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Expectation-Maximization-Aided Hybrid

Generalized Expectation Consistent for Sparse

Signal Reconstruction

Qiuyun Zou, Haochuan Zhang∗, and Hongwen Yang

Abstract

The reconstruction of sparse signal is an active area of research. Different from a typical i.i.d.

assumption, this paper considers a non-independent prior of group structure. For this more practical

setup, we propose EM-aided HyGEC, a new algorithm to address the stability issue and the hyper-

parameter issue facing the other algorithms. The instability problem results from the ill condition of

the transform matrix, while the unavailability of the hyper-parameters is a ground truth that their values

are not known beforehand. The proposed algorithm is built on the paradigm of HyGAMP (proposed

by Rangan et al.) but we replace its inner engine, the GAMP, by a matrix-insensitive alternative, the

GEC, so that the first issue is solved. For the second issue, we take expectation-maximization as an

outer loop, and together with the inner engine HyGEC, we learn the value of the hyper-parameters.

Effectiveness of the proposed algorithm is also verified by means of numerical simulations.

Index Terms

structured sparse signal, expectation propagation, message passing, generalized linear regression.

I. INTRODUCTION

Recently the high-dimensional signal recovery of structured sparse signal of the generalized

linear model involving a linear mixing space and a componentwise mapping channel has a wide

range of applications in many engineering fields such as compressive sensing [1], [2], image

processing [3], and wireless communication [4], [5], [6], etc. To estimate the signal of interest,
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several principles were developed. Among them, the greedy pursuit algorithms such as matching

pursuit (MP) and orthogonal matching pursuit (OMP) [7] can be regarded as a variant of least

square (LS), in which the residual error of each iteration was projected onto an atom or a sub-

hyperplane. A method based on the maximum likelihood principle can be found in [8], where

the sparse Bayesian learning algorithm was proposed by assuming Gaussian prior. Nevertheless,

both of them didn’t utilize the true prior information.

As a solution to this inference problem, the Bayesian estimator can fully use the prior

information. To implement approximate Bayesian inference iteratively, there exists two kinds of

algorithms, i.e., approximate message passing (AMP) [9] and expectation propagation (EP) [10].

AMP and its extensions approximate the loopy belief propagation (LBP) [11] based on bipartite

graph by performing Gaussian approximation and Taylor expansion. The high-dimensional prob-

lem represented by factor graph can be decomposed into a set of smaller problems by delivering

the messages between factor nodes and variable nodes via their edges. On the other hand, the

EP algorithm derived from assumed density filter (ADF) was used to approximate factorable

distribution by minimizing Kullback-Leibler (KL) divergence, also named relative entropy. The

EP algorithm is very close to the vector AMP (VAMP) [12], expectation consistent (EC) [13],

and orthogonal AMP (OAMP) [14]. In [2], Rangan et al. proposed hybrid generaized AMP

(HyGAMP) by splitting the factor graph into two part, in which the standard message passing

was performed in strong edges and the GAMP was run in weak edges (linear mixing). However,

HyGAMP for structured sparse signal has the following limitations. Firstly, HyGAMP fails to

converge when the measurement matrix is non-zero mean and ill-condition. Secondly, they need

to know exactly what value each (hyper-)parameter is (say, the sparse rate ρ). In practice, such

information is difficult to obtain. For instance, in massive connectivity [5], [6], each sparse rate

is determined by an individual user, rather than by a base station or any centralized controller.

In addition, the existing works [15], [16], [17], [18] pertaining to VAMP with hyper-parameter

estimation were not for group sparse signal.

To address these issues, also to investigate more possibilities of the paradigm proposed by

Rangan et al. [2], we in this paper consider the enhancement in two aspects: 1) replacing the

inner engine by a more adaptable generalized expectation consistent (GEC) technique [19],

[20], so that the stability issue could be avoided; 2) embedding the resultant estimator into a

larger framework of expectation-maximization (EM), where the true sparse rate could be learned

iteratively.
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II. PROBLEM FORMULATION

Consider the signal recovery problem below, where x ∈ RN is the signal to recover, y ∈ RM

is the observation, and H ∈ RM×N is the measurement matrix that linearly transforms x into

z = Hx. This z is mapped randomly into y according to the transition distribution of

P(y|z) =
M∏
m=1

P(ym|zm), s.t., z = Hx. (1)

Different from the classical setup of i.i.d. prior, we allow here the prior distribution of x to have

some structured dependency, i.e., dividing the elements of x into K non-overlapping groups,

x = {xk}Kk=1, where
∑K

k=1Nk = N and Nk is the number of elements in the k-th group, we

allow the Nk elements of the k-th group to be arbitrarily dependent within that group, but retain

their independence of any elements from any other groups. In [2], such a structured dependency

was exemplified via group sparsity, and this paper follows that convention. In the group sparsity

context, the activity of random elements {xkj} within the k-th group is controlled by a single

binary indicator ξk ∈ {0, 1}, and that is carried out by: ∀j ∈ {1, . . . , Nk}

P(xkj|ξk) = ξkPX(xkj) + (1− ξk)δ(xkj),

where δ(·) is the Dirac delta function. The indicator ξk itself is a Bernoulli r.v. following P{ξk =

1} = 1− P{ξk = 0} = ρk, with P{·} here denoting the probability of a random event, and ρk

being the sparse rate. Since different groups are (assumed to be) independent, one could choose

a different sparse rate for each group, but for the sake of simplicity, we use w.l.o.g. an uniform

setup: ρ1 = ρ2 = · · · = ρ. In all, it reads

P(x|ξ) =
K∏
k=1

Nk∏
j=1

P(xkj|ξk), s.t., ξk ∼ Bern(ρ).

We are interested in obtaining an approximate to the output of a classical MMSE estimator

for each xkj [21]:

x̂kj =

∫
xkjP(xkj|y)dxkj, (2)

where P(xkj|y) is a marginal posterior distribution of the joint posterior P(x, ξ|y)

P(xkj|y) =
∫

x\kj

∫
ξ

P(x, ξ|y)dξdx\kj, (3)

P(x, ξ|y) ∝ P(y|x, ξ)P(x|ξ)P(ξ), (4)

∝
∫

z

P(y|z)δ(z−Hx)dz
K∏
k=1

Nk∏
j=1

[P(xkj|ξk)P(ξk)] ,
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Fig. 1. A “hybrid” factor graph relating to the (conditional) joint PDF of (4): each gray-shaded node on the l.h.s. represents a

scale-value function or variable, while each black-highlighted node on the r.h.s. represents a vector-value function or variable.

Algorithm 1: EM-Aided HyGEC
0. Input: H, Y

1. Initialize: ρ(0) ∈ (0, 1)

2. Iterate (outer loop, EM):

for t = 0, · · · , T do
E-step (inner engine, HyGEC):

(mlik
x (t),vlik

x (t), ρ̂(t), x̂pos(t)) = HyGEC(ρ(t));

M-step (parameter update):

compute ρ(t+ 1) according to (20) and (19);

until ‖x̂pos(t+ 1)− x̂pos(t)‖ < ε or t > T ;
3. Output: x̂pos and ρ

where x\kj is equal to x except its element xkj . The reason we are interested in an approximate

solution is that obtaining an exact x̂kj is difficult, because of a high complexity in the exact

computation of the marginals, as N,M →∞.

III. THE PROPOSED ALGORITHM: EM-AIDED HYGEC

This section implements the algorithm, referring to the EM-aided HyGEC following a con-

vention of its precedents. The new algorithm is given in Algorithm 1, and before proceeding to

its deduction, we remind the readers of its two technical steps. One is that currently there are

two types of nodes and messages in the network, scalar and vector; the other is the output of

the HyGEC is a point estimate but what the EM require as its input is a distribution function.

The handling of these technical steps constitutes the following subsections.
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A. Inner Engine: HyGEC Using a Postulated Sparse Rate

In Fig. 1, we depict the factor graph relating to the joint distribution P(x, ξ|y) of (4). This

factor graph is not a standard defined one: all its nodes on the left hand side are in a scalar form,

while all nodes on the right hand side are in the vector form. Therefore, messages circulating

between “P(ξ) ↔ ξ ↔ P(x|ξ)” are scalar, and those between “p(x|ξ) ↔ δ(z − Hx) ↔

z ↔ P(y|z)” are vector. For the scalar (left) messages, we adopt the standard sum-product

LBP rules [11] in their updating; for the vector (right) ones, we use the GEC manner which

was also termed as the EP-like rules in [22], [23]. The message updating rule for the middle

variable node x needs some special treatment, in order to serve our purpose of exchanging

information between the two parts. Details on the derivation of HyGEC is presented in Appendix

A. We present only its pseudocode in Algorithm 2. It is also worthy of noting that we also

assume w.l.o.g. the prior PX(xkj) takes a Gaussian form and thus the conditional distribution is

P(xkj|ξk) = ξkN (xkj|0, σ2
X) + (1− ξk)δ(xkj).

B. Outer Iteration: EM to Learn the Actual Sparse Rate

In last subsection, the HyGEC requires a known sparse rate ρ; however, this parameter in

practice is not known yet, and here we rely on EM to learn its true value. EM [24] is an iterative

technique that increases a lower bound on the likelihood function P(y; ρ) for the hyper-parameter

estimate at each iteration. For an arbitrary distribution q(x), we have

lnP(y; ρ) =
∫
q(x) lnP(y; ρ)dx (5)

=

∫
q(x) ln

[
P(x,y; ρ)
q(x)

q(x)

P(x|y; ρ)

]
dx (6)

= Eq
{
ln
P(x,y; ρ)
q(x)

}
︸ ︷︷ ︸

4
= ELBO(q,y;ρ)

+DKL [q||P ]︸ ︷︷ ︸
≥0

, (7)

where Eq{·} denotes the expectation over q(x), DKL refers to the Kullback-leibler (KL) di-

vergence between q(x) and posterior P(x|y; ρ), and “ELBO” is the abbr of evidence lower

bound. Since the KL divergence is non-negative, it implies that ELBO(q,y; ρ) is the low bound

of logP(y; ρ). The EM algorithm can be divided into two steps: E-step) finding a q(x) to

minimize the KL divergence D(q(x)‖P(x|y; ρ)) given the parameter ρ = ρ(t); M-step) finding

the parameter ρ to maximize the ELBO(q,y; ρ) based on q(x, t).
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In E-step of EM algorithm, given the parameter ρ(t), we aim at finding the q(x) to minimize

the KL divergence DKL(q(x, t)‖P(x|y; ρ(t))). To this end, we apply the HyGEC algorithm as

shown in Algorithm 2 to approximate the posterior P(x|y; ρ(t)). As we mentioned before, the

output of HyGEC is point estimate, but what we need here is a density function q(x, t). A bridge

closing this gap is to use the point estimates as parameters of that density, i.e.,

q(x, t) =
P(x; ρ̂(t))N (x|mlik

x (t),vlik
x (t))∫

P(x; ρ̂(t))N (x|mlik
x (t),vlik

x (t))dx
, (8)

where P(x; ρ̂(t)) = {P̂(xkj; ρ̂kj(t)),∀k, j}. Note that the approximate posterior q(x, t) are

independent element-wisely.

In M-step of EM algorithm, given an approximated posterior q(x, t), we update the prior

parameter ρ(t) by maximizing ELBO(q,y; ρ), i.e.,

ρ(t+ 1) = argmax
ρ

ELBO(q,y; ρ). (9)

The ELBO(q,y; ρ) can further be expanded as

ELBO(q,y; ρ) = Eq{lnP(y|x) + lnP(x; ρ)}+ Eq{ln q(x)}, (10)

where P(x; ρ) is expressed as

P(x; ρ) =
K∏
k=1

∫ Nk∏
j=1

P(xkj|ξk)P(ξk)dξk (11)

=
K∏
k=1

[
ρ

Nk∏
j=1

PX(xkj) + (1− ρ)
Nk∏
j=1

δ(xkj)

]
. (12)

Note that only the term Eq{lnP(y|x)} in ELBO(q,y; ρ) is related to ρ. Then (9) can be further

written as

ρ(t+ 1) = argmax
ρ

∫
q(x, t) lnP(x; ρ)dx (13)

= argmax
ρ

K∑
k=1

∫
q(xk, t) lnP(xk, ρ)dxk. (14)

We calculate the partial derivation of lnP(xk; ρ) w.r.t. ρ

∂ lnP(xk; ρ)
∂ρ

=

∏Nk
j=1PX(xkj)−

∏Nk
j=1 δ(xkj)

ρ
∏Nk

j=1PX(xkj) + (1− ρ)
∏Nk

j=1 δ(xkj)
(15)

=


1
ρ

xk 6= 0

− 1
1−ρ xk = 0

. (16)
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We define an Euclidean ball in RNk having the form B = {z|‖z‖ ≤ ε} and it complement

B = RNk\B. From (14), in the limit ε→ 0, we have

1

ρ

K∑
k=1

∫
xk∈B

q(x, t)dxk =
1

1− ρ

K∑
k=1

∫
xk∈B

q(xk, t)dxk, (17)

in which ∫
xk∈B

q(xk, t)dxk =

Nk∏
j=1

1

1 +
1−ρ̂kj(t)
ρ̂kj(t)

N (0|mlik
x,kj(t),v

lik
x,kj(t))

N (0|mlik
x,kj(t),v

lik
x,kj(t)+σ

2
X)

(18)

4
= πk(m

lik
x,k(t),v

lik
x,k(t), ρ̂k(t)). (19)

where mlik
x,k(t) = {mlik

x,kj(t),∀j} and vlik
x,k(t) = {vlik

x,kj(t),∀j}.

From (17), we have

ρ(t+ 1) =
1

K

K∑
k=1

πk(m
lik
x,k(t),v

lik
x,k(t), ρ̂k(t)). (20)

Totally, the EM-aided HyGEC algorithm for structured signal recovery with unknown sparse

rate is summarized in Algorithm 1.

IV. SIMULATION AND DISCUSSION

In this section, the simulations are presented to validate the performance of the proposed

algorithm compared to the existing competing algorithm. We particularize the generalized linear

model (1) as the following quantization model

y = Q(Hx + w), (21)

where w is additive white Gaussian noise (AWGN) with variance σ2
w and Q(·) denotes an analog

to digital converter (ADC). In particular, as the number of quantization bits becomes sufficiently

large, the quantization model reduces to the standard linear model. The closed form of (ẑpos,vpos
z )

can be obtained following a similar procedure as given by [25, Appendix A].

In Fig. 2, we give the iteration versus normalized MSE (NMSE) of x (E{‖x̂−x‖2}/E{‖x‖2})

of HyGEC algorithm (known ρ) and EM-aided HyGEC (EM to learn ρ). The dimensions of

system are set as (M,N,K, ρ) = (1000, 2000, 100, 0.1) and the signal-to-noise rate (SNR) is set

as 10dB. In EM-aided HyGEC, the sparse rate is initialized as ρ = 0.01 and then outer iteration

EM learns the actual sparse rate. As can be seen from Fig.2, the EM-aided HyGEC algorithm

can attain the same performance as HyGEC algorithm when they converge.
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In Fig. 3, the dimensions of system are set as (M,N,K, ρ) = (500, 1000, 100, 0.1) and the

SNR is 12dB. In Fig. 3(a), we present the plot of the condition number κ(H) versus NMSE of x,

where κ(H) = max(eig(H))
min(eig(H))

. Let H = UΣVT, where U and V are independent Haar-distributed

matrices. The non-zero singular values are set as λi+1/λi = %, %M = κ(H), and
∑M

i=1 λ
2
i =M .

From this sub-figure, it can be found that the NMSE performance of the proposed HyGEC

algorithm is equal to that of HyGAMP in low κ(H). In addition, the HyGAMP algorithm fails

to converge in κ(H) > 102, but HyGEC can also converge with its NMSE performance suffering

a degradation. In Fig. 3 (b), we give the plot of the mean of H versus NMSE of x. As can be

seen from sub-figure (b), the HyGEC is relatively insensitive to HyGAMP for H with non-zero

mean.

V. CONCLUSION

This paper considered the signal recovery of structured sparse signal of generalized linear

model in which the activity of each group is decided by a hidden binary variable. To solve

this problem, we proposed a novel algorithm called hybrid generalized expectation consistent

(HyGEC) based on the hybrid factor graph. The hybrid factor graph can be divided into two

parts: traditional factor graph (scalar) and vector factor graph. The sum-product loopy belief

propagation (LBP) is run in traditional factor graph part while the EP manner is implemented

in the vector factor graph part. Additionally, to learn the unknown sparse rate we apply EM

algorithm together with the HyGEC algorithm where the HyGEC is run as the E-step of EM

algorithm. Finally, the simulation results verify that the proposed algorithm holds on more general

regions than the competing HyGAMP algorithm.

APPENDIX A

DERIVATION OF HYGEC

The derivation of messages of part P(ξ)↔ ξ ↔ P(x|ξ) is the same as the LBP part in [5].

We here only give the derivation of messages in vector factor graph part. Using EP update rules

in Fig. 4, we address the following messages defined in Table I. Note that we omit the iteration

time.

µlik(z) ∝ ProjΦ[P(y|z)µpri(z)]

µpri(z)
, (22a)

µlik(x) ∝
ProjΦ

[∫
µpri(x)δ(z−Hx)µlik(z)dz

]
µpri(x)

, (22b)
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Fig. 2. Per-iteration behavior of HyGEC (known ρ) and EM-aided HyGEC (unknown ρ).
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Fig. 3. (a) condition number κ(H) versus NMSE of x; (b) the mean of H versus NMSE of x. The B refers to the number of

ADC bits.

µpri(x) ∝
ProjΦ

[
K∏
k=1

Nk∏
j=1

∫
µξk→j(ξk)P(xkj|ξk)dξkµlik(x)

]
µlik(x)

, (22c)

µpri(z) ∝
ProjΦ

[∫
µpri(x, t)δ(z−Hx)µlik(z)dx

]
µlik(z)

, (22d)
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where the superscript ‘pri’ means approximate prior while ‘lik’ denotes approximate likelihood

function, and

ProjΦ[q(x)] = N (x|m,v) (23)

with m =
∫

xq(x)dx and v =
∫
‖x−m‖2q(x)dx.

It is assumed that each message in EP manner is Gaussian distribution. We first calculate the

term in (22a)

N (z|ẑpos,vpos
z ) = ProjΦ[P(y|z)µpri(z)] (24)

where ẑpos = E{z|mpri
z ,v

pri
z },vpos

z = Var{z|mpri
z ,v

pri
z } with µpri(z) = N (x|mpri

z ,v
pri
z ) and the

expectation over P(y|z)N (z|mpri
z ,v

pri
z )∫

P(y|z)N (z|mpri
z ,v

pri
z )dz

.

By Gaussian reproduction property, from (22a) we have µlik(z) = N (z|mlik
z ,v

lik
z ) where vlik

z =

1 � (1 � vpos
z − 1 � vpri

z ), mlik
z = vlik

z � (ẑ � vpos
z −mpri

z � vpri
z ), where � and � denote the

element-wise multiplication and division, respectively.

We move to the computation of (22b). The projection term in (22b) is

N (x|x̂pos2,vpos2
x ) = ProjΦ[

∫
µpri(x)δ(z−Hx)µlik(z)dz]. (25)

By Gaussian reproduction property, we obtain

Qx =
(
HTDiag(1� vlik

z )H + Diag(1� vpri
x )
)−1

, (26)

x̂pos2 = Qx
(
HTDiag(1� vlik

z )mlik
z + mpri

x � vpri
x

)
, (27)

vpos2
x = diag(Qx), (28)

where diag(A) denotes a vector whose elements are from the diagonal elements of square matrix

A, while Diag(a) denotes a square matrix whose diagonal element is a.

From (22b), we have µlik(x) = N (x|mlik
x ,v

lik
x ) whose mean and variance are given by vlik

x =

1� (1� vpos2
x − 1� vpri

x ),mlik
x = vlik

x � (x̂pos2 � vpos2
x −mpri

x � vpri
x ).

For (22c), we first calculate the following term. For easy of notation, we define

P̂(xkj) =
∫
µξk→j(ξk, t)P(xkj|ξk)dξk (29)

= µξk→j(ξk = 1)PX(xkj) + µξk→j(ξk = 0)δ(xkj) (30)

= ρ̂kjPX(xkj) + (1− ρ̂kj)δ(xkj), (31)



11

xi

¹M!i(xi)

¹i!a(xi) =
Y

b6=a

¹b!i(xi)

xj

fa

x1

xN

xi

¹a!i(xi) =
Proj© [¹i!a(xi) ¢ fa!i(xi)]

¹i!a(xi)

fa!i(xi) =

Z

fa(xi; fxjgj 6=i
)
Y

j 6=i

¹j!a(xj)d fxjgj 6=i

¹N!a(xi)

Message from variable 

node to factor node

Message from factor 

node to variable node

...
...

¹i!a(xi) ¹a!i(xi)

f1

fb

fM

fa

Fig. 4. The message update rules of EP manner [22], [23].

where the definition ρ̂kj = µξk→j(ξk = 1) is applied, which can also be written as

ρ̂kj = 1− 1

1 + exp(LLRξ
k→j)

. (32)

We denote

N (x|x̂pos,vpos
x ) = ProjΦ

[
P̂(x)µlik(x)

]
(33)

where x̂pos = E
{
x|mlik

x ,v
lik
x ; ρ̂

}
,vpos

x = Var
{
x|mlik

x ,v
lik
x ; ρ̂

}
, where the expectation is taken

over P̂(x)N (x|mlik
x ,v

lik
x )∫

P̂(x)N (x|mlik
x ,v

lik
x )dx

with µlik(x) = N (x|mlik
x ,v

lik
x ) and P̂(x) is found in (31).

By (22c), we obtain µpri(x) as N (x|mpri
x ,v

pri
x ), where the mean and variance are given by

vpri
x = 1� (1� vpos

x − 1� vlik
x ), mpri

x = vpri
x � (x̂pos � vpos

x −mlik
x � vlik

x ).

For (22d), we calculate∫
µpri(x, t)δ(z−Hx)µlik(z, t)dx ∝

∫
δ(z−Hx)N (x|x̂pos2,Qx)dx (34)

= N (z|ẑpos1,vpos1
z ), (35)

where the last equation holds by PDF-to-RV lemma1, and

ẑpos1 = Hx̂pos2, (36)

vpos1
z = diag(HQxH

T). (37)

Similarly, from (22d), we obtain vpri
z = 1� (1�vpos1

z −1�vlik
z ), mpri

z = vpri
z � (ẑpos1�vpos1

z −

mlik
z � vlik

z ).

1Let w ∈ Ra and u ∈ Rb be two RVs, and g : Ra → Rb be a generic mapping. Then, u = g(w) if and only if the PDF

P(u) ∝
∫
δ(u− g(w))P(w)dw.
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Algorithm 2: (mlik
x ,v

lik
x , ρ̂, x̂

pos) = HyGEC(ρ)
0. Input: ρ

1. Definition:

P(z|m, v) = P(y|z)N (z|m, v)∫
P(y|z)N (z|m, v)dz

P(x|m, v; ρ̂) = P(x; ρ̂)N (x|m, v)∫
P(x; ρ̂)N (x|m, v)dx

P(x; ρ̂) = ρ̂N (x|0, σ2
X) + (1− ρ̂)δ(x)

2. Init: mpri
z = 0, vpri

z = Pz1, mpri
x = 0, vpri

x = ρ1

3. Iterate:

for t = 1, · · · , T do

ẑpos = E
{
z|mpri

z ,v
pri
z

}
vpos

z = Var
{
z|mpri

z ,v
pri
z

}
vlik

z = 1� (1� vpos
z − 1� vpri

z )

mlik
z = vlik

z � (ẑpos � vpos
z −mpri

z � vpri
z )

Qx =
(
HTDiag(1� vlik

z )H+ Diag(1� vpri
x )
)−1

x̂pos2 = Qx
(
HTDiag(1� vlik

z )mlik
z +mpri

x � vpri
x

)
vpos2

x = diag(Qx)

vlik
x = 1� (1� vpos2

x − 1� vpri
x )

mlik
x = vlik

x � (x̂pos2 � vpos2
x −mpri

x � vpri
x )

x̂pos = E
{
x|mlik

x ,v
lik
x ; ρ̂

}
vpos

x = Var
{
x|mlik

x ,v
lik
x ; ρ̂

}
vpri

x = 1� (1� vpos
x − 1� vlik

x )

mpri
x = vpri

x � (x̂pos � vpos
x −mlik

x � vlik
x )

Qx =
(
HTDiag(1� vlik

z )H+ Diag(1� vpri
x )
)−1

x̂pos2 = Qx
(
HTDiag(1� vlik

z )mlik
z +mpri

x � vpri
x

)
ẑpos1 = Hx̂pos2

vpos1
z = diag(HQxH

T)

vpri
z = 1� (1� vpos1

z − 1� vlik
z )

mpri
z = vpri

z � (ẑpos1 � vpos1
z −mlik

z � vlik
z )

LLRξk←j = log
N (0|mlik

x,kj , σ
2
X + vlik

x,kj)

N (0|mlik
x,kj , v

lik
x,kj)

LLRξk = log
ρ

1− ρ
+

Nk∑
i=1

LLRξk←i

LLRξk→j = LLRξk − LLRξk←j

ρ̂kj = 1− 1

1 + exp(LLRξk→j)
until ‖x̂pos(t+ 1)− x̂pos(t)‖2 < ε or t > T .

3. Output: (mlik
x ,v

lik
x , ρ̂, x̂

pos)
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TABLE I

NOTATION DEFINITIONS FOR MESSAGES

µξk←j(ξk, t) message from P(xkj |ξk) to ξk

µξk→j(ξk, t) message from ξk to P(xkj |ξk)

µpri(z, t) message from z to P(y|z)

µlik(z, t) message from P(y|z) to z

µlik(x, t) message from x to P(x|ξ)

µpri(x, t) message from P(x|ξ) to x

µξ(ξk, t) belief distribution of ξk
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