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Blind Two-Dimensional Super-Resolution in
Multiple-Input Single-Output Linear Systems

Shahedeh Sayyari, Sajad Daei, and Farzan Haddadi

Abstract—In this paper, we consider a multiple-input single-
output (MISO) linear time-varying system whose output is a
superposition of scaled and time-frequency shifted versions of in-
puts. The goal of this paper is to determine system characteristics
and input signals from the single output signal. More precisely,
we want to recover the continuous time-frequency shift pairs, the
corresponding (complex-valued) amplitudes and the input signals
from only one output vector. This problem arises in a variety
of applications such as radar imaging, microscopy, channel
estimation and localization problems. While this problem is nat-
urally ill-posed, by constraining the unknown input waveforms
to lie in separate known low-dimensional subspaces, it becomes
tractable. More explicitly, we propose a semidefinite program
which exactly recovers time-frequency shift pairs and input
signals. We prove uniqueness and optimality of the solution to
this program. Moreover, we provide a grid-based approach which
can significantly reduce computational complexity in exchange
for adding a small gridding error. Numerical results confirm the
ability of our proposed method to exactly recover the unknowns.

Index Terms—Super-resolution, linear time-varying systems,
semidefinite programming, convex optimization.

I. INTRODUCTION

SUPER-resolution is the problem of recovering high-
resolution information from low-resolution data. In this

letter, we assume a linear time-varying (LTV) multiple-
input single-output (MISO) system in which the inputs are
continuous-time band-limited arbitrary signals xjptq and the
output vector yptq is a weighted superposition of time and
frequency shifted versions of the inputs:

yptq “
NI´1
ÿ

j“0

S
ÿ

k“1

bkxjpt´ rτkqe
i2πrνkt. (1)

Here, bk P C are some unknown weights and rτk P

r´T {2, T {2s, rνk P r´W {2,W {2s represent unknown con-
tinuous time and frequency shifts, respectively. rτk and rνk
are not constrained to lie on a predefined domain of grids.
The number of input signals NI is known and we want to
recover the unknowns pbk, rτk, rνk, xjptq, Sq. We assume that
the input signals are of bandwidth W and periodic with
period T . Also, yptq is observed over a time interval of
length T . Many applications in communication and signal
processing match this model, including radar imaging [1],
channel estimation [2], microscopy [3], astronomy [4] and
localization problems [5], [6]. In channel estimation, a wireless
channel can be modeled as a LTV system with delay-Doppler
shifts [7]. A challenging problem in channel estimation is pilot
contamination caused by sharing the non-orthogonal pilots
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among users. One way to deal with this problem is applying
techniques that do not need any pilot signal, named blind
methods [2]. As another example, we can mention spying radar
where enemy collocated transmitters send unknown signals
to some objects. The goal is to detect the intended objects
and the transmitted signals from only one receive aperture.
It is worth noting that due to the high complexity, it is not
always possible to equip the receiver with multiple antennas
in many applications among which we can mention unmanned
aerial vehicle (UAV) and airborne receivers [8]–[10]. In recent
years, super-resolution methods based on convex optimization
has attracted much attention [11]–[21] due to their superior
performance. This approach was first proposed by Candes
and Fernandez-Granda in [11]. They used total variation norm
for exact recovery of 1D spikes under a minimum separation
condition with known system function and full measurements.
Then, [16] provided an atomic norm framework to estimate
locations and amplitudes of a spike train in the frequency
domain. In [1], the authors apply atomic norm minimization
to recover time and frequency shifts in radar application. They
adapted super-resolution techniques of [11] to a single-input
single-output (SISO) system with known band-limited input
signal. The authors in [22] investigate a similar problem,
yet intend to estimate the time-frequency shifts in a blind
way where the low-pass point spread function applied to the
transmitter signal is unknown. In this paper, we study the
MISO system (1). Besides its generality, this model matches
the “collocated” transmitter scenario with “many” targets in
MISO radar systems [9], [10], [23] and differs from the
previous models used in prior works. Here, shifts are inde-
pendent from inputs and only depends on the system function.
Moreover, unlike [22], we assume the input signals belong to
“different” subspaces with disparate dimensions. While our
model in (1) matches the well-studied model in MISO radar
systems [8]–[10], [23], the strategy used in [1], [22] is not be
directly applicable in this setting. Generally, our goal in this
paper is to find a strategy to detect the time-frequency shifts
prτk, rνkq, k “ 1, ..., S as well as the transmitters’ signals xjptqs
in the MISO model (1).

Notations: We use boldface lowercase letters for col-
umn vectors and boldface uppercase letters for matrices.
We employ a two-dimensional index for vectors and ma-
trices indicating how that vector or matrix is arranged
i.e. rasppm,lq,1q ,m, l “ ´N, ¨ ¨ ¨ , N means that a “

rap´N,´Nq, ap´N,´N`1q, ¨ ¨ ¨ , apN,Nqs
T . convpCq is employed

to denote the convex hull of the set C. The element-wise
absolute value of the vector x is shown by |x|. Moreover,
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p¨qT , p¨qH , p¨q˚ and Trp¨q stand for the transpose, hermitian,
conjugate and trace, respectively while Ret¨u denotes the real
part of a complex scalar.

II. SYSTEM MODEL

We first sample yptq at rate 1
W based on 2WT-theorem

[24] to collect L :“ WT samples, assumed to be an odd
number. By applying the discrete Fourier transform (DFT) and
the inverse DFT (IDFT) to (1) and defining the normalized
parameters τk “ rτk

T and νk “ rνk
W

1, we obtain:

yppq :“ ypp{W q “

1
L

S
ÿ

k“1

bk

NI´1
ÿ

j“0

N
ÿ

m,l“´N

xjplqe
i2πmpp´lq

L ei2πppνk´mτkq

p “ ´N, . . . , N, L :“ 2N ` 1.

(2)

This is an under-determined linear system with L equa-
tions and NIL ` 3S ` 1 unknowns. To achieve a unique
solution, we impose a subspace constraint [22], [25]–[28],
which is common in a wide range of applications [29]. We
assume that each input signal xj :“ rxjp´Nq, . . . , xjpNqs

T

belongs to a known low-dimensional subspace with basis
Dj P CLˆKj ,Kj ! L, i.e.,

xj“Djhj , Dj“

”

dj´N , . . . ,d
j
N

ıH
P CLˆKj, ‖hj‖2“1, (3)

where tDju
NI´1
j“0 are known matrices whose columns span the

signal space and thju
NI´1
j“0 are unknown orientation vectors.

This assumption has practical implications. For instance, in
blind multi-user communication systems [30], the unknown
message hj of length Kj corresponding to the j-th user is
coded using a known tall coding matrix Dj and then the
redundant coded message is transmitted. Thus, recovering hj
is equivalent to recovering xj and incorporating the latter
subspace constraints reduces the number of input variables
from OpNILq to Op

řNI´1
j“0 Kjq. We also assume that the

columns of DH
j are sampled independently from a certain

distribution satisfying isotropy and incoherence conditions (see
[31] for more technical discussion). Combining the definition
of the Dirichlet kernel DN ptq :“ 1

L

řN
m“´N e

i2πtm and
xjplq “ dj

H

l hj in (2), leads to (see Appendix A [32] for
detailed derivation):

yppq“
S
ÿ

k“1

bk

NI´1
ÿ

j“0

N
ÿ

m,l“´N

DN p
l
L ´ τkqDN p

m
L ´ νkqd

jH

p´lhje
i2πmp
L .

(4)

Define vector s :“ rτ, νsT and atoms ajpskq P CL
2

as:

rajpskqsppm,lq,1q “ DN

`

l
L ´ τk

˘

DN

`

m
L ´ νk

˘

. (5)

The dictionary part rDj
p P CL

2
ˆKj is defined as:

”

rDj
p

ı

ppm,lq,:q
“ e

i2πmp
L dj

H

p´l p, l,m “ ´N, . . . , N. (6)

Now, we substitute (5) and (6) in (4) and exploit the lifting
trick [25], [26] which is used for transforming nonlinear

1Without loss of generality, we assume that pτk, νkq P r0, 1s2.

inverse problems into the problem of recovering a low-rank
matrix from an under-determined system of linear equations.
This leads to:

yppq“
S
ÿ

k“1

NI´1
ÿ

j“0

bka
H
j pskq

rDj
phj

“ Tr

˜

NI´1
ÿ

j“0

rDj
p

S
ÿ

k“1

bkhjajpskq
H

¸

“

NI´1
ÿ

j“0

xBj , rD
jH

p y, (7)

where Bj :“
řS
k“1bkhja

H
j pskq. We define a linear operator

χ : ‘NI´1
j“0 CKjˆL

2

Ñ CL that maps a matrix tuple to a vector
and the input matrix tuple B :“ pBjq

NI´1
j“0 P ‘

NI´1
j“0 CKjˆL

2

.
Therefore, the observation vector y :“ ryp´Nq, . . . , ypNqsT

can be represented as y “ χpBq. In practice, the number of
shifts S is much smaller than the number of samples L. Thus,
each matrix Bj of the matrix tuple B can be described as a
sparse linear combination of matrix elements taken from the
atomic set

Aj “
 

hja
H
j psq : s P r0, 1s2, ‖hj ‖2“ 1,hj P CKj

(

. (8)

In fact, the atoms hjaH
j psq forms the building blocks ofBj . To

promote sparsity, we aim at minimizing the number of active
atoms corresponding to each Bj subject to the constraints (7).
Thus, we have multiple non-convex objective functions. We
instead, propose to minimize a relaxed function which is the
sum of some convex functions:

P1: min
ĂBjPCKjˆL2

NI´1
ÿ

j“0

‖ rBj‖Aj
s.t. yppq“

NI´1
ÿ

j“0

x rBj , rD
jH

p y, (9)

where
‖Bj ‖Aj

“ inf tt ą 0 : Bj P t convpAjqu

“ inf
bkPC,sPr0,1s2,‖hj‖2“1

t
ÿ

k

|bk| : Bj“
ÿ

k

bkhja
H
j pskqu,

(10)

is called the atomic norm known as the best convex surrogate
for the number of active atoms composing Bj [33]. The
optimization to calculate }Bj}Aj is over infinite dimensional
variables and thus computationally intractable. To cope with
this issue, we consider the dual problem and find a semidefinite
relaxation for it in Subsection II-A. Aside from this, we
propose a grid-based approach (dividing the region r0, 1s2 into
grids) in Subsection II-B to solve (9) directly, leading to a
reduced computational burden.

A. Dual Approach
The dual problem of (9) is given by (the detailed derivation

is included in Appendix B of [32]):
max
qPCL

xq,yyR s.t. ‖ rχ˚pqqsj ‖dAj
ď 1, (11)

where }.}dAj
denotes the atomic dual norm and χ˚ : CL Ñ

ÀNI´1
j“0 CKjˆL

2

denotes the adjoint operator of χ such that
rχ˚pqqsj “

řN
p“´N qp

rDjH

p (see Appendix C of [32] for
details). The dual norm in (11) is obtained as:

‖ rχ˚pqqsj ‖dAj
:“ sup

sPr0,1s2 , ‖hj‖2“1

|xhj , rχ
˚pqqsjajpsqy|

“ sup
sPr0,1s2

‖ rχ˚pqqsjajpsq ‖2ď 1.
(12)
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Replacing (12) in (11) yields:

P11 : max
qPCL

xq,yyR s.t. ‖ rχ˚pqqsjajpsq‖2ď 1 s P r0, 1s2

(13)

The primal convex problem (9) has only equality constraint.
Therefore, strong duality holds and in the optimal points we
can claim

řNI´1
j“0 ‖B̂j‖Aj

“ xq̂, ŷyR. The following theorem
states conditions for optimality and uniqueness of the solution
to this problem. Define the dual polynomial function as:

fjpsq :“ rχ˚pqqsjajpsq “
N
ÿ

p“´N

qp rD
jH

p ajpsq P CKj

“

N
ÿ

p,m“´N

p 1
L qp

N
ÿ

l“´N

djl e
i2πmpp´lq

L qe´i2πpmτ`pνq, (14)

where the last equality is deduced from a similar discussion
in [22, Appendix C].

Theorem 1. For the true support S “ tsku
|S|
k“1 and the

observation vector according to (7), the matrix tuple B̂ “ B is
the unique optimal solution of (9) provided that the following
conditions hold:

1) There exist 2D trigonometric vector polynomials (14)
with complex coefficients q “ rqp´Nq, . . . , qpNqsT

such that:
fjpskq “ signpbkqhj ,@sk P S (15)

bk P C,hj P CKj , ‖hj‖2“1

‖fjpsq‖2 ă1, @s P r0, 1s2 z S (16)
j “ 0, ..., NI ´ 1

2) The sets
!

aH
j pskq

rDj
´N , . . . ,a

H
j pskq

rDj
N

)S

k“1
are linearly

independent.

Proof. If q satisfies (15) and (16), it will be in the feasible set
of (13) which is observed from (12) and (14). Conversely, if
q satisfies (15) and (16), then pB,qq is a primal-dual optimal
solution pair. To show this, by the definition of atomic norm
in (10), we have:

xq,yyR “ xχ
˚pqq,ByR “

NI´1
ÿ

j“0

xrχ˚pqqsj ,BjyR

(7),(14)
“

NI´1
ÿ

j“0

S
ÿ

k“1

Retb˚kxhj ,fjpskqyu
(15)
“

NI´1
ÿ

j“0

S
ÿ

k“1

Retb˚ksignpbkqu

“

NI´1
ÿ

j“0

S
ÿ

k“1

|bk|
(10)
ě

NI´1
ÿ

j“0

‖ Bj ‖Aj

On the other hand,

xq,yyR “ xχ
˚pqq,ByR “

NI´1
ÿ

j“0

xrχ˚pqqsj ,BjyR

ď

NI´1
ÿ

j“0

‖ rχ˚pqqsj ‖dAj
‖Bj ‖Aj

(15),(16)
ď

NI´1
ÿ

j“0

‖Bj ‖Aj .

We conclude that
řNI´1
j“0 ‖Bj ‖Aj“ xq,yyR. Hence, B is the

primal optimal and q is the dual optimal solution. To check

the uniqueness, assume that B̄ is another solution supported
on S̄ ‰ S with B̄j :“

ř

s̄kPS̄ b̄kh̄ja
H
j ps̄kq, then:

xq,yyR “ xχ
˚pqq, B̄yR “

NI´1
ÿ

j“0

xrχ˚pqqsj , B̄jyR

“
ÿ

j

ÿ

s̄kPS
Retb̄˚kxh̄j ,fjps̄kqyu`

ÿ

j

ÿ

s̄kPS̄zS

Retb̄˚kxh̄j ,fjps̄kqyu

(16)
ă

ÿ

j

ÿ

s̄kPS
|b̄k| `

ÿ

j

ÿ

s̄kPS̄zS

|b̄k| “
NI´1
ÿ

j“0

‖ B̄j ‖Aj
.

Since the set of atoms and their shifts in S are linearly
independent, having the same support means B̄ “ B. This
result violates strong duality and therefore, B is the unique
solution of (9). �

Intuitively, the condition (1) ensures that the primal and
dual problems have zero duality gap achieved by the primal
solution B and dual solution q. The condition (2) ensures that
B is the unique optimal primal solution. A consequence of
Theorem 1 is that the dual solution q of (13) provides a
way to determine the composing time and frequency shifts
of B. One could evaluate the vector-valued dual polynomials
tfjpsqu

NI´1
j“0 and localize the time and frequency shifts by

identifying locations where }fjpsq}2 achieves one.
However, the infinite number of constraints in the dual prob-

lem (13) makes it computationally intractable. To overcome
this difficulty, we transform the `2 ball of 2D trigonometric
polynomial (the constraint of P11) into some linear matrix
inequalities based on [34] or [35, Chapter 9.4] and formulate
(13) as the following semidefinite program (SDP):

P21 : max
q,Qjľ0

xq,yyR

s.t.

˜

Qj
rQH
j

rQj IKj

¸

ľ 0 , Trppθm b θlqQjq “ δm,l
(17)

where rQj P CKjˆL
2

is defined as:

r rQjspi,pp,mqq “
1
L qp

N
ÿ

l“´N

djl e
i2πmpp´lq

L (18)

and θi is a Toeplitz matrix with ones on its i-th diagonal and
zeros elsewhere. In general, we perform the following steps:

1) Solve (17) via one of the standard solvers e.g. SDPT3
of CVX package [36] to find an estimate for the dual
solution q.

2) Determine the time-frequency shifts pτ̂k, ν̂k, Sq by com-
puting the roots of the dual polynomials fjpskq on the
unit circle. This method leads to recovery with very
high precision as shown in [11]. Another approach is to
discretize the region r0, 1s2 on a fine grid up to a desired
accuracy in order to identify the locutions ŝk where
}fjpŝkq}2 « 1. We use this method in our numerical
simulations in Section III.

3) Find the least squares solution of the following linear
equations to estimate b̂kĥj :

NI´1
ÿ

j“0

»

—

—

—

—

–

aH
j ps1qĂD

j
´N ¨¨¨ aH

j psSqĂD
j
´N

...
aH

j ps1qĂD
j
`N ¨¨¨ aH

j psSqĂD
j
`N

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

b1hj

...
bShj

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

yp´Nq
...

ypNq

fi

ffi

ffi

ffi

ffi

fl

.
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4) By knowing the `2 norm of the unknown message i.e.
}hj}2 (which is not a restrictive assumption e.g. in blind
multi-user communications [30]), we can estimate |bk|
and thus |hj |.

B. Grid-Based Approach

Program P21 in (17) is a high-precision method that leads
to an exact solution, but its computational complexity is high
with variables of dimension OpL4q. Here, we provide a grid-
based approach with reduced computational complexity in
exchange for higher estimation error. In this approach, we
suppose that the time-frequency shifts pτk, νkq lie on a fine
p1{G, 1{Gq-grid and solve the discrete version of the primal
problem (9) with variables of dimension OpL2q. Thus, the
observation vector is expressed as:

yppq“ 1
L

G´1
ÿ

r,s“0

ur,s e
i2πp

r
G

NI´1
ÿ

j“0

N
ÿ

m,l“´N

xjplqe
´i2πm

s
G e

i2πmpp´lq
L ,

where xjplq “ djl
H
hj . Using the discrete version of the

variables defined in the previous section, we get:

yppq“
G´1
ÿ

r,s“0

NI´1
ÿ

j“0

b1rsajpgq
H
rDj
phj “

NI´1
ÿ

j“0

xB1j ,
rDjH

p y, (19)

where g “ rr{G, s{Gs, b1 P CG2

is a sparse vector such that
b1
ppr,sq,1q :“ b1rs, and B1j :“

řG´1
r,s“0 b

1
rshjajpgq

H .

Now, we propose the following optimization program to
recover the time-frequency shifts:

P2 : min
B1jPCKˆG2

NI´1
ÿ

j“0

‖B1j ‖˚ s.t. yppq“
NI´1
ÿ

j“0

xB1j ,
rDjH

p y (20)

where ‖ ¨ ‖˚ is the nuclear norm of a matrix which is regarded
as an alternative for the atomic norm in the discrete setting.

In the grid-based approach, we are able to solve (20) which
is the discrete version of (9) directly. Then, to recover the
location of shifts, we compute the correlation between the
estimated tB1ju

NI´1

j“0
and the atoms and choose the locations

with highest correlation. The remaining unknowns are ob-
tained similar to Subsection II-A.

III. SIMULATION RESULTS

In this section, we provide some experiments to confirm
the accuracy of our proposed methods using CVX toolbox
and SDPT3 package. Note that here we consider a minimum
separation condition between time-frequency shift pairs similar
to [1]. In the first experiment, we have two input signals
and a system with the time-frequency shift pair p0.24, 0.52q,
generated uniformly in the interval r0, 1s. We set N “ 7,
K1 “ K2 “ 1, S “ 1 and NI “2. The entries of Dj , hj and
bk are generated from complex standard normal distribution
subject to ‖ hj ‖2“ 1 and |bk| “ 1. Fig.1 shows the dual
polynomials in (14) which achieve 1 in the locations of true
shift pairs. The top left image of Fig.2 illustrates perfect
matching of the magnitude corresponding to the true and
estimated input signals xjplq. Note that here we are not able
to recover the phases of b̂k, instead, b̂kĥj can be uniquely
estimated. Since |bk| “ 1, the least square algorithm estimates

Fig. 1. The Euclidean norm of the dual polynomial vectors (14) corre-
sponding to each input. The marker shows the estimated time-frequency
shifts corresponding to the locations where the dual polynomial has unit
`2 norm. The obtained location is the same as the true time-freq. shift pair
pτ “ 0.24, ν “ 0.52q.

Fig. 2. Left block: The estimated and true input signals match in the dual
approach (upper graph) and grid-based approach (lower graph). Right block:
Estimation error is inversely related to the super resolution factor (SRF) in
the grid-based approach.

|x̂j |. For the grid-based approach of (20), the shift pair is
p0.92, 0.67q while NI “ 2, N “ 6, K1 “ 2, K2 “ 1 and
S “ 1. We define the super-resolution factor SRF :“ G

L and
Error :“ L

S p
řS
k“1

a

pτ̂k´τkq2`pν̂k ´ νkq2q. The right block
of Fig.2 indicates that the error is inversely related to SRF. The
bottom left image of Fig.2 shows good matching of the true
and estimated signals when SRF “20. In the last experiment,
we evaluate the computational complexity of our methods by
CPU time. We set the parameters as in the first experiment. We
implement both P21 and P2 using CVX package [36]. While
the CPU time of the dual approach P21 is 5019 seconds, the
grid-based method P2 is implemented in 576 seconds. Our
simulation is implemented using MATLAB 2016 on a laptop
computer with specifications 2.0 GHz, Core i7, 8 GB RAM.

IV. CONCLUSION

In this work, we developed a mathematical model for 2D
blind super-resolution in MISO LTV systems. The output
signal in this model is a superposition of time and frequency
shifted versions of multiple independent inputs. Our aim was
to recover the time-frequency shift pairs and the inputs from
only one output vector. We formulated the model as a convex
optimization problem under different subspace assumptions for
different unknown inputs. Then, a dual optimization and a
grid-based approach were proposed for obtaining the off-grid
time-frequency shifts and the input signals up to a scaling
factor. Also, numerical simulations were provided to verify
our proposed approach.
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APPENDIX A
EQUIVALENCE BETWEEN (2) AND (4)

yppq “ 1
L

S
ÿ

k“1

bke
i2πνkp

NI´1
ÿ

j“0

p

N
ÿ

m,l“´N

xjplqe
i2πp

p´l
L ´τkqmq

“ 1
L

S
ÿ

k“1

bke
i2πνkp

NI´1
ÿ

j“0

p

p`N
ÿ

u“p´N

N
ÿ

k“´N

xjpp´ uqe
i2πp

u
L´τkqmq

(i)
“

S
ÿ

k“1

bk

NI´1
ÿ

j“0

ei2πνkpp 1
L

N
ÿ

m,l“´N

xjpp´ lqe
i2πp

l
L´τkqmq

(ii)
“

S
ÿ

k“1

bk

NI´1
ÿ

j“0

ei2πνkpp
N
ÿ

l“´N

xjpp´ lqDN p
l
L ´ τkqq

(iii)
“

S
ÿ

k“1

bk

N
ÿ

m,l“´N

DN p
m
L ´ νkqDN p

l
L ´ τkqxjpp´ lqe

i2πml
L

(i) is based on the periodicity property of xjplq while (ii) is
based on the definition of the Dirichlet kernel. (iii) is deduced
from the following fact:

N
ÿ

m“´N

DN

`

m
L ´ νk

˘

e
i2πml
L “ ei2πνkp

APPENDIX B
PROOF OF THE DUAL PROBLEM (11)

The Lagrangian function of (9) is equal to:

LpB, qq “
ÿ

j

‖Bj ‖Aj `xq,y ´ χpBqy

in which:
xq, χpBqy “ xχ˚pqq,By “

ÿ

j

xrχ˚pqqsj ,Bjy

ď
ÿ

j

‖Bj ‖Aj
‖ rχ˚pqqsj ‖dAj

and Therefore,

LpB, qq ě
ÿ

j

‖Bj ‖Aj p1´ ‖ rχ˚pqqsj ‖dAj
q ` xq,yy

We obtain the dual function by minimizing over B:

Hpqq “ inf
BP‘jCKjˆL2

LpB, qq “
"

xq,yy ‖ rχ˚pqqsj‖dAj
ď 1

`8 otherwise

So, the dual problem can be written as (11).

APPENDIX C
ADJOINT OPERATOR χ˚

Beginning from (13), we have:

xq,yyR “ xq, χpBqyR “
ÿ

p,j

xBj , rD
jH

p y qp (21)

We also have:
xq,yyR “ xχ

˚pqq,ByR “
ÿ

j

xBj , rχ
˚pqqsjyR (22)

From (21) and (22) we can deduce:
ÿ

j

xBj ,
ÿ

p

qp rD
jH

p y “
ÿ

j

xBj , rχ
˚pqqsjyR

Therefore:
rχ˚pqqsj “

ÿ

p

qp rD
jH

p
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