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Spectral Domain Spline Graph Filter Bank
Amir Miraki, Hamid Saeedi-Sourck, Nicola Marchetti, and Arman Farhang

Abstract—In this paper, we present a structure for two-channel
spline graph filter bank with spectral sampling (SGFBSS) on
arbitrary undirected graphs. Our proposed structure has many
desirable properties; namely, perfect reconstruction, critical sam-
pling in spectral domain, flexibility in choice of shape and cut-
off frequency of the filters, and low complexity implementation
of the synthesis section, thanks to our closed-form derivation
of the synthesis filter and its sparse structure. These properties
play a pivotal role in multi-scale transforms of graph signals.
Additionally, this framework can use both normalized and non-
normalized Laplacian of any undirected graph. We evaluate the
performance of our proposed SGFBSS structure in nonlinear
approximation and denoising applications through simulations.
We also compare our method with the existing graph filter bank
structures and show its superior performance.

Index Terms—Graph signal processing, Spline graph filter
bank, Spectral sampling.

I. INTRODUCTION

GRAPH signal processing (GSP) extends classical signal
processing to enable analysis of irregularly structured

data on the vertices of an underlying graph, [1], [2]. In recent
years, GSP has been utilized in plethora of real-life applica-
tions such as data processing in social, transport, economic,
biological and sensor networks [2]. High dimensional nature
of data in these networks necessitates multirate signal analysis
by construction of filter banks on graphs for different purposes
such as denoising, compression, and data classification, [3].

Graph filter bank (GFB) was first proposed for special types
of graphs, namely, tree, Ω-structure, circulant, and bipartite
graphs [4]–[7]. The authors in [7] proposed a two-channel
critically-sampled GFB structure with quadrature mirror filters
(GraphQMF) satisfying perfect reconstruction (PR) property
for signals on bipartite graphs. This method is applicable
to any arbitrary graph through a bipartite subgraph decom-
position leading to a high computational complexity. Alter-
native filter design methods for the GFB structure in [7]
with biorthogonal and frequency conversion based filters were
proposed in [8] and [9], known as GraphBior and GraphFC,
respectively. An M -channel oversampled extension of [7]
was presented in [10]. In a more recent work, [11], the
results of [7] are extended to arbitrary graphs, without the
need for bipartite subgraph decomposition, using a different
definition of graph Fourier transform (GFT). The authors in
[12] decomposed an arbitrary graph into several subgraphs.
They applied local GFT to each subgraph and obtained a GFB
with PR property (SubGFB). An M -channel critically sampled
GFB (CSFB) on arbitrary graphs was introduced in [13],
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where the synthesis filters in each subband were replaced with
interpolation operators. Authors in [14] proposed a critical
sampling method for two-channel filter bank on an arbitrary
graph where the PR condition was only satisfied for bipartite
graphs. Another GFB for arbitrary graphs is spline graph filter
bank (SGFB) [15]. The key difference between SGFB and
other GFB structures is in substitution of synthesis filters with
an inverse filter, which simplifies the GFB design, see Fig. 1.

Unlike classical filter banks, down/upsampled signal in
GFB has a considerably different spectrum from that of the
original signal, except for bipartite graphs [16], [17]. This
is a big challenge for multiscale analysis and processing
on arbitrary graphs. To deal with this challenge, different
approaches have emerged, [18]–[21]. The authors in [18]
and [19] proposed a GFB structure without down/upsampling
that leads to a large computational load. In contrast, the
authors in [20] and [21], take a more interesting approach and
perform down/upsampling operations in spectral domain. This
idea led to a critically-sampled GFB structure with spectral
sampling (GraphSS) that is applicable to arbitrary graphs while
satisfying the PR condition. The concept of spectral sampling,
its superior performance to vertex domain methods, [16], and
the results of [20] and [21] are among the main motivations for
extending SGFB, [15], from vertex domain to spectral domain
in this paper. In [15], the designed analysis filters do not
have desirable passband/stop-band characteristics. Hence, a
filter design method, known as modified SGFB (MSGFB), was
proposed in [22]. However, SGFB has a number of limitations;
namely, spectral issues resulting from down/upsampling for ar-
bitrary graphs, deteriorated performance compared to spectral
sampling-based GFBs, and a high computational complexity
due to the dense matrix inversion and multiplication operations
at the synthesis section. Thus, the main goal of this paper is
to address all these limitations.

In this paper, we present a two-channel critically-sampled
SGFB structure with spectral sampling (SGFBSS), see Fig. 2.
Our proposed SGFBSS structure satisfies PR condition for
arbitrary graphs without the requirement of any subgraph
partitioning or decomposition. Since down/upsampling opera-
tions are performed in the spectral domain, they do not lead
to any spectral issues. Our proposed structure can use both
normalized and non-normalized graph Laplacian. We find a
closed-form for the inverse filter at the synthesis side which is
sparse and hence it leads to a low complexity implementation.
We also discuss filter design methodology and show that our
proposal provides a large amount of flexibility in the choice
of filter parameters such as their shape and cut-off frequency.
Our numerical results demonstrate the effectiveness of the
proposed SGFBSS structure for applications such as nonlinear
approximation and denoising on arbitrary undirected graphs.
We compare our method with the existing GFB structures in
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Fig. 1. Two-channel SGFB with vertex sampling [15].

the literature and show its superior performance.
Notations and preliminaries: Boldface uppercase, boldface

lowercase and normal letters represent matrices, vectors and
scalar quantities, respectively. The superscript (·)T denotes
transpose operation. A graph G = (V, E) is defined with a
set of nodes V , a set of edges E and an adjacency matrix A
that describes the graph connectivity. D is the diagonal degree
matrix whose diagonal elements are defined as the sum of the
elements on the respective row of A. In this paper, we consider
undirected graphs without self-loops, i.e., the elements on
the main diagonal of A are all zero. The graph Laplacian
matrix is defined as L ≡ D − A. Normalized adjacency
and Laplacian matrices are defined as A ≡ D−1/2AD−1/2

and L ≡ D−1/2LD−1/2 = IN − A, respectively, where
IN is the N × N identity matrix. For connected graphs, L
is a real-valued symmetric matrix. Thus, using eigenvalue
decomposition, it can be written as L = UΛUT, where
Λ = diag

(
[λ0, . . . , λN−1]T

)
is the diagonal eigenvalue matrix

with the diagonal elements 0 = λ0 < λ1 ≤ · · · ≤ λN−1 ≤ 2,
U = [u0, . . . ,uN−1] is a unitary matrix that contains the
orthonormal eigenvectors un on its columns and UUT = IN .
Considering the signal f = [f(0), · · · , f(N − 1)]

T where the
sample f(n) appears on the nth node of the graph, GFT of
this signal is defined as f̄ , UTf . Equivalently, inverse GFT
of f̄ can be obtained as f = Uf̄ . Finally, the filtered signal
is expressed as f̃ = Hf , where H = U HUT and the filter
kernel H is a diagonal matrix with the elements H̄(n) on its
main diagonal, i.e., H = diag

(
[H̄(0), . . . , H̄(N − 1)]T

)
.

II. TWO-CHANNEL SGFB WITH VERTEX SAMPLING

Figure 1 shows a two-channel SGFB with vertex domain
sampling (SGFBVS) where the subscripts LP and HP refer
to the low-pass and high-pass channels of the filter bank,
respectively. Based on the results of [15], the filter HLP

can be obtained as a polynomial function of the normalized
adjacency matrix with the order J . Thus, HLP = 1

2 (IN + B)

where B =
∑J
l=1 wl(A)l and the weights {wl}Jl=1 are

optimized to achieve a desired filter response. Also, HLP can
be diagonalized as HLP = U0HLPUT

0 where

HLP =
1

2
(IN + Ψ), (1)

Ψ =
∑J
l=1 wl(IN − Λ)l = diag{[ψ0, . . . , ψN−1]T} with

ψn =
∑J
l=1 wl(1− λn)l and H̄LP(n) = 1

2 (1 + ψn).
Additionally, U0 and Λ are the eigenvector and eigen-

value matrices of the normalized Laplacian matrix for the
original graph, respectively. The high-pass filter HHP can

Fig. 2. Proposed two-channel SGFB with spectral sampling.

be constructed as HHP = IN − HLP [15]. After filtering,
the signals f̃LP and f̃HP in low-pass and high-pass channels
are downsampled by the factors RLP and RHP, respectively.
Therefore, the corresponding graph is reduced. To reduce
the graph size, in this paper, we use the well-known Kron
reduction method [23]. In the synthesis section, the upsampled
signals are combined and the signal y = 1

2 (IN +KB)f in the
vertex domain is formed where K is a diagonal matrix with
the diagonal elements K(i, i) = 1 if node i is maintained after
downsampling at LP channel, otherwise K(i, i) = −1. Finally,
under the condition that (IN + KB) is invertible, the original
signal f is perfectly reconstructed as fout = HINVy where
HINV = 2(IN + KB)−1 [15]. Hence, the weights, wl, need
to be designed to guarantee the invertibility of (IN + KB).

III. TWO-CHANNEL SGFB WITH SPECTRAL SAMPLING

In this section, we propose an architecture for the two-
channel SGFB based on the spectral sampling concept which
was first introduced in [16], see Fig. 2. We derive PR condi-
tions, present a filter design method and derive a closed-form
for the inverse synthesis filter leading to a low complexity
implementation.

Let us consider the downsampling matrices as

S̄dLP =
[
IN/2 JN/2

]
, S̄dHP =

[
IN/2 − JN/2

]
, (2)

where JN/2 is the counter identity matrix of size N/2, [16],
[20] and upsampling matrices as S̄uLP = S̄T

dLP and S̄uHP =
S̄T
dHP. Hence, from Fig. 2, the spectral domain signal y can

be obtained as

y=
(
S̄uLPUT

1 U1S̄dLPHLP + S̄uHPUT
1 U1S̄dHPHHP

)
UT

0 f ,
(3)

where U0 and U1 are the unitary eigenvector matrices
corresponding to the original and the reduced-size graphs,
respectively [16]. Since, UT

1 U1 = IN/2, (3) reduces to

y =
(
S̄uLPS̄dLPHLP + S̄uHPS̄dHPHHP

)
UT

0 f . (4)

By substituting (1) and (2) into (4), we have

y = CUT
0 f , (5)

where the square matrix C = IN + JNΨ is non-zero only on
its main and anti-diagonal elements, i. e.,

C =



1 0 · · · 0 ψN−1

0 1 · · · ψN−2 0
...

...
. . .

...
...

0 ψ1 · · · 1 0

ψ0 0 · · · 0 1

 . (6)
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From Fig. 2 and using (5), the output signal of the synthesis
section can be represented as

fout = U0HINVy = U0HINVCUT
0 f . (7)

From this equation, one may realize that opposed to the
inverse filter in Fig. 1 that works in the vertex domain, the
inverse filter in our proposed architecture operates in spectral
domain. Based on (7), the original signal f can be perfectly
reconstructed when HINV = C−1. Hence, the two-channel
SGFBSS has PR property under the condition that C is
invertible. The square matrix C is invertible if and only if
its rows are linearly independent.

Lemma 1. The square matrix C is invertible and the original
signal f is perfectly reconstructed using (7), if and only if
ψn 6= 1

ψN−n−1
,∀ n ∈ {0, · · · , N/2− 1}.

Proof. The special structure of the matrix C that is shown in
(6), suggests that this matrix always has N

2 independent rows.
This is because C = [cT0 , . . . , c

T
N−1]T is always comprised

of N
2 pairs of symmetrical rows, cn and cN−n−1 with non-

zero entries on the same columns. Hence, this matrix has N
independent rows if and only if each pair of symmetrical rows
are linearly independent, i.e.,

@ α, cn = αcN−n−1, n = 0, · · · , N/2− 1, (8)

where α is a scalar [24]. Let us assume there exists an α so
that cn = αcN−n−1. From (6) and using (8), one may realize
that ψn = 1

α and ψN−n−1 = α. Consequently, the condition
in (8) is satisfied by ψn 6= 1

ψN−n−1
.

A. Filter design methodology

The shape of the filters plays a crucial role for signal
decomposition into different spectral bands. In this section,
a pair of analysis filters with desirable frequency responses is
proposed for SGFBSS. We consider the spectral kernel as

H̄LP(n) =

{
1, if λn ≤ λcut,
ε, if λn > λcut.

(9)

For λcut = λN
2 −1

and ε = 0, we have the exact ideal low-pass
filter. Using (1), we have ψn = 2H̄LP(n)−1, n = 0, · · · , N−
1. Hence, for exact ideal filter, ψ0 = . . . = ψN

2 −1
= 1 and

ψN
2

= . . . = ψN−1 = −1. For a higher flexibility, cut-off
frequency can be variable within the range λ0 < λcut ≤ λN

2 −1
and then ε 6= 0 to satisfy PR condition, as mentioned earlier.

Non-ideal filters are sometimes preferred when the eigen-
value distribution of the variation operator is irregular [20].
In this paper, we assume a Butterworth filter with order β as
H̄LP(n) = (1+(λn/λcut)

2β)−0.5. The cut-off frequency does
not have any limitations in our proposed SGFBSS structure.
Thus, λcut and β are the design parameters. The selection of
cut-off frequency for analysing filters in GFBs has received
less attention in the literature, [7]–[9], [20]. In GFBs for
bipartite graphs, λcut = λN

2 −1
is assumed. This is reasonable

due to the order of eigenvalues for bipartite graphs. However,
the shapes of the filters for arbitrary graphs are important and
require more flexibility for cut-off frequency which is satisfied
by using our method.

(a) Sensor graph (N=100) (b) Community graph (N=400)

Fig. 3. Graph signal in vertex domain.

(a) Sensor graph signal (b) Community graph signal

Fig. 4. Graph signal in spectral domain.

B. Low-complexity implementation

As it was mentioned in the proof of Lemma 1, C contains
N
2 pairs of symmetrical rows, cn and cN−n−1 with non-zero

elements only on two similar columns. As a result, the linear
system of equations in (5) that is defined by the coefficient
matrix C, can be broken into N

2 isolated linear systems of
equations with only two unknowns in each. Consequently,
C−1 can be easily obtained by inverting N

2 matrices of size
2 × 2 each. Hence, C−1 = Ψ̃(IN − JNΨ) where Ψ̃ =
diag{[Ψ̃(0), . . . , Ψ̃(N−1)} is a diagonal matrix with diagonal
elements Ψ̃(n) = Ψ̃(N − n − 1) = 1/(1 − ψnψN−n−1) for
n = 0, . . . , N/2 − 1 that are reciprocals of the determinants
of the corresponding 2× 2 matrices. This simple closed-form
for C−1, significantly reduces the computational complexity
of the matrix inversion especially for large graphs.

To compare the complexity of our proposed SGFBSS with
other existing solutions in [13], [15], [20], [22], we focus
on filtering and sampling. Both the spectral approaches of
SGFBSS and the method in [20] have the same complexity
for filtering in the analysis section and sampling. Interestingly,
both GFBs have the same complexity in the synthesis section.
In particular, spectral domain filtering in [20] requires 2O(N)
number of multiplications. To pass the signal y through the
inverse filter HINV, our proposed SGFBSS method requires
2O(N) rather than O(N2) multiplications as compared with
the SGFBVS method in [15] and [22]. However, the class
of vertex sampling methods such as the ones in [13], [15]
and [22] require lower complexity than methods with spectral
sampling such as the one proposed in this paper and [20]. This
is the cost to pay for the better performance of the spectral
sampling based methods.
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(a) SGFBSS-I (b) SGFBSS-B

Fig. 5. Filter sets for SGFBSS (a) Ideal filters, (b) Butterworth filters.

IV. SIMULATION RESULTS

In this section, we evaluate and compare the performance of
our proposed SGFBSS structure with the existing GFBs in the
literature, [7]–[9], [11]–[13], [20], [22]. We have used GSPbox
in MATLAB, [25], for graph generation, GSP operations,
and visualizations. Similar to [20], we consider two different
graph signals with vertex and spectral representations that are
shown in Figs. 3 and 4, respectively. Figs. 4(a) and 4(b)
illustrate an approximately smooth signal and a localized
signal in the spectral domain on the sensor and community
graphs, respectively. As mentioned before, we have freedom
in choosing the analysis filters and cut-off frequencies. We
assume ideal and Butterworth filters depicted in Fig. 5 for
the community graph as an example. Fig. 5(a) and Fig. 5(b)
show the ideal filters with different cut-off frequencies and
Butterworth filters with different orders for λcut = λN

2 −1
,

respectively. In the following, the performance of our proposed
method in nonlinear approximation and denoising is evaluated.

A. Nonlinear Approximation

In nonlinear approximation, a fraction of the coefficients
with high absolute values are kept and the rest are set to
zero. In Fig. 6, we compare our proposed SGFBSS structure
with GraphQMF [7], GraphBior [8], GraphFC [9], MQGFB
[11], SubGFB [12], CSFB [13], GraphSS [20] and MSGFB
[22]. This figure shows the resulting signal to noise ratio
(SNR) versus the fraction of remaining coefficients for both
sensor and community graphs. SGFBSS-I and SGFBSS-B20
represent SGFBSS with ideal and order 20 Butterworth filters,
respectively. Our results in Fig. 6 show that spectral sampling
based methods outperform the ones with vertex sampling that
are shown with solid and dashed lines, respectively. In partic-
ular, our proposed SGFBSS structure achieves a significantly
improved performance compared to its counterpart SGFB with
vertex sampling, [22]. Furthermore, while having a superior
performance to all the existing methods, our proposed structure
leads to about the same performance as GraphSS, [20].

B. Denoising

In this subsection, we evaluate the performance of our pro-
posed SGFBSS structure for noise suppression. We consider
the noisy signal fnoisy = f + ξ where ξ is the zero-mean
white Gaussian noise vector with the standard deviation σ. We

Fig. 6. Results of nonlinear approximation.

TABLE I
DENOISING RESULTS. AVERAGE OF 1000 RUNS.

Methods σ = 1/8 σ = 1/4 σ = 1/2 σ = 1

Sensor

GraphSS-I [20]
GraphSS-O [20]
GraphSS-B [20]
CSFB [13]
MQGFB [11]
SGFBSS-I
SGFBSS-B5
SGFBSS-B10
SGFBSS-B20

0.41
0.37
0.24
0.41
-2.90
0.41
0.51
0.52
0.47

1.28
1.28
1.20
1.28
-0.05
1.28
1.36
1.31
1.33

4.89
4.89
4.84
4.89
4.76
4.89
5.10
4.96
4.94

10.34
10.40
10.37
10.34
10.20
10.34
10.82
10.69
10.55

Community

GraphSS-I [20]
GraphSS-O [20]
GraphSS-B [20]
CSFB [13]
MQGFB [11]
SGFBSS-I
SGFBSS-B5
SGFBSS-B10
SGFBSS-B20

6.04
5.39
5.07
6.04
0.64
6.04
3.78
5.28
5.94

4.85
4.50
4.40
4.85
3.65
4.85
4.06
4.72
4.86

7.68
7.53
7.49
7.68
7.12
7.68
7.80
7.76
7.79

12.11
12.13
11.86
12.11
11.71
12.11
13.20
12.72
12.38

compare both SGFBSS-I and SGFBSS-B (with different orders
5, 10, and 20) with MQGFB utilizing “lazy” bi-orthogonal
filters [11], CSFB [13] and GraphSS [20]. We use non-
normalized Laplacian matrix as the variation operator. Cut-off
frequency is chosen as λcut = λN

2 −1
and the coefficients at

low and high frequency channels are hard-thresholded with
T = 3σ. Denoising results for the graph signals of Fig. 3
are shown in Tab. I in terms of signal-to-noise ratio (SNR)
improvement in dB, i.e., ∆SNR = 10 log10

(
‖ξ‖22

‖fdenoised−f‖22

)
[3]. In this table, different noise levels are considered and the
largest ∆SNR values are represented in bold. Our results show
that in many cases, non-ideal filters outperform the ideal ones.
For the sensor graph, our proposed method is superior to all
the other methods for different noise levels. Similar results are
achieved for the community graph while only for the lowest
noise level, σ = 1/8, the methods in [20] and [13] lead to
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the same performance as our proposed method SGFBSS-I.
Finally, for all the other noise levels, our proposed SGFBSS-B
provides the highest SNR improvement.

V. CONCLUSION

In this paper, we introduced a two-channel critically-
sampled SGFB structure based on the spectral sampling con-
cept. This structure is applicable to any arbitrary undirected
graph and can use both normalized and non-normalized graph
Laplacian. We derived PR condition and discussed filter design
aspects. Our proposed structure provides a large amount of
flexibility in terms of shape and cut-off frequency of the filters.
We derived a closed-form for the synthesis filter that led to
a low complexity implementation of the synthesis section.
Our simulation results demonstrate the superior nonlinear
approximation and noise suppression performance of our pro-
posed method compared to the existing GFB structures in the
literature.
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