Unsupervised Person Re-Identification Based on Measurement Axis | IEEE Journals & Magazine | IEEE Xplore

Unsupervised Person Re-Identification Based on Measurement Axis


Abstract:

The main focus of unsupervised person re-identification is the clustering of unlabeled samples in the target domain. However, most existing studies neglected to mine the ...Show More

Abstract:

The main focus of unsupervised person re-identification is the clustering of unlabeled samples in the target domain. However, most existing studies neglected to mine the deep semantic information of the target domain and did not consider a better combination of the source domain and the target domain. In this letter, we not only consider the changes of the target domain within its own domain but also mine the deep semantic information of the images by designing a measurement axis component. Then, the deep semantic information mined by the axis is used as the judgment basis of hard negative samples. Moreover, a new loss function is designed in this work to improve the migration ability of the network. Experimental results on two person re-identification domains show that our technology accuracy outperforms the state of the art by a large margin.
Published in: IEEE Signal Processing Letters ( Volume: 28)
Page(s): 379 - 383
Date of Publication: 01 February 2021

ISSN Information:

Funding Agency:


References

References is not available for this document.