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Abstract

Traditional adversarial attacks rely upon the perturbations generated by gradients
from the network which are generally safeguarded by gradient guided search
to provide an adversarial counterpart to the network. In this paper, we propose
a novel mechanism of generating adversarial examples where the actual image
is not corrupted rather its latent space representation is utilized to tamper the
inherent structure of the image while maintaining the perceptual quality intact and
to act as legitimate data samples. As opposed to gradient-based attacks, the latent
space poisoning exploits the inclination of classifiers to model the independent
and identical distribution of the training dataset and tricks it by producing out of
distribution samples. We train a disentangled variational autoencoder (β-VAE)
to model the data in latent space and then we add noise perturbations using a
class-conditioned distribution function to the latent space under the constraint that
it is misclassified to the target label. Our empirical results on MNIST, SVHN,
and CelebA dataset validate that the generated adversarial examples can easily
fool robust l0, l2, l∞ norm classifiers designed using provably robust defense
mechanisms.

1 Introduction

Artificial Neural Networks (ANN’s) are vulnerable to adversarial examples, even an insignificant
change to human eyes might still fool even the state of the art classifier [34]. This motivates the
exploration of adversarial learning domain of artificial intelligence to make the neural networks
more robust and secure. Deep learning models are exposed to all kind of threats like [31] [19] [2]
demonstrates the need for further strengthening the models and removing bias towards the presented
training dataset distribution. To train the model against such threats, many methods have been
developed. Most of these basically try to exploit adversarial training of the model [6] [17] [30]. Some
other techniques aim to remove the adversarial perturbation [15] [32].

In this paper, we introduce a novel method to generate adversarial examples that are smooth by
nature and provide realistic perception. In practise adversarial examples are generally noisy in
nature and are easily traceable by humans. They can also be mitigated by above mentioned defense
techniques. So in this work, we make use of disentanglement properties of β-VAE networks [8] to get
the meaningful latent space vector which can be tuned with visible results in image space. We utilize
a specialized variant of β-VAE network namely JointVAE [4] which provides more control over the
latent space. We conditioned our proposed model such that, it promotes the class with second highest
probability of occurrence and makes it visually appear in the image or just change the classification
prediction. We perform this by using statistical theory concepts and adding the distribution of that
class, extracted from training set, to the actual latent space vector of the original input image. This
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not only gives smoothing effect to the image but also leverages additive property of latent space
and linear interpolation smoothness produced by such operations. Then we employ our pre-trained
JointVAE model to decode the new noisy latent space and obtain adversarial examples conditioned
under some constraints, mentioned in section 3. The other contribution of our attack is that it is
completely black-box attack i.e it doesn’t require any access to the test classifier.

2 Background

In this section, we discuss the background on adversarial examples, attacking methods, defense
methods and also autoencoder networks. Although the topic of adversarial attack and defense ranges
from image classification, to audio classification to many ubiquitous domains, however here we focus
on image classification.

Adversarial Attacks Let x ∈ Rn and f be a classifier. If f is known to attacker then it is called
white-box attack, if it is not known then it is called black-box attack. In white-box attacks, matrix
norms such as l0 [24], l2 [18], or l∞ [12] are used in combination with gradient based methods like
Fast Gradient Sign Method (FGSM [34]), which assumes image or input itself to be updated with
incoming gradient and thus changes the pixel values accordingly. If this procedure is repeated several
times, then it is termed as Projected Gradient Descent (PGD [11]) attack.

Adversarial defenses Prevalent adversarial defenses focuses on making classifier robust in response
to perturbations in the images. These emphasize on adversarial training with adversarial examples
added to the training set. [1] indicates that all the existing defenses depend on certified defense or
adversarial training [17]. Although some recent certified defense techniques have emerged which
finetune the robust model in their latent space [29] which is different from traditional image space
based adversarial training. In this paper, we propose an attack to fool the adversarial defense trained
using adversarial training.

Autoencoder Networks An autoencoder has 2 blocks, an encoder network, E and other decoder
network, D. The encoder network translates the actual image in pixel space to the latent space,
whereas the decoder network translates the latent space representation of the image back to pixel
space. There is some loss during this translation but the integrity of the image remains intact in terms
of its structure and some prevalent details. So, the goal of autoencoder training is to learn the encoder
and decoder coupling in such a way that the reconstruction loss is minimal. In order to get more
variability in the latent space, we use JointVAE [4] network, which gives us more control over the
induced changes in the pixel space. It is optimized using following optimization problem,

L(θ, φ) = Eq(z,c|x)[logpθ(x|z,c)]− βDKL(qφ(z, c|x)||p(z, c)) (1)

where, the joint posterior qφ(z, c|x) is mapped by encoder network, Gaussian prior p(z, c) and
likelihood pθ(x|z, c) is mapped by decoder network. Here latent distribution is jointly continuous
and discrete with the assumption that both continuous (z) and discrete (c) variables are conditionally
independent.

3 Methods

3.1 Out of Distribution Examples

Traditional gradient based attacks or perturbation-based attacks work on the principle of
back-propagation where we try and calculate the gradient for each input pixel. This gradient is used
to define a perturbation vector under a constraint that the adversarial image is similar to the original
image.

Definition 1 (Gradient Based Attacks). Given a subset of test images τ ⊂ o, where o is
the whole dataset distribution, small constant ε > 0, and matrix norm ||.||, a perturbation vector is
defined. The adversarial image, x′ constructed by this perturbation vector is defined to be any image
in α as,

α =∆ {x ∈ o | ∃x′ ∈ τ, ||x− x′|| ≤ ε ∧ f(x′) = θ(x′) = θ(x) 6= f(x)} (2)
where θ is a human evaluator, f is a classifier and I is any image.

f : I → {1, 2, ...,K} (3)
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In our work, Out of Distribution Adversarial Attack using Latent Space Poisoning we present
out of distribution images caused by latent space poisoning, which follows the below definition.

Definition 2 (Out of Distribution Adversarial Attack). An out of distribution example is
any image that is element of β =∆ {x ∈ o | o(x) 6= f(x)}
In prior works, θ is chosen to be a human evaluator, τ is test data, and ||.|| is a matrix norm which is
either l∞ or l2 norm. So, o should represent the images which seems realistic to the human evaluator.
As the assumption of traditional attacks, we also adhere to the congruent lines that new image x′
should be similar to original image x but with distinction of working in latent space rather than
image space itself. From this, it should be clear that α ⊂ β. This means our proposed attack is a
generalization of traditional attacks in a more flexible manner where latent vector can be used to
regenerate a smooth image in image space without much visible noise which was earlier controlled
with ε. The work over latent space provides smoothing effect to the human evaluator θ.

3.2 Practical Attack using Latent Space Poisoning

The key to produce adversarial attacks that are out of distribution of training set is to model the set of
legitimate images in the latent space. We do so by training a JointVAE A, a derivative of variational
autoencoders [10]. This is done to map latent space in z ∈ Rm, a set of continuous latent space
variables, and c ∈ Rn, a set of discrete latent variables. This gives meaning to our latent space in
a sense that each latent factor controls a unique aspect about the original image. In practice, such
a latent space is able to model the training data using a fairly accurate decoder which models the
likelihood i.e. Pθ(x|z, c). Here z and c are conditionally independent.

Then a classifier model C1 is chosen, different from the actual classifier C2 put under test, to classify
the generated image, C1(x

′). This classification result produces soft labels giving us information
about similarity of images with other classes in the dataset. For example, if a classifier produces
soft labels to be {A,B, C} → {0.7, 0.2, 0.1}. Then it means that classifier predicts or models the
current input as A to be highly probable with probability of 0.7, 0.2 for B and 0.1 for C. This gives
us an intuition about the actual modelling of the classifier. The assumption about this pre-trained
classifier is that it should be able to classify with high accuracy and low loss. This makes it certain
that modeling of the test classifier will be more or less similar to our trained classifier when used
in combination with label smoothing [20]. This information about soft logits gives us meaningful
insights about the data distribution and we can exploit it by perturbing noise in the latent space in
order to make the soft labels deviate from actual target label in a subtle way. The minute change to
the latent space in our proposed work is to make second most probable label to have equal probability
as the class with highest probability.

Understanding Latent Space Poisoning

Let Aθ(x), Cφ(x) be the variational autoencoder and pre-trained inference classifier respectively. Let
f(x) be the classifier we want to attack. Here, we put our focus on out of distribution adversarial
attack which generate a target image x′ where o(x′) 6= f(x′), where o(.) is a human evaluator. In
order to produce the adversarial examples of this sort, we propose finding an appropriate latent space
vector, z′ (continuous factors) and c′ (discrete factors). This is done by adding some noise to the
predetermined latent space vectors of the input in their continuous and discrete factors. This is done
by firstly finding the distribution of latent space vector for each class in the training set.

D(yi)→ {(µyiz , σyiz ), (µyic , σ
yi
c )} ∀ i ∈ O (4)

where O denotes classes. This distribution function D helps in generating a latent space vector which
when added to the original latent space along with some noise η, produce the desired result regarding
the output image. We have utilized additive noise over multiplicative noise because [10, 23] have
shown in their work that the linear interpolation of images in latent space is smoother and realistic
and is more likely to be similar to the training distribution.

z′ = µz + ηz · σz (5)

c′ = µc + ηc · σc (6)
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The aforementioned noise vector is then produced by a neural network, given the actual latent space
produced by variational autoencoder. The produced latent space, z′ and c′ are then added to the
original latent space vector,

Z = λorg · z + λnoised · z′ (7)
C = λorg · c+ λnoised · c′ (8)

where λorg and λnoised are hyperparameters. Then Z and C are decoded and an adversarial output
is produced. These latent space vectors, Z and C, help in producing out of distribution sample for
a particular class because the point estimates for each class is independent of other classes. Hence
combination of these distributions will output a distribution with different point estimates.

X = N (µx, σ
2
x) , Y = N (µy, σ

2
y) (9)

T = X + Y (10)
T ∼ N (µx + µy, σ

2
x + σ2

y) (11)
The original dataset distribution is the subset of resulting distribution from where adversarial examples
are sampled. Y is the original dataset distribution.

Y ⊂ T (12)

Now this process of generating adversarial samples is optimized by minimizing the loss function
L. This loss function L is designed in such a way that the generated image keeps resemblance with
the original image and minimal pixels are manipulated significantly. This helps in producing high
fidelity adversarial examples. The loss function is a combination of different constraints that affects
the target image.

L =∆ λ0L0 + λ1L1 + λ2L2 (13)
where λ0, λ1 and λ2 are the hyperparameters. The first cost L0 has x̂ as the predicted soft labels and
ŷ is the target soft labels. We manipulate predicted x̂ in such a way that the probability for second
most probable label in the input sample becomes more than or equal to the most probable label in
actual prediction from classifier. So, Pφ(x̂2) ≥ Pφ(x̂1)

L0 =
∑
−wn[yn · log(xn) + (1− yn) · log(1− xn)] (14)

The first cost function encourages that the label with second highest probability is somehow induced
as some pixel changes in the original input such that the classifier changes its predictions and gets
confused between the original class and adversarial class.1. The equation 14 is a Binary Cross Entropy
(BCE) loss which is usually used in multi-label classification. It helps in inferring when there are
2 classes present in the input image. In similar way, it helps to get the essence of 2 classes, one
originally present and other induced class (as a result of adversarial example), in the same input
image.

The second cost function can be any of these two functions given below,

L1 = ||x− x′||2 or ||x− x′||∞ (15)

It encourages that the generated image is as close to the original image as much as possible.

The third cost function is the structural dissimilarity index,

L2 = 1− SSIM(x, x′) (16)

SSIM(x, x′) =
(2uxux′ + c1)(2σxx′ + c2)

(u2
x + u2

x′ + c1)(σ2
x + σ2

x′ + c2)
(17)

c1 = (k1L)
2, c2 = (k2L)

2, L = 2bits per pixel − 1 (18)
where ux, ux′ are the average of all the pixel values of the image x and x′ respectively. σ2

x, σ2
x′ are

the variance of the pixel value of the image x and x′ respectively. σxx′ is the covariance between x
and x′. c1 and c2 are the two variables to stabilize the division with weak denominator. L is dynamic
range of pixel values. It encourages that the spatial correlation among pixels is maintained. Hence
imposing minimal change between adjacent pixels and thereby limiting the case of abrupt changes in
nearby pixels.

1Adversarial class here means the class that we intend the classifier to predict for the given input with
minimal changes.
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4 Experiments

Datasets The datasets used in the experiments are MNIST [13], CelebA [16], and SVHN [21]. Out
of these, MNIST and SVHN are digits dataset, while CelebA is face dataset where we intend to
classify images based on gender. We attack such classification tasks because of less complicated
attributes to identify (such as digit labeling, gender classification) in verifying the results of classifier
and to enable labeling of the generated image by our attack.

Model setting We train JointVAE [4] on all the datasets. We only trained the JointVAE on training
and validation data partition of each dataset. We utilized test dataset for testing our classifier that we
trained to get inference regarding the similarity between different classes. We have utilized ResNet
[7] block in classifier model for CelebA and SVHN dataset while we used Madry architecture [17]
for MNIST classifier.

4.1 Untargeted attack against certified defenses

We here validate that our adversarial attack can bypass certified defense [17]. These defenses show
that with a pre-defined perturbation less than ε, a training example won’t be classified incorrectly.

Setup For each test sample from test partition, we run our attack and generate an adversarial example
for that. Then these generated samples are fed to the target classifier and their predictions are
recorded.

Results Table 1 shows the accuracy of the test classifier after applying our attack. And since our
attack is not image space perturbation attack rather it is latent space perturbation, it is able to fool the
classifier for around 46%− 54% of the samples for MNIST. Similar observations can be inferred for
other datasets as well. Table 2 shows the effect of network size, total parameters = parameters(noise
learner) + parameters(coefficient learner), where the change in network size or trainable parameters
represents changing the noise η learning model and coefficients learning model (learning how much
noise to transfer to the tuning parameter β, which gives further control over noise addition in latent
space). It can be inferred from Table 2 that number of trainable parameters doesn’t affect the success
rate of the attack after a threshold which in MNIST case is around 12K parameters. The effect of α
and β hyperparameters can also be seen from the result where it can be clearly seen that decreasing α
value increases the success rate or decrease the accuracy of the test classifier. denote the best public
results.

Table 1: Results on CelebA, MNIST, SVHN

Datasets Architecture Success rate of our attack Success rate of PGD attack

MNIST Madry Network [17] ∼ 50%± 4% 10.4% (ε = 0.3)
CelebA WideResNet [38] ∼ 46%± 5% 59.9% (ε = 0.03)
SVHN WideResNet [38] ∼ 80%± 6% 20.5% (ε = 0.03)

Table 2: Results on MNIST with hyperparameter tuning

α β Trainable Parameters Accuracy

0.6 0.8 12K ∼ 70%± 4%
0.5 0.8 12K ∼ 69%± 3%
0.3 0.8 12K ∼ 67%± 5%
0.1 0.8 12K ∼ 60%± 4%
0 1 12K ∼ 50%± 4%
0.6 0.8 29K ∼ 70%± 3%
0.5 0.8 29K ∼ 68%± 3%
0.3 0.8 29K ∼ 67%± 3%
0.1 0.8 29K ∼ 58%± 4%
0 1 29K ∼ 60%± 3%

Table 3 shows the actual accuracy of classifier being used for the experiments. Table 3 shows the
robustness and standard accuracy of the classifier where robustness accuracy tells the accuracy of
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classifier trained with adversarial examples. Table 3 also shows inference classifier used by our
training architecture to know the resemblance of input image with other classes as perceived by our
classifier.

Table 3: Accuracy of different classifiers, inference and test classifier

Test Classifier (Attacked) Inference Classifier

Datasets Architecture Standard Accuracy Robust Accuracy Architecture Accuracy

MNIST Madry Network [17] 98.7% 98.4% LeNet [14] 97.5%
CelebA WideResNet [38] 96% 96% ResNet152 [7] 97.5%
SVHN WideResNet [38] 86.45% 85.24% ResNet152 [7] 93.8%

4.1.1 Realistic perception of adversarial samples

Figure 1: Figure illustrates some adversarial example generated from our attack on MNIST given the
original image. The label above figure gives the actual prediction of classifier given input image, and
label below gives the prediction of humans followed by ’->’ with classifier prediction.

Figure 2: Figure illustrates some adversarial example for CelebA dataset. The label above image
gives actual target label and label below the image is the predicted by classifier.

Figure 3: Figure illustrates some adversarial example for SVHN dataset. The label above image gives
actual target label, and label below gives the prediction of humans followed by ’->’ with classifier
prediction.

Most of our generated samples has realistic perception of some digit and this is due to the pre-trained
JointVAE autoencoder used as the decoder in the model always ensures that latent space is translated
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to slightly manipulated image space than original image. This makes the images generated by our
attack realistic and can fool human evaluators in the loop. Figures 1, 2, and 3 are representative of
qualitative results.

4.2 Comparision with PGD

We compare traditional PGD based attacks with our proposed attack. The PGD is a 20-step PGD with
values of ε given in the Table 1. It should be noted that these perturbation results are not comparable
to ours because of the noisy nature of the attack i.e. if we increase ε to a high noise value it becomes
more and more visible to humans that the image is tampered. But in our attack, if we increase the
noise factor η then we are only changing the image to a different image which also seems realistic
because of the nature of translation in the latent space.

We also considered newly proposed GAN based attacks as well for some reference. So, for comparison
to GAN based attacks, [33] is chosen to be targeted attacks, as their results were publicly available
for the datasets, we evaluated our results on. As per [33], it achieves around 84% accuracy over
all datasets on which we evaluated our results on. It is also important to note that these attacks
generate images susceptible for attack from scratch and hence share no resemblance with the actual
test images.

5 Analysis

In this section, we analyze why our threat model causes the classifier model to misclassify the
adversarial samples. As shown in Figure 4, the gradient based attacks learns the noise in the image
space that will translate the adversarial image to cross the decision threshold of the classifier. But in
our attack, we try and add a learnt vector to the latent space representation of the attacked image that
makes its similarity and look more similar to what we intend it to classify. Since this addition of noise
is performed in latent space, the image gets a smoothing effect. Our attack makes use of manifold
unfolding [23]. The autoencoder unfolds the manifolds and makes the resultant linear combination of
latent space vector look realistic and is more likely to fall in original dataset distribution. The figure 4,
gives the idea regarding the realistic translation.

If x1 and x2 are the data points in image space of data distribution Q and f is encoding function and
g is decoding function, the points on the line hα = αf(x1) + (1 − α)f(x2) yields a latent space
vector which when decoded g(hα) looks like a sample from original distribution Q. We perform
our attack in a similar fashion, we try and create a vector which makes the original latent vector of
original image come close to decision threshold between the source image and target distribution.2
In our attack as mentioned in equation 4, instead of sampling another image x2, we create a vector
using equation 5 and 6 and subsequently translate it using,

hαβ = αf(x1) + βf(x2) (19)

This gives us a controlling factor for adjusting the actual adversarial example in image space.

6 Related Works

Some recent attacks have explored the ideas beyond the traditional attacks which introduces perturba-
tions to the image space or pixel space. [39] proposes to map the input from image space to latent
space using GANs [5] and then searching for adversarial examples around it.

Another line of works include attacks which are inclined towards generating adversarial examples
from scratch or noise. They also utilize GAN for learning the latent space but without any reference
point and therefore have exhaustive search space. AdvGAN [37], AdvGAN++ [9], AT-GAN [36],
Defense-GAN [25] and [33] are few works where latent space was learnt using GANs to carry out
learning the distribution of the training set and generate adversarial examples accordingly. It is
imperative to note here that these attacks are different from our work as we have utilized autoencoders
in our work to ensure that the adversarial examples remain in a modified distribution where the

2We refer to the target space as distribution as there are many samples in a particular point which is across the
decision threshold and this is controlled by α and β hyperparameters. These hyperparameters clarifies regarding
how aggressively the original latent vector is translated to the target distribution.
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Figure 4: Illustration of working of classifier in pixel space and latent space. Smoothing effect of the
latent space during interpolation is observed in the figure with contrasting difference in the adversarial
images with respect to interpolation in pixel space or image space.

input images’ latent space are combined with target class (the one with second highest probability in
prediction). This makes our adversarial sampling distribution to be hybrid of the 2 classes.

There are few adversarial attacks which makes use of autoencoders to perform the search in latent
space with a reference point. [3] proposes to fool the classifier by again training the pre-trained
autoencoder to learn the multiplicative and additive noise in the latent space which could flip the
actual prediction of the classifier given the same input image. It is also different from our work
because they learn noise while we targeted the original image with the latent space of the class with
learnt coefficients of variance and noise as shown in equations 5, 6, 7, and 8. Secondly, their work is
based on a white box attack paradigm while our work is based on black box attack. Thus, this gives
our approach transferability over cases where test classifier is unknown.

7 Conclusion

In this paper, we introduced a novel threat model, and proposed adversarial attack where actual
manipulation takes place in latent space or hidden space. As demonstrated in experiments, this attack
beats the current defenses against gradient based attacks (perturbation attacks). Our proposed attack
lies in a gray area between existing perturbation based attacks and GAN based attacks. We take
advantage of working in latent space in order to generate adversarial examples as done in GAN based
attack but we perform this attack on original source image as done in perturbation based attacks. The
widely used technique in optimizing machine learning models relies on empirical risk minimization
[35] however there is a trade-off between standard accuracy and adversarial robustness accuracy [27]
and hence, gives the threat models some leverage against the discriminator models. Therefore our
threat model suggests to create a new kind of training mechanism where importance of representation
learning in latent space is given more importance when training the networks. This will not only
increase the interpretability of the network but also provide inferences regarding where manual-tuning
is required in the network.

8



Broader Impact

In this section, we will describe the broader impact of our research. We will mention both possible
positive (pros) and negative (cons) impacts of our research.

Positive impact AI (Artificial Intelligence) has come a long way in achieving human level intelligence.
It is not only able to perform tasks with superseding accuracy that are trivial for humans, but AI
is now advancing to more complex areas like mathematical equation solving [26], playing games
[28] and beating humans in it. So, now there is a greater need to find the vulnerabilities in these
systems as they are being used in real life and sometimes failure caused by these systems may be
fatal. Therefore, our work is precisely aimed at testing the robustness of the AI, and mitigate the
vulnerabilities in current systems. The vulnerability discussed in the paper gives the researchers a
scope to explore the latent space in depth with representational learning for various tasks rather than
just inspecting the image space or raw data for performing different tasks. Our work also presents
that latent space can help in generating examples in image space that correlate with multiple classes.
Hence, such a technique can be used to develop sketches of criminals by crime and investigation
agencies, where we can ask the identifier to describe the features of the culprit and exploit part based
matching with pre-existing template distribution of genuine faces and develop a facial match based
on the combination of identified facial features to create a latent space representation which will
further help in creating a targeted search space for that particular criminal.

Another practical application of our work can be in data augmentation tasks, where current methods
rely on approaches pertaining to image space but our work provides a more controllable and vast
scheme where we create different samples for training set by searching for user defined standard
deviation around the mean latent space vector. This gives a guided control search aspect to data
augmentation where we can easily fill the gaps of class imbalance and also regularize our model.

Negative impact A vulnerability exploration is just exploitation of the current system and hence our
work can be used to develop fooling mechanisms which may fool the face recognition systems or
may also help in upscaling the deep fake [22] architectures where combination of multiple images
will still output realistic rendition, as it happens in our case.

Ethics From ethics point of view, our work lies in a morally correct area, because as per morals any
vulnerability when reported can be fixed and thereby help in making the systems more secure and
robust against attacks. Therefore, we consider our work to be morally correct and catering to the
societal benefit.
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