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Capturing Video Frame Rate Variations via Entropic
Differencing

Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik

Abstract—High frame rate videos are increasingly getting
popular in recent years, driven by the strong requirements of the
entertainment and streaming industries to provide high quality of
experiences to consumers. To achieve the best trade-offs between
the bandwidth requirements and video quality in terms of frame
rate adaptation, it is imperative to understand the effects of frame
rate on video quality. In this direction, we devise a novel statistical
entropic differencing method based on a Generalized Gaussian
Distribution model expressed in the spatial and temporal band-
pass domains, which measures the difference in quality between
reference and distorted videos. The proposed design is highly
generalizable and can be employed when the reference and
distorted sequences have different frame rates. Our proposed
model correlates very well with subjective scores in the recently
proposed LIVE-YT-HFR database and achieves state of the art
performance when compared with existing methodologies.

Index Terms—high frame rate, video quality assessment,full
reference, entropy, natural video statistics, generalized Gaussian
distribution

I. INTRODUCTION

AS current media technology continues to emphasize ever
higher quality regimes and to involve more immersive

and engaging experiences for consumers, the need to extend
current video parameter spaces along spatial and temporal
resolutions, screen sizes and dynamic ranges has become a
topic of extreme importance, especially in the media and
streaming industry. Existing and emerging standards have
increasingly focused on improving spatial resolution (4K/8K)
[1], High Dynamic Range (HDR) [2], [3], and multiview
formats [4], [5]. However there has been much less emphasis
placed on increasing frame rates, and for a long time the
frame rates associated with television, cinema and other video
streaming applications have changed little - rarely above 60
frames per second (fps).

Various factors have limited increased adoptions of High
Frame Rate (HFR) videos. Switching to HFR requires employ-
ing complex capture and display technologies which were not
commonly available. Another possible reason for the limited
popularity of HFR relates to limited knowledge about the
perceptual benefits of employing HFR, which partly arises due
to insufficient availability of HFR content. Recently, HFR has
gathered significant interest among the research community,
along with publication of databases such as the Waterloo
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HFR [6], BVI-HFR [7] and LIVE-YT-HFR [8] datasets that
exclusively target HFR contents.

Perceptual Video Quality Assessment (VQA) is an integral
component in numerous video applications such as digital cin-
ema, video streaming applications (such as YouTube, Netflix,
Hulu etc.) and social media (Facebook, Instagram etc). VQA
models can be broadly classified into three main categories
[9]: Full-Reference (FR), Reduced-Reference (RR) and No-
Reference (NR) models. FR VQA models require entire pris-
tine undistorted stimuli along with degraded versions [10]–
[16], while RR models operate with limited reference infor-
mation [17]–[21]. NR models operate without any knowledge
of pristine stimuli [22]–[25]. This work addresses the problem
of quality evaluation when pristine and distorted sequences can
possibly have different frame rates, thus our primarily focus
will be on FR and RR VQA methods.

There has been very limited work done on addressing VQA
in the HFR domain. One of the first models was proposed by
Nasiri et al. [26], where they measured the amount of aliasing
occurring in the temporal frequency spectrum, employing that
as a measure of quality. In [27] a motion smoothness measure
was proposed for cross frame rate quality evaluation. Zhang et
al. [28] proposed a wavelet domain based Frame Rate Quality
Metric (FRQM), where the differences between the wavelet
coefficients of reference and temporally upsampled distorted
sequences were used to predict quality. FRQM has a restriction
that it cannot be employed when the reference and distorted
videos have same frame rate, thus limiting its generalizability.

In this paper, we propose a statistical VQA model that can
capture distortions arising due to frame rate variations, and
provide quality predictions that correlate well with human
perception. This model is primarily motivated by temporal
variations observed in the distributions of band-pass coef-
ficients. We propose a novel entropic differencing method
using Generalized Gaussian Distribution (GGD) model for
both spatial and temporal band-pass responses, and show
its effectiveness in capturing spatio-temporal artifacts. We
evaluate our model on the LIVE-YT-HFR database and show
that the predicted quality estimates have superior correlations
against human judgments as compared to existing methods.
Our proposed method is simplistic in nature, has very few
hyperparameters to tune and does not require any computa-
tionally intensive training process.

The rest of the paper is organized as follows. In Section II
we provide a detailed description of our proposed VQA model.
In Section III we report and analyze various experimental
results, and provide some concluding remarks in Section IV.
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II. PROPOSED METHOD

Consider a bank of K temporal band-pass filters denoted by
bk for k ∈ {1, . . .K}, the temporal band-pass response for a
video V (x, t) (x = (x, y) represents spatial co-ordinates and
t denotes temporal dimension) is given by

Bk(x, t) = V (x, t) ∗ bk(t) ∀k ∈ {1, . . .K}, (1)

where Bk denotes band-pass response of kth filter. Note that
these are 1D filters applied only along the temporal dimension.
We empirically observe that the distributions of the coefficients
of Bk vary as a function of frame rate. This is illustrated in Fig.
1, where distributions at different frame rates are shown for
a 4-level Haar wavelet filter. From Fig. 1 it maybe observed
that as frame rates increase, the distribution becomes more
peakier as the correlation between the consecutive frames
increase with frame rate. Since coefficients of Bk are band-
pass in nature, they can be well modelled as following a
Generalized Gaussian Distribution (GGD). GGD models have
been widely used to model band-pass coefficients in many
previous applications, such as image denoising [29], texture
retrieval [30] etc. In this work we propose to employ entropic
differences of band-pass GGD samples to quantify the devia-
tions in distribution of band-pass coefficients.

A. GGD based statistical model

Let the reference and distorted videos be denoted by R and
D respectively, with Rt, Dt representing corresponding frames
at time t. Note that R and D can have different frame rates
though we require them to have same spatial resolution. Let
the response of the kth band pass filter bk, k ∈ {1, 2, . . .K}
on reference and distorted videos be denoted by BR

kt and BD
kt

respectively. We assume that every frame of BR
kt, B

D
kt follows

a GGD model with zero-mean. We divide each frame into
P spatial blocks each of size

√
M ×

√
M . Let BR

kpt and
BD

kpt denote vector of band pass coefficients in block p for
subband k and frame t for reference and distorted respec-
tively. We allow the band-pass coefficients to pass through a
Gaussian channel to model perceptual imperfections such as
neural noise [12], [20]. Let B̃R

kpt, B̃
D
kpt represent coefficients

which undergo channel imperfections to obtain the observed
responses BR

kpt, B
D
kpt respectively. Also let B̃R

kpt, B̃
D
kpt both be

modeled as following GGD. This model is expressed as:

BR
kpt = B̃R

kpt +WR
kpt BD

kpt = B̃D
kpt +WD

kpt (2)

where B̃R
kpt is independent of WR

kpt, B̃
D
kpt is independent of

WD
kpt, and where WR

kpt, W
D
kpt are drawn from the Gaussian

distribution N (0, σ2
W IM). It can be inferred from (2) that

BR
kpt, B

D
kpt need not necessarily be GGD, although it can be

well approximated by a GGD [31] due to the independence
assumption. As shown in the VIF [12] formulation, distortion
results in a loss of ”natural” image information as measured
by suitably defined entropies. Variations over time of video
frames from distortion can affect this visual information flow,
and may depend on frame rate. For example, a lower frame
rate may result in judder, which measurably affects the in-
formation flow, as measured by entropy under the statistical
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Fig. 1. Distributions of band-pass coefficients for six different frame rates

model of videos. The entropy of a GGD random variable
X ∼ GGD(0, α, β) has a closed form expression given by:

h(X) =
1

β
− log

(
β

2αΓ(1/β)

)
(3)

where α and β are the scale and shape parameters of GGD
respectively. Entropy computation requires the values of the
GGD parameters of B̃R

kpt and B̃D
kpt. However we only have

access to BR
kpt and BD

kpt. In order to estimate these parameters
we follow the kurtosis matching procedure detailed in [32]
from which kurtosis values of B̃R

kptand B̃D
kpt can be obtained.

The GGD parameters and kurtosis follow a bijective mapping
[32] where the kurtosis of a GGD random variable is given
by:

Kurtosis(X) =
Γ(5/β)Γ(1/β)

Γ(3/β)2
(4)

A simple grid search can be used to estimate the shape
parameter β from obtained kurtosis value. The other parameter
α can be obtained using the relation

α = σ

√
Γ(1/β)

Γ(3/β)
(5)

Plugging the parameters obtained from (4) and (5) in (3), the
entropies h(B̃R

kpt) and h(B̃D
kpt) can be computed. In the next

section we show how these entropies can be effectively used
to assess the quality of videos.

B. Temporal Measure

We define entropy scaling factors given by:

γRkpt = log(1 + σ2(B̃R
kpt)), γDkpt = log(1 + σ2(B̃D

kpt))

These scaling factors are similar to the ones used in [19], [20].
Scaling factors lend a more local nature to our model and
provide numerical stability on regions having low variance,
where the entropy estimates are less stable. The entropies are
modified by premultiplying with the scaling factors as shown
in (6). Regions having low variances will have small scaling
factors, reducing the impact of noise on the entropy values:

εRkpt = γRkpth(B̃R
kpt), εDkpt = γDkpth(B̃D

kpt). (6)
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There exists a frame rate bias associated with the entropy
values where different frame rates have entropies at different
scales. High frame rate sequences such as 120fps have much
lower entropy values when compared to lower frame rates
such as 24 fps, 30 fps etc. Thus simple entropy subtraction
measures the difference between the frame rates of R and
D. Though this is desirable, this can be inefficient when
comparing videos which only differ by compression artifacts.
To remove this bias, we employ an additional video sequence
termed Pseudo Reference (PR) signal, which is obtained by
temporally downsampling the reference to match the frame
rate of the distorted video. In our implementation we use
frame dropping to conduct temporal downsampling using the
FFmpeg [33] tool. In the case when the distorted sequence has
the same frame rate as the reference, PR will be the same as
R. Similar to εRkpt and εDkpt, we calculate εPR

kpt . We define the
Generalized Temporal Index (GTI) as:

GTIkt =
1

P

P∑
p=1

∣∣∣∣∣(1 + |εDkpt − εPR
kpt |
) εRkpt + 1

εPR
kpt + 1

− 1

∣∣∣∣∣. (7)

(7) can be interpreted by decomposing into two factors:
absolute difference term and ratio term. Absolute difference
term removes frame rate bias and captures the quality changes
as if R and D were at the same frame rate. The ratio term
weights these factors depending on the reference and distorted
frame rate. In the case of reference and distorted videos having
same frame rate, the ratio term will be 1, thus making (7)
depend only on absolute difference. The unit terms within
the absolute values ensure that GTI does not become zero
when D = PR 6= R, which happens when distorted sequence
is temporally subsampled version of the reference. Note that
GTI = 0 only when D = PR = R. The unit terms in the ratio
avoid indeterminate values in regions having small entropy
values.

C. Spatial Measure

Although GTI does capture spatial information due to
its spatial block based nature, it is primarily influenced by
the temporal filtering. To extract information about spatial
artifacts, we employ spatial band-pass filters applied to every
frame of the video. For this purpose we employ a local Mean
Subtracted (MS) filtering similar to [21]. Let RMS

t = Rt−µR
t

and DMS
t = Dt − µD

t be the reference and distorted MS
coefficients where local mean is calculated as

µR
t (i, j) =

G∑
g=−G

H∑
h=−H

ωg,hRt(i+ g, j + h),

µD
t (i, j) =

G∑
g=−G

H∑
h=−H

ωg,hDt(i+ g, j + h)

where ω = ωg,h|g = −G, . . . G, h = −H, . . .H is a 2D
circularly symmetric Gaussian weighting function sampled
out to 3 standard deviations. In our implementation we use
G = H = 7. The MS coefficients RMS

t , DMS
t are modeled as

following a GGD model. Similar to the temporal measure, we
divide each frame into P nonoverlapping blocks and calculate
entropies h(R̃MS

t ) and h(D̃MS
t ) as detailed in subsection II-A

TABLE I
PERFORMANCE COMPARISON OF FR-VQA ALGORITHMS ON THE HFR

DATABASE. IN EACH COLUMN THE FIRST AND SECOND BEST VALUES ARE
BOLDFACED AND UNDERLINED, RESPECTIVELY

SROCC ↑ KROCC ↑ PLCC ↑ RMSE ↓
PSNR 0.6950 0.5071 0.6685 9.023

SSIM [10] 0.4494 0.3102 0.4526 10.819
MS-SSIM [11] 0.4898 0.3407 0.4673 10.726

FSIM [13] 0.4469 0.3151 0.4435 10.874
ST-RRED [20] 0.5531 0.3800 0.5107 10.431

SpEED [21] 0.4861 0.3409 0.4449 10.866
FRQM [28] 0.4216 0.2956 0.452 10.804
VMAF [34] 0.7303 0.5358 0.7071 8.587

deepVQA [35] 0.3463 0.2371 0.3329 11.441
GSTI (Ours) 0.7909 0.5979 0.7910 7.422

by replacing temporal band-pass responses with correspond-
ing MS coefficients. Similarly we define scaling factors and
modified entropies:

ηRpt = log(1 + σ2(R̃MS
pt )), ηDpt = log(1 + σ2(D̃MS

pt ))

θRpt = ηRpth(R̃MS
pt ), θDpt = ηDpth(D̃MS

pt ).

Since spatial entropies are computed using only the informa-
tion from a single frame, the values are frame rate agnostic.
Thus there does not arise any scale variations due to frame
rate, as seen in the temporal case. The Generalized Spatial
Index (GSI) is then defined as:

GSIt =
1

P

P∑
p=1

|θDpt − θRpt|. (8)

D. Spatio-temporal Measure

GSI and GTI operate individually on data obtained by sep-
arate processing of spatial and temporal frequency responses.
Interestingly, while GSI is obtained in a purely spatial manner,
GTI has both spatial and temporal information embedded in
it (as entropies are obtained in a spatial blockwise manner).
Thus temporal artifacts such as judder etc. only influence GTI,
while spatial artifacts affect both GTI and GSI. A combined
Generalized Spatio-Temporal Index (GSTI) is defined as:

GSTIkt = GTIktGSIt. (9)

The quality score obtained from (9) provides scores at frame
level. To obtain a video level quality score we average pool
(tacitly assuming frames are temporally consistent, i.e., do not
contain scene cuts, which are easily detected) the frame scores:

GSTIk =
1

T

T∑
t=1

GSTIkt. (10)

Implementation Details. For simplicity we implemented
our method only in the luminance domain. We use a 3-level
Haar wavelet filter as the temporal band-pass filter bk with
k ∈ {1, . . . 7} (we ignore the low pass response), where a
higher k value denotes a larger center frequency. We used
wavelet packet (constant linear bandwidth) (WP) filter bank
[36] as we found it to be more effective than using constant
octave bandwidth filters. For entropy calculation we choose
spatial blocks of size 5 × 5 (i.e.

√
M = 5). We choose

neural noise variance σ2
W = 0.1 defined in (2). Note that
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TABLE II
PERFORMANCE COMPARISON OF VARIOUS FR METHODS FOR INDIVIDUAL FRAME RATES IN THE LIVE-YT-HFR DATABASE. IN EACH COLUMN FIRST

AND SECOND BEST VALUES ARE BOLDFACED AND UNDERLINED, RESPECTIVELY

24 fps 30 fps 60 fps 82 fps 98 fps 120 fps Overall
SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑

PSNR 0.4101 0.3647 0.4414 0.4179 0.6202 0.5719 0.6878 0.6431 0.7171 0.6489 0.6019 0.5937 0.6950 0.6685
SSIM [10] 0.1277 0.0949 0.1108 0.0816 0.2123 0.1845 0.2079 0.2430 0.3876 0.3964 0.7485 0.6726 0.4494 0.4526

MS-SSIM [11] 0.2221 0.1500 0.1929 0.1112 0.2516 0.1900 0.2906 0.2549 0.4237 0.4007 0.6165 0.5843 0.4898 0.4673
FSIM [13] 0.3670 0.3038 0.3208 0.2638 0.2472 0.2615 0.3225 0.3055 0.3861 0.2646 0.3056 0.1178 0.4469 0.4435

ST-RRED [20] 0.1541 0.0369 0.1188 0.0307 0.5062 0.4457 0.3394 0.3271 0.4962 0.4556 0.6745 0.5906 0.5531 0.5107
SpEED [21] 0.2591 0.1237 0.2278 0.0896 0.1824 0.1110 0.2955 0.2425 0.4118 0.3295 0.6827 0.6097 0.4861 0.4449
FRQM [28] 0.1556 0.2089 0.0983 0.0854 0.0947 0.0309 0.0137 0.0035 0.0317 0.0100 - - 0.4216 0.4520
VMAF [34] 0.1743 0.2669 0.2855 0.3740 0.5408 0.6015 0.6820 0.7390 0.8214 0.8128 0.7943 0.7844 0.7303 0.7071

deepVQA [35] 0.1144 0.0495 0.1353 0.1059 0.2527 0.1652 0.1803 0.1515 0.2816 0.2654 0.6865 0.6209 0.3463 0.3329
GSTI (Ours) 0.4538 0.5935 0.4758 0.6689 0.6552 0.7566 0.7633 0.8183 0.7844 0.7775 0.7390 0.7003 0.7909 0.7910

similar values were employed in [12] and [19]. We observed
that our algorithm is most effective when spatial resolution
is downsampled 16 times along both dimensions. Similar
observations were made in [20] and [21] and is attributed to the
motion downshifting phenomenon where, in presence of mo-
tion, human vision tends to be more sensitive to coarser scales
than finer ones. Since reference and distorted sequences can
have different frame rates, the reference entropy terms εRkpt,
θRkt will have a different number of frames when compared
to their counterpart distorted entropy terms εDkpt, θ

D
pt. Thus we

temporally average reference entropy terms as:

εRkpt ←
1

F

F∑
n=1

εRkpt′

where

{
F = FPSref

FPSdist
,

t′ = (t− 1)F + n
θRpt ←

1

F

F∑
n=1

θRpt′

III. EXPERIMENTS

Experimental Settings. We selected 4 FR-IQA methods:
PSNR, SSIM [10], MS-SSIM [11] and FSIM [13] for com-
parison. Since these are image indices, they are computed
on every frame and averaged across all frames to obtain
the video scores. In addition to the above IQA indices, we
also include 5 FR-VQA indices: ST-RRED [20], SpEED [21],
FRQM [28], VMAF1 [34] and deepVQA [35]. For deep-
VQA, we use only stage-1 of the pretrained model (trained
on the LIVE-VQA [37] database) obtained from the code
released by the authors. Since the above methods require
same frame rates for reference and distorted videos, for cases
with differing frame rates, the distorted video was temporally
upsampled by frame duplication to match the reference frame
rate. Although we can downsample the reference as well, we
avoided this method since it can potentially introduce artifacts
(e.g. judder) in the reference video which is not desirable.
All the above VQA models were evaluated at their original
spatial resolution. Spearman’s rank order correlation coeffi-
cient (SROCC), Kendall’s rank order correlation coefficient
(KROCC), Pearson’s linear correlation coefficient (PLCC) and
root mean squared error (RMSE) were the main performance
criteria employed to evaluate the VQA methodologies. Before
computing PLCC and RMSE, the predicted scores were passed
through a four-parameter logistic non-linearity, as described in
[38].

1We use the pretrained VMAF model available at https://github.com/Netflix/
vmaf

A. Correlation Against Human Judgments
The correlations between objective scores predicted by

various FR models against the human judgments in the LIVE-
YT-HFR database are compared in Table I. Our proposed
method outperformed all the existing models across every
evaluation criteria, as illustrated in Table I. The reported results
for GSTI in Table I correspond to the first subband (i.e. b1) of
the band-pass filter, which was empirically observed to achieve
highest performance when compared to other subbands.

B. Performance Analysis with Individual Frame Rates
In this experiment we subdivided the LIVE-YT-HFR

database into sets which contain videos having the same frame
rate, and individually analyzed the performance on them.
The performance comparison is shown in Table II. To avoid
clutter we only include SROCC and PLCC for evaluation.
At high frame rates, there are naturally reduced temporal
distortions, hence distortions are primarily from compression,
which VMAF is (Pareto) optimized to handle. We also ob-
served an interesting anomaly where PSNR achieved higher
performance at lower frame rates when compared to other
prior VQA models, which is surprising, since PSNR correlates
poorly against human quality perception [39]. It is possible
that frame-based models like SSIM, which accurately predict
spatial distortions, have a ”spatial bias” on this database.
PSNR, which is merely a space-time difference signal will
not have such a bias. For FRQM, correlation values are not
reported for 120 fps, as it requires the compared videos to
have different frame rates. It should be noted that a factor
in the performance of FRQM (Table II) could be that it was
designed on frame averaging, rather than frame dropping.

IV. CONCLUSION AND FUTURE WORK

We presented a simple, highly generalizable video quality
evaluation method that can be employed when reference and
distorted videos having different frame rates, and gauged
its performance on the new LIVE-YT-HFR database. We
performed a holistic evaluation of our method in terms of
correlation against human perception and established that our
method is superior and more robust than existing algorithms.

For band-pass filtering, a simple Haar filter was used, which
can potentially limit performance. As part of future work we
plan to explore other band-pass filters with superior frequency
responses. Another avenue we wish to explore is to incorporate
GSTI into a data driven quality model such as VMAF [34],
to further enhance performance.

https://github.com/Netflix/vmaf
https://github.com/Netflix/vmaf
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