probability one, condition (7)

is also more relaxed than in related works on deterministic

dynamic optimization (e.g., [19]). Letting w̃i , w∞
i −wi

and using (4), we have:

E ‖w̃i‖2 ≤ γiE ‖w̃i−1 + qi‖2 + δi
(a)

≤ √
γiE ‖w̃i−1‖2 +

ξ2

1−√
γi

+ δi (8)

where in step (a) we used Jensen’s inequality ‖a + b‖2 ≤
1
α
‖a‖2 + 1

1−α
‖b‖2 for 0 < α < 1 along with Assumption 1

and γi < 1.

If the random variable qi happens to be zero-mean and

independent of w̃i−1, the inequality can be sharpened by

avoiding the use of Jensen’s inequality in step (a) of (8)

and instead appealing to independence of qi with w̃i−1 and

E qi = 0. This results in:

E ‖w̃i‖2 ≤ γi E ‖w̃i−1‖2 + ξ2 + δi (9)

In order to continue with the analysis, we assume the follow-

ing.

Assumption 2 (Global bounds). The rate of contraction γi
as well as the driving term δi are bounded from above for all

i, i.e., γi ≤ Γ < 1 and δi ≤ ∆.

As we will see in Section III-A, Assumption 2 generalizes

conditions typically imposed in the study of adaptive filters

in non-stationary environments. After iterating (8) and (9), we

arrive at the next result.

Theorem 1 (Tracking performance). Suppose T (·; ·) is a

(Γ,∆)-mean-square-contractive mapping according to Defi-

nition 1. Then, we have:

E ‖w̃i‖2 ≤ O
(
Γ

i

2

)
+

ξ2

(1−
√
Γ)2

+
∆

1−
√
Γ

(10)

In the case when E qi = 0 for all i, we have the tighter

relation:

E ‖w̃i‖2 ≤ O
(
Γi
)
+

ξ2

1− Γ
+

∆

1− Γ
(11)

Proof: The result follows after bounding the quantities

appearing in (8) and (9) using Assumption 2 and iterating.

We note that in steady-state, the terms O(Γ
i

2 ) and O(Γi)
vanish exponentially, and we are left with a drift term propor-

tional to ξ2 and a second term proportional ∆. Furthermore,

we note that the non-stationary result (11) can be obtained

from the stationary result with ξ2 = 0 by merely adding the

drift term ξ2

1−Γ .

III. APPLICATION TO LEARNING ALGORITHMS

We now show how Theorem 1 can be used to recover

the tracking performance of several well-known algorithms

under the random walk model (7). We begin by re-deriving

and generalizing some known tracking results to illustrate

the implications of Assumption 2 and verify Theorem 1, and

then proceed to derive new tracking results for the multitask

diffusion algorithm [9], [20], [21].

A. Least-Mean-Square (LMS) Algorithm

For illustration purposes, we begin with the least-mean

square algorithm, which takes the form:

T (wi−1;ui,d(i)) = wi−1 −µui

(
d(i)− uT

i wi−1

)
(12)

where the data xi , {ui,d(i))} arises from the linear model:

d(i) = uT

i wo
i +v(i) (13)

and ui ∈ R
M denotes an independent sequence of regressors

and v(i) denotes measurement noise. As is standard in the

study of the transient behavior of adaptive filters (see, e.g., [11,

Part V]), we subtract (12) from wo
i , take squares and expec-

tations to obtain:

E ‖wo
i −wi‖2 ≤ γiE ‖wo

i −wi−1‖2 + δi (14)

with Ru,i , Euiu
T

i , γi ,
∥∥I − 2µRu,i + µ2

Euiu
T

i uiu
T

i

∥∥,

σ2
v,i , Ev(i)2 and δi , µ2Tr (Ru,i)σ

2
v,i. Examination

of γi and δi shows that the LMS algorithm (12) satisfies

Assumption 2 whenever the moments of the regressor ui

and measurement noise v(i) are time-invariant (or bounded).

This does not restrict the drift of the objective wo
i and the

measurement d(i) which will, of course, be non-stationary as

a result. This assumption is also consistent with the model-

ing conditions typically applied when studying the tracking

performance of adaptive filters [11, Eq. (20.16)]. Assuming

stationarity of the regressor ui and measurement noise v(i)
we find for small step-sizes µ:

γi ≤ 1− 2µλmin (Ru) +O(µ2) , Γ (15)

δi , µ2Tr (Ru,i)σ
2
v,i = µ2Tr (Ru)σ

2
v , ∆ (16)

Hence, we have from (11):

lim
i→∞

E ‖w̃i‖2 ≤ ξ2

2µλmin (Ru)−O(µ2)
+

µTr (Ru)σ
2
v

2λmin (Ru)−O(µ)

≈ µ−1ξ2

2λmin (Ru)
+

µTr (Ru)σ
2
v

2λmin (Ru)
(17)
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The result is consistent with [11, Lemma 21.1], with the factor

λmin (Ru) appearing in (17) since we are considering here the

mean-square deviation of wi around wo
i , rather than the excess

mean-square error studied in [11, Lemma 21.1]. When the drift

term qi is no longer zero-mean, we can bound:
√
Γ =

√
1− 2µλmin (Ru) +O(µ2) ≤ 1−µλmin (Ru)+O(µ2)

(18)

and find from (10):

lim
i→∞

E ‖w̃i‖2 ≤ ξ2

(µλmin (Ru)−O(µ2))2
+

µTr (Ru)σ
2
v

λmin (Ru)− O(µ)

≈ µ−2ξ2

λ2
min (Ru)

+
µTr (Ru)σ

2
v

λmin (Ru)
(19)

We observe that the drift penalty incurred in the case when

qi has non-zero mean is O(µ−2), which is significantly larger

than in the case where E qi = 0, which is O(µ−1). This is

to be expected as the cumulative effect of qi in the recursive

relation (7) is no longer equal to zero when E qi 6= 0.

B. Decentralized Stochastic Optimization

We now consider the problem of general decentralized

stochastic optimization. We associate with each agent k a cost:

Jk,i(wk) , EQk,i(wk;xk,i) (20)

In this section, we consider the diffusion algorithm for decen-

tralized stochastic optimization [8], [22]:

φk,i = wk,i−1 −µ∇Qk,i(wk,i−1;xk,i) (21)

wk,i =

K∑

ℓ=1

aℓkφℓ,i (22)

for pursuing the minimizer of the aggregate cost:

wo
i , argmin

w

K∑

k=1

pkJk,i(w) (23)

where col{pk} denotes the right Perron eigenvector associated

with the left-stochastic combination matrix [A]ℓk = aℓk [8]. If

we collect wi , col {wk,i} and xi , col {xk,i}, the diffusion

recursion (21)–(22) can be viewed as an instance of (1). Note

that by setting the number of agents K to one we recover

ordinary centralized stochastic gradient descent (2), and as

such the results in this section will apply to that case as well.

We impose the following standard assumptions on the cost as

well as the stochastic gradient approximation [22].

Assumption 3 (Bounded Hessian). Each cost Jk,i(w) is

twice-differentiable with bounded Hessian for all i, i.e., νI ≤
∇2Jk,i(w) ≤ δI .

Note that this condition ensures that each Jk,i(·) is strongly-

convex with Lipschitz gradients and that the respective pa-

rameters are bounded independently of i. Independence of

the bounds on problem parameters over time is common

in the study of optimization algorithms in non-stationary

and dynamic environments [17], [19] and will ensure that

Assumption 2 is satisfied. We additionally assume that the

objectives of the agents do not drift too far apart.

Assumption 4 (Bounded Disagreement). The distance be-

tween each local minimizer is bounded independently of i,

i.e.:

E ‖wo
k,i −wo

ℓ,i ‖2 ≤ D2 (24)

for all pairs k, ℓ and times i.

We also make the following common assumption on the

quality of the gradient estimate.

Assumption 5 (Gradient noise). Using ∇Qk,i(wk,i−1;xk,i)
approximates the true gradient of (20) sufficiently well, i.e.:

E {∇Qk,i(w;xk,i)|F i−1} =∇Jk,i(w) (25)

E
{
‖ sk,i(w)‖2|F i−1

}
≤ α2‖∇Jk,i(w)‖2 + σ2

s (26)

E
{
‖ sk,i(w)‖2|F i−1

}
≤ β2‖w −wo

k,i ‖2 + σ2
s (27)

where F i−1 denotes the filtration of random variables up to

i − 1, sk,i(w) , ∇Qk,i(w;xk,i) − ∇Jk,i(w), for all w and

some constants α2, β2, σ2
s independent of i.

It has already been established that the diffusion recur-

sion (21)–(22) is a mean-square contractive mapping according

to Definition 1 for some γi and δi in stationary environ-

ments [8, Eq. (58)]. In order to recover tracking performance

through Theorem 1, we need to ensure that the rate of

contraction γi and driving term δi can be bounded independent

of time i, i.e., that Assumption 2 holds under conditions 3–5.

Corollary 1 (Tracking performance of diffusion). The dif-

fusion algorithm (21)–(22) is mean-square contractive around

w∞
i with Γ = 1 − 2µν + µ2δ2

(
1 + 4α2

)
, ∆ = µ2Nσ2

s +
µ2c1α

2ND2 and

E ‖w∞
i −1⊗wo

i ‖2 ≤ µ2c2N
D2

1− λ2
(28)

where λ2 , ρ
(
A− 1pT

)
denotes the second largest mag-

nitude eigenvalue of the combination matrix [A]ℓk = aℓk
and c1, c2 denote problem-independent constants. The quantity

w∞
i denotes the fixed-point from Definition 1, which in light

of (28), is within O(µ2) of the minimizer of (23). The tracking

performance is given by:

lim
i→∞

1

N
E ‖w̃k,i‖2 ≤ µ−2 2ξ

2

ν2
+ 2µ

σ2
s + c1α

2D2

ν2
+ µ2 2c2D

2

1− λ2
(29)

where w̃k,i = wo
i −wk,i. When E qi = 0, we have:

lim
i→∞

1

N
E ‖w̃k,i‖2 ≤ µ−1 ξ

2

ν
+ µ

σ2
s + c1α

2D2

ν
+ µ2 2c2D

2

1− λ2
(30)

When the gradient approximation ∇Qk,i(w;xk,i) is ex-

act, i.e., α2 = σ2
s = 0, we recover from (29)

limi→∞
1
N
E ‖wo

i −w2
k,i ‖

2
= O(µ2) + O(µ−2) which

aligns with the result [19, Remark 1], where deterministic

dynamic optimization with exact gradients is considered.

On the other hand, when E qi = 0, we find from (30)

limi→∞
1
N
E ‖wo

i −w2
k,i ‖

2 ≤ O(µ−1) +O(µ) +O(µ2) and

recover [17, Eq. (80)] up to problem-independent factors.
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C. Multitask Decentralized Learning

In this section, we continue to consider a collection of K

agents, each with associated local cost (20). However, instead

of pursuing the Pareto solution (23), we pursue the multitask

problem [20]:

wo
i , argmin

w=col{wk}

K∑

k=1

Jk,i(wk) +
η

2
wT (L⊗ I)w (31)

where L , diag{A1} − A denotes the weighted Laplacian

matrix associated with the graph adjacency matrix A. The

formulation (31), in contrast to (23), does not force each

agent in the network to reach consensus, and instead allows

for the independent minimization of Jk,i(wk) subject to a

coupling smoothness regularizer η
2w

T (L⊗ I)w. We refer

the reader to [20], [21] for a more detailed motivation for

minimizing (31) instead of (23), and will focus here on the

tracking performance of the resulting algorithm. A solution

to (31) can be pursued via the multitask strategy [9], [20]:

φk,i = wk,i−1 −µ∇Qk,i(wk,i−1;xk,i) (32)

wk,i =

K∑

ℓ=1

cℓkφℓ,i (33)

where cℓk = 1 − µη
∑K

ℓ=1 aℓk if ℓ = k and cℓk = µηaℓk
otherwise. Comparing the diffusion strategy (21)–(22) to the

multitask strategy (32)–(33) we note a structural similarity

with the subtle difference that the combination weights cℓk
in (33), in contract to aℓk in (22) are not constant and

depend on the step-size µ and regularization parameter η. The

multitask diffusion strategy (32)–(33) has also been shown to

be mean-square contractive [20, Eq. (54)] and hence, we can

verify Assumption 2 and appeal to Theorem 1 to infer its

tracking performance.

Corollary 2 (Tracking performance of multitask diffusion).

The multitask diffusion algorithm (32)–(33) is mean-square

contractive around w∞
i with Γ = 1 − 2µν + µ2

(
δ2 + 3β2

)
,

∆ = µ2Nσ2
s + µ2c13β

2ND2 and

E ‖w∞
i −1⊗wo

i ‖2 ≤ µ2

(
O(η2)

1 +O(η2)

)2

(34)

where c1, c2 denote problem-independent constants. The quan-

tity w∞
i denotes the fixed-point from Definition 1, which in

light of (34), is within O(µ2) of the minimizer of (31). The

tracking performance is hence given by:

lim
i→∞

1

N
E ‖w̃k,i‖2 ≤ µ−2 2ξ

2

ν2
+ µ

2σ2
s + 6c1β

2D2

ν2
+O(µ2)

(35)

where w̃k,i = wo
i −wk,i. When E qi = 0, we have:

lim
i→∞

1

N
E ‖w̃k,i‖2 ≤ µ−1 ξ

2

ν
+ µ

σ2
s + 3c1β

2D2

ν
+O(µ2)

(36)

Fig. 1: Tracking performance of the multitask diffusion algo-

rithm (32)–(33) for varying step-sizes µ and drift terms σ2
q .

Fig. 2: For E qi = 0, we note reduction in MSD of 10dB per

decade for small step-sizes, and a 10dB increase for large step-

sizes, which is consistent with O(µ−1) + O(µ) in Eq. (30).

When Eqi 6= 0, we note a consistent decrease of 20dB, which

is consistent with the dominant O(µ−2) term in (29).

IV. SIMULATION RESULTS

A. Tracking Multitask Problems

We illustrate the tracking performance of the multitask

diffusion strategy (32)–(33) established in Corollary 2 in

Fig. 1. We consider a collection of K = 20 agents connected

by a randomly generated graph. Each agent observes feature

vectors hk,i and labels γk(i) following a logistic regression

model with separating hyperplane wo
k,i [22, Appendix G].

The collection of initial hyperplanes {wo
k,0}Kk=1 are generated

to be smooth over the graph using the procedure of [20,

Sec. VI] and subsequently subjected to a common drift term

qi ∼ N
(
0, σ2

q

)
. Performance is displayed in Fig. 1. We

observe that an optimal step-size choice exists for both drift

rates, with smaller ξ2 allowing for smaller step-sizes, resulting

in smaller effects of the gradient noise and overall better

tracking performance. The trends align with the results of

Corollary 2.

B. Illustration of Theorem 1 in the Presence of Drift Bias

We next verify one of the main conclusions of Theo-

rem 1, namely that the dominant term in the expressions

for tracking performance deteriorates from O(µ−1) when

E qi = 0 (Eq. (30)) to O(µ−2) in the non-zero mean case

(Eq. (29)). We consider a collection of K = 5 agents observing

independent data {uk,i,dk(i)} originating from a common

linear model wo
i ∈ R

3 according to (13), subjected to a drift

term qi ∼ N
(
µq1, σ

2
qI

)
. All agents construct local least-

squares cost functions Jk(w) = E ‖dk − uT

kw‖2, and pursue

wo
i by means of the resulting diffusion strategy (21)–(22).

The tracking performance in both the zero-mean and biased

drift settings for various choices of the step-sizes parameter is

displayed in Fig 2.
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