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The Property of Frequency Shift in 2D-FRFT

Domain with Application to Image Encryption
Lei Gao, Member, IEEE, Lin Qi, Member, IEEE, Ling Guan, Fellow, IEEE

Abstract—The Fractional Fourier Transform (FRFT) has been
playing a unique and increasingly important role in signal and
image processing. In this paper, we investigate the property of
frequency shift in two-dimensional FRFT (2D-FRFT) domain. It
is shown that the magnitude of image reconstruction from phase
information is frequency shift-invariant in 2D-FRFT domain,
enhancing the robustness of image encryption, an important
multimedia security task. Experiments are conducted to demon-
strate the effectiveness of this property against the frequency
shift attack, improving the robustness of image encryption.

Index Terms—Frequency Shift, 2D-FRFT, image encryption.

I. INTRODUCTION

THE Fourier Transform (FT) is one of the most impor-

tant analysis tools used in physical optics and signal

processing [1-3]. As a generalization of the FT, Fractional

Fourier Transform (FRFT) was introduced in 1980 [4-5].

Different from the FT, the FRFT of a signal is flexibly

operated at any angle with respect to the time axis on the

time-frequency plane, generating a versatile representation for

time-frequency distributions (TFDS) of the Cohen class. In

fact, the conventional FT is a special case of the FRFT, when

the operation angle is 90 degree with respect to the time

axis. FRFT provides a powerful tool to analyze signals in the

time-frequency domain [6]. The FRFT has since drawn the

attention of researchers in the signal processing communities,

and fractional operations have been introduced [7-8]. Typical

examples include the fractional convolution [9], the fractional

correlation [10-11], and the fractional filter [12], which extend

the original operations.

In the Fourier representation of signals, a widely accepted

confidence is that amplitude and phase tend to play different

roles. Hayes [3] demonstrated that phase was more important

than amplitude by reconstructing a multidimensional sequence

from the phase part of its FT. In the past couple of decades,

extensive related works also have been presented on FRFT.

Signal reconstruction from amplitude or phase information of

one dimensional FRFT (1D-FRFT) has been extensively in-

vestigated. In-depth analysis on amplitude and phase in FRFT

domain was presented in [13-15]. It demonstrated that phase

played more important roles than amplitude in FRFT domain

[13]. Thus, phase retrieval using the FRFT was introduced

for image encryption and examination of sensitivities of the

various encryption keys [16]. In addition, the methods of
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multiple-parameter FRFT [17-18] were proposed and applied

to the image feature extraction and representation.

To study the 2D time varying signals, extension of FRFT

to two dimensions has also been conducted, in both con-

tinuous and discrete domains [19], laying foundations for

further investigations in two-dimensional FRFT (2D-FRFT).

The properties of spatial shift [20] and rotation invariance [21]

in 2D-FRFT were investigated with applications to moving

target detection and watermarking respectively. As a result,

it is an urgent priority in investigating the characteristics of

phase information and amplitude information in 2D-FRFT

domain. Nevertheless, as a standing problem, frequency shift

can introduce interference into the phase information, leading

to poor performance on related applications [22-23]. As far as

we know, studies on frequency shift in 2D-FRFT are limited.

To address the aforementioned issues, in this letter, we

present a study of the properties of frequency shift in 2D-FRFT

from amplitude and phase information with mathematical

verification and computer simulations. The main contributions

are summarized as follows.

1. It is demonstrated that the magnitude of image reconstruc-

tion from phase information is frequency shift-invariant in

2D-FRFT domain while the magnitude of reconstruction from

amplitude information does not possess this property.

2. In application, we show that the utilization of this property

improves robustness of image encryption.

The remainder of this letter is organized as follows: Section

II reviews related work. Section III introduces and verifies the

property of frequency shift in 2D-FRFT domain. Section IV

presents application examples and Section V draws conclu-

sions.

II. RELATED WORK

In this section, we will briefly present the existing funda-

mentals of FRFT and 2D-FRFT, respectively.

A. FRFT

The transform of a 1D signal h(t) by FRFT is written as

Hα (u) = {Fα [h (t)]} (u) =
∫

∞

−∞

h (t)Kα (t, u) dt, (1)

with the transform kernel Kα (t, u), in the following form

Kα(t, u) =











kα · exp
(

i t
2
+u2

2
cotα− itu cscα

)

, α 6= nπ

δ(t− u), α = 2nπ
δ(t+ u), α = (2n± 1)π

(2)

where kα =
√

1− i cotα/2π (i =
√
−1) and α is the rotation

angle in FRFT.
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Figure. 1 The simulation results on image ‘Lena’.

B. 2D-FRFT

With two rotation angles α and β, 2D-FRFT provides two

degrees of freedom coping with signal and image processing

problems. Analytically, the definition of 2D-FRFT to a 2D

signal d(s, t) is given as

Dα,β(u, v) = {Fβ {Fα [d(s, t)]} (u, t)} (u, v). (3)

Let the size of a discrete 2D signal g(p, q) be (P, Q). The

forward and inverse 2D-FRFT to a 2D discrete signal g(p,q)

are expressed as in [19]:

Gα,β(m,n) =
P−1
∑

p=0

Q−1
∑

q=0

g(p, q)Kα,β(p, q,m, n), (4)

g(p, q) =
P−1
∑

m=0

Q−1
∑

n=0

Gα,β(m,n)K−α,−β(p, q,m, n), (5)

where Kα,β(p, q,m, n) and K−α,−β(p, q,m, n) are the for-

ward and inverse 2D discrete transform kernels, respectively.

III. FREQUENCY SHIFT IN 2D-FRFT DOMAIN

A. Mathematical Derivation

Again, the 2D-FRFT to a 2D signal f (x, y) is expressed as

Fα,β(u, v) =

+∞
∫

−∞

+∞
∫

−∞

Kα(x, u) ·Kβ(y, v) · f(x, y) · dxdy,

(6)

where Kα (x, u) and Kβ (y, v) are transform kernel functions

defined in equation (2). Equation (6) is rewritten equivalently

as follows

Fα,β(u, v) = Aα,β(u, v) · exp(i2πϕα(u) + i2πϕβ(v)),
(7)

where Aα,β(u, v) and exp(i2πϕα(u) + i2πϕβ(v)) represent

the amplitude and phase components of equation (6).

Then, the amplitude part fA(x, y) and the phase part

fϕ(x, y) in the space domain are reconstructed from equation

(7) by inverse 2D-FRFT transform [19], and are defined in

equations (8) and (9), respectively.

fA(x, y) = F−α,−β(Aα,β(u, v)), (8)

fϕ(x, y) = F−α,−β(exp(i2πϕα(u) + i2πϕβ(v))), (9)

where F−α,−β is the inverse 2D-FRFT transform with rotation

angles −α and −β.

Set the horizontal and vertical frequency shifts as δ and ε,

expressing in the forms of exp(i2πxδ) and exp(i2πyε) in 2D-

FRFT. The frequency shift operation Fα,β
∼(u, v) in 2D-FRFT

is in the form of:

Fα,β
∼(u, v) =

+∞
∫

−∞

+∞
∫

−∞

Γα,β · exp(i2πxδ + i2πyε)dxdy,

(10)

where Γα,β = Kα(x, u) · Kβ(y, v) · f(x, y). Then, equation

(10) can be equivalently written as follows

Fα,β
∼(u, v) = Aα,β

∼(u, v) · exp(i2πϕα
∼(u) + i2πϕβ

∼(v)),
(11)

where Aα,β
∼(u, v) and exp(i2πϕα

∼(u) + i2πϕβ
∼(v)) rep-

resent the amplitude component and phase component of

equation (10).

Aα,β
∼(u, v) is equivalently expressed as follows

Aα,β
∼(u, v) = |Fα,β

∼(u, v)| . (12)
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Using an algebraic operation, equation (12) is further written

as seen below

Aα,β
∼(u, v) =

∣

∣

∣

∣

∣

+∞
∫

−∞

+∞
∫

−∞

Γα,β · exp(i2πxδ + i2πyε)dxdy

∣

∣

∣

∣

∣

= Aα,β(u − 2πδ sinα, v − 2πε sinβ).
(13)

The derivation of equation (13) is given in Appendix A of the
supporting document.

Based on the separability of 2D-FRFT and algebraic oper-
ation, the phase parts exp(i2πϕα

∼(u)) and exp(i2πϕβ
∼(v))

in equation (11) are given as follows

exp(i2πϕα
∼(u))

= exp
{

i2π[ϕα(u− 2πδ sinα) + (uδ cosα)]− iπ sinα cosα(2π)δ2
}

,
(14)

exp(i2πϕβ
∼(v))

= exp
{

i2π[ϕβ(v − 2πε sin β) + (vε cos β)]− iπ sin β cos β(2π)ε2
}

.
(15)

The derivation of equations (14) and (15) is given in Appendix

B of the supporting document.

Let ρ and λ be horizontal and vertical spatial shifts of

f(x, y). The spatial shift Fα,β

′

(u, v) in 2D-FRFT possesses

the following relation [20]:

Fα,β

′

(u, v) =

+∞
∫

−∞

+∞
∫

−∞

κα,β(x, y, u, v) · f(x− ρ, y − λ)dxdy,

(16)

where κα,β(x, y, u, v) = Kα(x, u) ·Kβ(y, v). Equation (16) is

equivalently given in the form of amplitude Aα,β

′

(u, v) and

phase exp(i2πϕ
′

α(u) + i2πϕ
′

β(v)) in equation (17),

Fα,β

′

(u, v) = Aα,β

′

(u, v) · exp(i2πϕ′

α(u) + i2πϕ
′

β(v)).
(17)

Using an algebraic method, Aα,β

′

(u, v) is equivalently written

as follows

Aα,β

′

(u, v) =

∣

∣

∣

∣

∣

+∞
∫

−∞

+∞
∫

−∞

κα,β(x, y, u, v) · f(x− ρ, y − λ)dxdy

∣

∣

∣

∣

∣

= Aα,β(u− ρ cosα, v − λ cosβ).
(18)

The derivation of equation (18) is given in Appendix C of the

supporting document.

Since 2D-FRFT satisfies the inversed transform in equation

(5), implementing the inverse 2D-FRFT w. r. t. −α and −β
representing the magnitude of the reconstructed amplitude

component fA
∼(x, y) from Aα,β

∼(u, v) leads to the following

expression,

|fA∼ (x, y)| = |F−α,−β(Aα,β
∼(u, v))| . (19)

By using equation (13), equation (19) is rewritten as follows

|fA∼(x, y)|
= |F−α,−β(Aα,β

∼(u, v))|
= |F−α,−β(Aα,β(u− 2πδ sinα, v − 2πε sinβ))| .

(20)

Based on equations (8) and (18), |fA∼(x, y)| is further ex-

pressed as

|fA∼(x, y)|
= |F−α,−β(Aα,β(u − 2πδ sinα, v − 2πε sinβ))|
= |fA (x− 2πδ sinα cosα, y − 2πε sinβ cosβ)|
= |fA (x− πδ sin 2α, y − πε sin 2β)| .

(21)

Similarly, the magnitude of the reconstructed phase component

fϕ∼(x, y) from exp(i2πϕα
∼(u) + i2πϕβ

∼(v)) yields the

following expression,

|fϕ∼(x, y)|
= |F−α,−β(exp(i2πϕα

∼(u) + i2πϕβ
∼(v)))|

= |F−α,−β(exp(i2πϕα
∼(u)) · exp(i2πϕβ

∼(v)))| .
(22)

Since 2D-FRFT is equivalent to apply FRFT on the two vari-

ables successively, mathematical manipulation of (22) yields

|fϕ∼(x, y)|
= |F−α,−β(exp(i2πϕα

∼(u)) · exp(i2πϕβ
∼(v)))|

= |F−α(exp(i2πϕα
∼(u))) · F−β(exp(i2πϕβ

∼(v)))| .
(23)

From equation (23), |F−α(exp(i2πϕα
∼(u)))| can be rewritten

as follows

|F−α(exp(i2πϕα
∼(u)))|

= |F−α(exp {i2π[ϕα(u− 2πδ sinα) + (uδ cosα)]})|
= |F−α(exp(i2πϕα(u− 2πδ sinα)) · exp(i2πuδ cosα))| .

(24)

By definition,

fϕ(x) = F−α(exp(i2πϕα(u))). (25)

According to the separability of 2D-FRFT and equation (18),

|F−α(exp(i2πϕα(u− 2πδ sinα)))| is further written as

|F−α(exp(i2πϕα(u − 2πδ sinα)))|
= |fϕ(x − 2πδ sinα cos(−α))|
= |fϕ(x − 2πδ sinα cosα)| .

(26)

Employing equation (13) and substituting (26) into (24) yields

equation (27)

|F−α(exp(i2πϕα
∼(u)))|

= |F−α(exp(i2πϕα(u − 2πδ sinα)) · exp(i2πuδ cosα))|
= |fϕ(x− 2πδ sinα cosα− 2πδ cosα sin(−α))|
= |fϕ(x)| .

(27)

The equivalence between |F−β(exp(i2πϕβ
∼(v)))| and |fϕ(y)|

can be similarly verified, thus

|F−β(exp(i2πϕβ
∼(v)))|

= |F−β(exp(i2πϕβ(v − 2πε sinβ)) exp(i2πvε cosβ))|
= |F−β(exp(i2πϕβ(v)))|
= |fϕ(y)| .

(28)

Substituting equations (27) and (28) into (22) yields,

|fϕ∼(x, y)|
= |F−α,−β(exp(i2πϕα

∼(u) + i2πϕβ
∼(v)))|

= |F−α(exp(i2πϕα(u))) · F−β(exp(i2πϕβ(v)))|
= |F−α,−β(exp(i2πϕα(u) + i2πϕβ(v)))|
= |fϕ(x, y)| .

(29)

Equations (21) and (29) demonstrate that the magnitude of

reconstruction from amplitude-only information in 2D-FRFT

domain is due to the corresponding shift with respect to

the frequency shift operations. Nevertheless, the magnitude

of reconstruction from phase-only information in 2D-FRFT

domain has no shift at all.

Moreover, since x and y are integers in the field of digital

image processing, exp(i2πxδ) and exp(i2πyε) change into
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periodic functions and the period is 1 for δ and ε, respectively.

Therefore, during the following computer simulations, δ and

ε satisfy the relation (30)
{

exp(i2πxδ) = exp(i2πx(δ + 1)),
exp(i2πxε) = exp(i2πx(ε+ 1)).

(30)

B. Simulations

In this subsection, the impact of frequency shift on the

amplitude and phase components in 2D-FRFT is shown by the

following computer simulations. During the simulations, the

rotation angles are selected as α=β=36o and frequency shift

parameters are set as (δ = 0.2, ε = 0) and (δ = 10.2, ε = 0) ran-

domly. The simulation results on image ‘Lena’ are illustrated

in Fig. 1. From the simulation results, it is observed the phase

information is frequency shift-invariant for image reconstruc-

tion in 2D-FRFT domain while the amplitude information does

not possess this property. Moreover, experimental results on

the periodic characteristics of exp(i2πxδ)(δ = 0.2, δ = 10.2)
in 2D-FRFT domain (α=β=36o) are shown in Fig. 1 (d) to

Fig. 1 (i).

IV. APPLICATIONS

As two degrees of freedom are provided in 2D-FRFT,

raising the potential to generate more security [24], 2D-FRFT

has been widely applied in the field of image encryption. In

this section, we present utilization of the property of frequency

shift in 2D-FRFT, which is expected to find applications in the

aforementioned fields to improve the robustness.

Information processing in the encrypted domain has at-

tracted considerable research interests [25-26]. In [27], a dou-

ble random phase fractional order Fourier domain encoding

scheme is proposed for image encryption to enhance the level

of security. It demonstrated that the double random phase

method is robust against attacks such as occlusion, crop, and

so forth [27]. However, there is a chronic issue [28-29] that

frequency shift can introduce interference into phase informa-

tion and decrease the robustness of the double random phase

encoding scheme. Since the image reconstruction from phase

information satisfies the frequency shift-invariance property, it

has potential to extract encryption information/data even when

frequency shift attacks exist. In the following experiments, we

will select the method of double random phase encoding used

in [27] to demonstrate the effectiveness of the frequency shift-

invariant property in image encryption.

In the double random phase encoding method, an indepen-

dent random function r(x, y) is uniformly distributed in the

interval [0 2π] and the rotation angles are set as α=β=9o

randomly. Then, the method of random phase encoding on

a two dimensional signal I(x, y) is written as follows

g(ς, η) =

∫ ∫

I(x, y) · exp(2πi · r(x, y)) ·Φ · dxdy, (31)

i = (−1)1/2, (32)

where Φ = Kα=9o,β=9o(ς, η, x, y) is the transform kernel

function in 2D-FRFT, and the function g(ς, η) is the encrypted

signal.

Since it satisfies the property of inverse in 2D-FRFT

domain, the original signal I(x, y) can be recovered with

the correct independent random functions and rotation an-

gles. Nevertheless, when the frequency shifts exp(i2πxδ) and

exp(i2πyε) are introduced, I(x,y)∗exp(i2πxδ)∗exp(i2πyε)∗
exp(2π∗ i∗r(x, y)) will replace I(x,y)∗exp(2π∗ i∗r(x, y)) in

equation (31), resulting in failures of the encrypted informa-

tion/data recovery even with the correct independent random

functions and rotation angles. However, we can recover the

encryption information/data successfully benefiting from the

property of frequency shift-invariance from phase information

in 2D-FRFT domain.

Experiments are provided to demonstrate the effectiveness

of this property against the frequency shift attack with rotation

angles (α=β=9o) in 2D-FRFT domain shown in Fig. 2. In Fig.

2, when there is no frequency shift in Fig. 2(b), the key image

is successfully recovered straightforwardly in Fig. 2(c). When

there is frequency shift existing in Fig. 2(d), we see the failure

without using the frequency shift-invariant property shown in

Fig. 2(e), and the success using the property shown in Fig.

2(f).

                                                     

(a) The original key image                               (b)  The encrypted image with double random phase encoding  

                                                     

 (c)  The recovered key image from (b)             (d) The encrypted image of (b) with frequency shifts (! = 34.7, " = 0) 

                                                           

   (e) The recovered key image from (d) without                    (f) The recovered key image from (d) using the 

          the frequency shift#invariant property                                          frequency shift#invariant property 

Fig. 2 Experiments on image encryption with the frequency

shift-invariance property

V. CONCLUSIONS

In this letter, the property of frequency shift operation, from

the amplitude and phase information in 2D-FRFT domain,

has been studied. It is demonstrated that the magnitude of

image reconstruction from phase information is frequency

shift-invariant while the property does not hold for the am-

plitude information. Experiments are provided, illustrating the
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effectiveness of the property in improving the robustness of

image encryption.
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