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Abstract—A novel method which is called the Chebyshev
inertial iteration for accelerating the convergence speed of fixed-
point iterations is presented. The Chebyshev inertial iteration
can be regarded as a valiant of the successive over relaxation
or Krasnosel’skiı̌-Mann iteration utilizing the inverse of roots of
a Chebyshev polynomial as iteration dependent inertial factors.
One of the most notable features of the proposed method is that
it can be applied to nonlinear fixed-point iterations in addition
to linear fixed-point iterations. Linearization around the fixed
point is the key for the analysis on the local convergence rate of
the proposed method. The proposed method appears effective in
particular for accelerating the proximal gradient methods such as
ISTA. It is also proved that the proposed method can successfully
accelerate almost any fixed-point iterations if all the eigenvalues
of the Jacobian at the fixed point are real.

I. INTRODUCTION

A fixed-point iteration

x(k+1) = f(x(k)), k = 0, 1, 2, . . . (1)

is universally used for solving scientific and engineering
problems such as inverse problems [1]. An eminent example
is a gradient descent method for minimizing a convex or non-
convex objective function [2]. Variants of gradient descent
methods such as stochastic gradient descent methods is be-
coming indispensable for solving large scale machine learning
problems. The fixed-point iteration is also widely employed for
solving large scale linear equations. For example, Gauss-Seidel
methods, Jacobi methods, and conjugate gradient methods are
well known fixed-point iterations to solve linear equations [3].

Another example of fixed-point iterations is a proximal
gradient descent method for solving a certain class of con-
vex problems. A notable instance is Iterative Shrinkage-
Thresholding Algorithm (ISTA) [4] for sparse signal recovery
problems. The projected gradient method is also included in
the class of the proximal gradient method.

In this paper, we present a novel method for accelerating the
convergence speed of linear and nonlinear fixed-point iterations.
The proposed method is called the Chebyshev inertial iteration
because it is heavily based on the property of the Chebyshev
polynomials [5]. The proposed acceleration method is closely
related to successive over relaxation (SOR) as well. The SOR
is well known as a method for accelerating Gauss-Seidel and
Jacobi method to solve a linear equation Px = q where P ∈
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Fig. 1. Trajectories for x(k+1) = tanh(Ax(k)): The zigzag line (blue) is
the trajectory of the original fixed-point iteration. The fixed point is (0, 0)T .
Another line (red) is the trajectory of the Chebyshev inertial iteration with
T = 8.

Rn×n [6] . For example, the Jacobi method is based on the
following linear fixed-point iteration:

x(k+1) = f(x(k)) := D−1
(
q − (P −D)x(k)

)
, (2)

where D is the diagonal matrix whose diagonal elements are
identical to the diagonal elements of P . The SOR for the Jacobi
iteration is simply given by

x(k+1) = x(k) + ωk

(
f(x(k))− x(k)

)
, (3)

where ωk ∈ (0, 2). A fixed SOR factor ωk := ω is often
employed in practice. When the SOR factors {ωk} are
appropriately chosen, the SOR-Jacobi method achieves much
faster convergence compared with the plain Jacobi method.

The Chebyshev inertial iteration proposed in this paper can
be regarded as a valiant of the SOR method or Krasnosel’skiı̌-
Mann iteration [7] utilizing the inverse of roots of a Chebyshev
polynomial as iteration dependent inertial factors. This choice
reduces the spectral radius of matrices related to the conver-
gence of the fixed-point iteration. One of the most notable
features of the proposed method is that it can be applied to
nonlinear fixed-point iterations in addition to linear fixed-point
iterations. Linearization around the fixed point is the key for
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the analysis on the local convergence rate of the Chebyshev
inertial iteration.

Figure 1 indicates an example of the Chebyshev inertial
iteration for a two-dimensional nonlinear fixed-point iteration
x(k+1) = tanh(Ax(k)). The initial point is (0.1, 0.2)T . The

matrix A is defined by A :=

(
−0.6929 −0.2487
−0.2870 0.6005

)
. The

length of background arrows is proportional to tanh(Ax)− x.
We can observe that the trajectory of the Chebyshev inertial
iteration (red) straightly reaches the fixed point with fewer
iterations.

In this paper, it will be proved that the proposed method
can successfully accelerate almost any fixed-point iterations if
all the eigenvalues of the Jacobian at the fixed point are real.

II. CYEBYSHEV INERTIAL ITERATIONS

A. Inertial iteration

Let f : Rn → Rn be a differentiable function. Throughout
the paper, we will assume that f has a fixed point x∗ satisfying
x∗ = f(x∗) and that f is a locally contracting mapping around
x∗. Namely, there exists ε(ε > 0) such that ‖f(x)− f(y)‖ <
‖x− y‖ holds for any x, y(x 6= y) ∈ B(x∗, ε) where

B(x∗, ε) := {x ∈ Rn : ‖x− x∗‖ ≤ ε}. (4)

The norm ‖ · ‖ represents Euclidean norm. From these
assumptions, it is clear that the fixed-point iteration

x(k+1) = f(x(k)), k = 0, 1, 2, . . . (5)

eventually converges to the fixed point x∗ if the initial point
x0 is included in B(x∗, ε).

The SOR is a well known technique for accelerating the
convergence speed for linear fixed point iteration such as Gauss-
Seidel method [6]. The SOR (or Krasnosel’skiı̌-Mann) iteration
can be generalized into the inertial iteration for fixed-point
iterations, which is given by

x(k+1) = x(k) + ωk

[
f(x(k))− x(k)

]
= (1− ωk)x(k) + ωkf(x

(k)), (6)

where ωk(k = 0, 1, . . .) is a real coefficient, which is called
an inertial factor. When f is linear and ωk = ω is a constant,
the optimal choice of ω in terms of the convergence rate is
known [3] but the optimization of iteration dependent inertial
factors ωk for nonlinear update functions has not been studied
as far as the authors know.

We here define S(k) : Rn → Rn by

S(k)(x) := (1− ωk)x+ ωkf(x). (7)

It should be remarked that

S(k)(x∗) = (1− ωk)x∗ + ωkf(x
∗) = x∗ (8)

holds for any k. Since x∗ is also the fixed point of S(k), the
inertial iteration does not change the fixed point of the original
fixed-point iteration.

B. Spectral condition

Since f is a differentiable function, it would be natural
to consider the linear approximation around the fixed point
x∗. The Jacobian matrix of S(k)(x) around x∗ is given by
I − ωk(I − J∗) where I represents the identity matrix. The
matrix J∗ is the Jacobian matrix of f at x∗:

J∗ :=


∂f1
∂x1

(x∗1)
∂f1
∂x2

(x∗2) . . .
...

. . .
...

∂fn
∂x1

(x∗1) . . . ∂fn
∂xn

(x∗n)

 , (9)

where f := (f1, f2, . . . , fn)
T and x∗ := (x∗1, . . . , x

∗
n)
T . The

convergence rate of the inertial iteration is dominated by the
eigenvalues of I − J∗. In the following discussion, we will
use the abbreviation B := I − J∗. The next lemma provides
useful information on the range of the eigenvalues of B whose
proof is given in Appendix.

Lemma 1: Assume that the function f is a locally contracting
mapping around x∗ and that all the eigenvalues of J∗ are real.
All eigenvalues of B lie in the open interval (0, 2).

Let us get back to the discussion on linearization around
the fixed point. The function S(k)(x) in the inertial iteration
can be approximated by

S(k)(x) ' S(k)(x∗) + (I − ωkB) (x− x∗) (10)

due to Taylor series expansion around the fixed point1. By
letting x = x(k), we have

x(k+1) − x∗ ' (I − ωkB) (x(k) − x∗). (11)

Applying a norm inequality to (11), we immediately obtain

‖x(T ) − x∗‖ . ρ

(
T−1∏
k=0

(I − ωkB)

)
‖x(0) − x∗‖, (12)

where ρ(·) represents the spectral radius.
In the following argument, we assume periodical inertial

factors {ωk} satisfying ω`T+j = ωj (` = 0, 1, 2, . . ., j =
0, 1, 2, . . . , T − 1) where T is a positive integer. If the spectral
radius satisfies

ρT := ρ

(
T−1∏
k=0

(I − ωkB)

)
< 1, (13)

then we can expect local linear convergence around the fixed
point:

‖x(`T ) − x∗‖ . ρ`T ‖x(0) − x∗‖. (14)

for positive integer `. The important problem is to find
an appropriate set of inertial factors satisfying the spectral
condition (13) to ensure the convergence.

1In this context, we will omit the residual terms such as o(‖x − x∗‖)
appearing in the Taylor series to simplify the argument. More careful treatment
on the residual terms can be found in Appendix.



C. Chebyshev inertial iteration

As described in the previous subsection, the choice of inertial
factors {ωk} is crucial to obtain local convergence of the inertial
iteration. However, the direct minimization of the spectral radius
ρT seems computationally intractable because ρT is nonconvex
with respect to {ωk}. In this subsection, we will show that the
Chebyshev inertial factors defined by

ωk :=

[
λ+ + λ− cos

(
2k + 1

2T
π

)]−1
, k = 0, . . . , T − 1,

(15)
where

λ+ :=
λmax(B) + λmin(B)

2
, (16)

λ− :=
λmax(B)− λmin(B)

2
, (17)

satisfies the spectral condition (13) and can significantly
improve the local convergence rate. The λmin(·) and λmax(·)
represents the minimum and maximum eigenvalues, respec-
tively. The inertial iteration using the Chebyshev inertial factors
is referred to as the Chebyshev inertial iteration hereafter.

The Chebyshev polynomial Ck(x) is recursively defined by

Ck+1(x) = 2xCk(x)− Ck−1(x) (18)

with the initial conditions C0(x) = 1 and C1(x) = x [5]. One
of the significant properties of the Chebyshev polynomial is the
minimality in ∞-norm of polynomials defined on the closed
interval [−1, 1]. Namely, the monic Chebyshev polynomial
21−TCT (x), i.e., the coefficient of leading term is normalized
to one, gives the minimum ∞-norm

max
−1≤x≤1

|21−TCT (x)| = 21−T (19)

among any monic polynomials of degree T . In the following,
we consider the affine transformed monic Chebyshev (ATMC)
polynomial on the closed interval [a, b](a 6= b):

ĈT (x; a, b) := 21−T
(
b− a
2

)T
CT

(
2x− b− a
b− a

)
. (20)

The roots {z0, z1, . . . , zT−1} of the ATMC polynomial
ĈT (x; a, b) are given by

zk :=
b+ a

2
+
b− a
2

cos

(
2k + 1

2T
π

)
, k = 0, . . . , T − 1,

(21)
which are called the Chebyshev roots.

The matrix polynomial
∏T−1
k=0 (I − ωkB) in the spectral

condition (13) corresponds to a polynomial defined on R:

βT (λ) :=

T−1∏
k=0

(1− ωkλ) =

(
T−1∏
k=0

ωk

)
T−1∏
k=0

(
1

ωk
− λ
)
.

(22)
The following analysis is based on the fact that any eigenvalue
of βT (B) =

∏T−1
k=0 (I − ωkB) can be expressed as βT (λ′)

where λ′ is an eigenvalue of B [8].
Our strategy to choose the inertial factor is to let ωk be

the inverse of the Chebyshev root, i.e, ωk = ω̃k := 1/zk
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Fig. 2. The absolute value of β̃T (λ)(T = 2, 4, 6): The minimum and
maximum eigenvalues of B is assumed to be λmin(B) = 0.1 and
λmax(B) = 0.9. The dashed lines represent the values of the upper bound
sech

(
T cosh−1

(
0.9+0.1
0.9−0.1

))
for T = 2, 4, 6.

in order to decrease the absolute value of βT (λ) under the
assumption a := λmin(B) and b := λmax(B). In other words,
we embed the ATMC polynomial ĈT (λ; a, b) into βT (λ) with
expectation such that ĈT (λ; a, b) can provide small |βT (λ)|
due to the minimality of the Chebyshev polynomials. Let

β̃T (λ) :=

T−1∏
k=0

(1− ω̃kλ) . (23)

Since
∏T−1
k=0 (zk − λ) = ĈT (λ; a, b), we have

β̃T (λ) =

(
T−1∏
k=0

1

zk

)
ĈT (λ; a, b) (24)

=
[
ĈT (0; a, b)

]−1
ĈT (λ; a, b), (25)

where z1z2 · · · zT−1 = ĈT (0; a, b).
The following lemma can be immediately derived based on

a property on the Chebyshev polynomials.
Lemma 2: Let ωk = ω̃k for k = 0, 1, . . . , T−1. The absolute

value of β̃T (λ) can be upper bounded by

|β̃T (λ)| ≤ sech
(
T cosh−1

(
b+ a

b− a

))
(26)

for λ ∈ [a, b].
The proof of the lemma is given in Appendix.

Figure 2 presents the plot of the absolute values of β̃T (λ)
for T = 2, 4, 6 under the assumption a = λmin(B) = 0.1 and
b = λmax(B) = 0.9.

It is clear that cosh−1 ((b+ a)/(b− a)) > 0 holds. We thus
have

ρT ≤ max
a≤λ≤b

|β̃T (λ)| = sech
(
T cosh−1

(
b+ a

b− a

))
< 1

(27)



because 0 < sech(αx) < 1 holds for x > 0 and α > 0. This
means that the spectral condition is satisfied when the inertial
factors are set to the inverse of the Chebyshev roots.

These arguments can be summarized as follows.
Theorem 1: Assume that all the eigenvalues of J∗ are

real. Let x(0), x(1), . . . be the point sequence obtained by the
Chebyshev inertial iteration (6). Let δ = C‖x0 − x∗‖ where
C is a positive constant. For ` = 1, 2, 3, . . ., we have

lim
δ→0

‖x(`T ) − x∗‖
‖x(0) − x∗‖

≤
[

sech
(
T cosh−1

(
b+ a

b− a

))]`
, (28)

where a := λmin(B) and b := λmax(B).
The proof of the theorem is given in Appendix. The claim of

the theorem provides an upper bound on the local convergence
rate of the Chebyshev inertial iteration.

D. Acceleration of convergence

In the previous subsection, we saw the spectral radius ρT is
strictly smaller than one when the Chebyshev inertial factors
are applied. We still need to confirm whether the Chebyshev
inertial iteration certainly accelerates the convergence compared
with the convergence rate of the original fixed-point iteration.

Around the fixed point x∗, the original fixed-point iteration
(5) achieves ‖x(k) − x∗‖ ≤ qkorg‖x(0) − x∗‖ where qorg :=
ρ(J∗) < 1. In order to make fair comparison, we here define

qCI(T ) :=

[
sech

(
T cosh−1

(
b+ a

b− a

))]1/T
(29)

for the Chebyshev inertial iteration. From Theorem 1,

‖x(k) − x∗‖ < qkCI‖x(0) − x∗‖ (30)

holds if k is a multiple of T and x(0) is sufficiently close
to x∗. We can show that qCI(T ) is a bounded monotonically
decreasing function. The limit value of qCI(T ) is given by

q∗CI := lim
T→∞

qCI(T ) = exp

(
− cosh−1

(
b+ a

b− a

))
, (31)

by using limx→∞ [sech(αx)]1/x = e−α. In the following dis-
cussion, we will assume that λmin(J∗) = 0 and λmax(J∗) =
ρorg(0 < ρorg < 1). In this case we have a := 1 − ρorg
and b := 1. We can show that, for sufficiently large T , we
have q∗CI < qCI(T ) < ρorg. Figure 3 presents the region
where qCI(T ) can exist. This implies that the Chebyshev
inertial iteration can certainly achieve acceleration of the local
convergence speed if T is sufficiently large and x0 is sufficiently
close to x∗.

III. PROXIMAL ITERATION

In this section, we will discuss an important special case
where f has the form f(x) := g(Ax+ b) that is a composition
of the affine transformation Ax + b and a component-wise
nonlinear function g where A ∈ Rn×n, b ∈ Rn. Note that a
function g : R→ R is applied to x := (x1, . . . , xn)

T ∈ Rn in
component-wise manner as g(x) := (g(x1), . . . , g(xn))

T .
The fixed-point iteration defined by

x(k+1) = g(Ax(k) + b), k = 0, 1, . . . (32)
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Fig. 3. The convergence rate region of qCI(T ): The straight line represents
ρorg and the curve corresponds to q∗CI . For sufficiently large T , qCI(T ) falls
in the area surrounded by the line and the curve.

is referred to as a proximal iteration because this type of
iteration often appears in proximal gradient descent methods
[9]. The proximal iteration is important because many iterative
optimization methods such as projected gradient methods are
included in the class.

A. Condition for real eigenvalues

As we saw, all the eigenvalues of B = I − J∗ need to be
real if we apply the Chebyshev inertial iteration to a fixed-point
iteration.

The Jacobian of f(x) = g(Ax+ b) at the fixed point x∗ is
given by J∗ = Q∗A, where Q∗ = {q∗i,j} ∈ Rn×n is a diagonal
matrix with the diagonal elements

q∗i,i = g′

 n∑
j=1

ai,jx
∗
j + bi

 , i = 1, 2, . . . , n. (33)

It should be remarked that Q∗A is not necessarily symmetric
even when A is symmetric. However, all the eigenvalues of
J∗ = Q∗A are real if the conditions described in the following
theorem are satisfied.

Theorem 2: Assume that g : R → R is a differentiable
function satisfying g′(x) ≥ 0 in the domain of g. If A is a
symmetric full-rank matrix, then each eigenvalue of J∗ = Q∗A
is real.
Theorem 2 provides a sufficient condition for J∗ to have real
eigenvalues.

B. Proximal gradient descent

A proximal iteration including a gradient descent process is
widely used for implementing proximal gradient methods and
projected gradient methods [9] [10]. The proximal operator
proxh(·) : Rn → Rn for the function h : Rn → Rn is defined
by proxh(v) := argminx

(
h(x) + (1/2)‖x− v‖2

)
. Assume

that we want to solve the following minimization problem:

minimize u(x) + v(x), (34)



where u : Rn → R and v : Rn → R. The function u is
differentiable and v is a strictly convex function which is not
necessarily differentiable. The iteration of the proximal gradient
method is given by x(k+1) = proxλv

(
x(k) − λ∇u(x(k))

)
,

where λ is a step size. It is known that x(k) converges to the
minimizer of (34) if λ is included in the semi-closed interval
(0, 1/L] where L is the Lipschitz constant of ∇u.

In the following part of this subsection, we will discuss the
proximal iteration regarding a regularized least square (LS)
problem. Suppose that a symmetric positive definite matrix
M ∈ Rn×n and c ∈ Rn are given. The objective function of a
regularized LS problem can be summarized as U(x)+V (x) :=
xTMx− cTx+ λv(x), where U(x) is the quadratic function
xTMx− cTx and V (x) is a convex function (not necessarily
differentiable) λv(x). The λv(x) is a regularization term and
the constant λ is the regularization constant.

In the following, the proximal operator proxλv(·) is assumed
to be a component-wise function denoted by g(·) := proxλv(·).
Since the gradient of U(x) is ∇U(x) = Mx(k) − c, the
proximal gradient iteration for minimizing U(x) + V (x) is
given by

x(k+1) = g
(
(I − γM)x(k) + γc

)
, (35)

where γ is the step size parameter. Let A := I − γM and
b := γc. The proximal gradient descent process can be recast
as a proximal iteration. Note that the matrix A becomes a
symmetric matrix because I − γM is symmetric.

IV. RELATED WORKS

The SOR method for linear equation solvers [6] is useful
especially for solving sparse linear equations. The convergence
analysis can be found in [3]. For acceleration of gradient
descent (GD) methods, the heavy ball method involving an
inertial or momentum term was proposed by Polyak [11].
Nesterov’s accelerated GD for convex problems is another
accelerated GD [12] with an inertial term. The Chebyshev semi-
iterative method [13], [5] is a fast method for solving linear
equations that employs Chebyshev polynomials for bounding
the spectral radius of an iterative system. By using the recursive
definition of the Chebyshev polynomials, one can derive a
momentum method based on the Chebyshev polynomial [13]
and it provides the optimal linear convergence rate among
the first order method. It can be remarked that the Chebyshev
semi-iterative method cannot be applied to nonlinear fixed-point
iterations treated in this paper.

The Krasnosel’skiı̌-Mann iteration [7] is a method similar
to the inertial iterations. For a non-expansive operator T , the
fixed-point iteration of the Krasnosel’skiı̌-Mann iteration is
given as x(k+1) = x(k) + λ(k)(Tx(k)− x(k)). It is proved that
the point x(k) converges to a point in the set of fixed points
of T if λ(k) ∈ [0, 1] satisfies

∑
k λ

(k)(1− λ(k)) = +∞.
Acceleration of proximal gradient methods is a hot topic

for convex optimization [14]. FISTA [15] is an accelerated
algorithm based on ISTA and Nesterov method [12]. FISTA
and its variants [16] achieves much faster global convergence

speed O(1/k2) compared with that of the original ISTA, i.e.,
O(1/k).

V. EXPERIMENTS

A. Linear fixed-point iteration: Jacobi method

The Jacobi method is a linear fixed-point iteration

x(k+1) = g(Ax(k) + b) = −D−1(P −D)x(k) +D−1q (36)

for solving linear equation Px = q where A := −D−1(P−D),
b := D−1q, and g(x) := x. We can apply the Chebyshev
inertial iteration to the Jacobi method for accelerating the
convergence. Figure 4 shows the convergence behaviors. It
should be remarked that the optimal constant SOR factor [3] is
exactly the same as the Chebyshev inertial factor with T = 1.
We can see that the Chebyshev inertial iteration provides much
faster convergence compared with the plain Jacobi and the
constant SOR factor method. The error curve of the Chebyshev
inertial iteration indicates a wave-like shape. This is because
the error is tightly bounded periodically as shown in Theorem
1, i.e., the error is guaranteed to be small when the iteration
index is a multiple of T .
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Fig. 4. Jacobi method, Constant SOR factor, and Chebyshev inertial iteration:
The linear equation Px = 0 is assumed without loss of generality where
P = I +MTM ∈ R512×512 is a diagonally dominant matrix. Each element
of M follows N (0, 0.032). The minimum and maximum eigenvalues of
B = I − A are given by λmax(B) = 1.922 and λmin(B) = 0.6766,
respectively. The 3 curves represent the errors in Euclidean norm from the
fixed point, i.e., ‖x(k)−x∗‖ where x∗ = 0. The optimal constant SOR factor
is given by ωSOR = 2/(λmin(B) + λmax(B)) = 0.7697 [3].

B. Nonlinear fixed-point iterations

A nonlinear function f = (f1, f2)
T : R2 → R2

f1(x1, x2) := x0.21 + x0.52 , (37)
f2(x1, x2) := x0.51 + x0.22 (38)

is assumed here. Figure 5 (left) shows the error curves as
functions of iteration. We can observe that the Chebyshev
inertial iteration actually accelerates the convergence to the
fixed point. The Chebyshev inertial iteration results in a zigzag
shape as depicted in Fig. 5 (right).
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Fig. 5. Nonlinear fixed-point iteration: The left figure shows the error ‖x(k)−
x∗‖ for the original fixed point iteration and the Chebyshev inertial iterations
(T = 1, 2, 8). The fixed point is x∗ = (2.96, 2.96)T . The minimum and
maximum eigenvalues of B = I − J∗ are λmax(B) = 1.216, λmin(B) =
0.626, respectively. The horizontal axes represents iteration step. The right
figure shows the Chebyshev inertial factors for T = 1, 2, 8 as a function of
the iteration step.
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Fig. 6. Solving a nonlinear equation: The solution of a nonlinear equation
y = x+ tanh(x)(y = (0.1, 0.6)T ) can be found by the fixed point iteration
x(k+1) = y − tanh(x(k)). The fixed point is (0.0500, 0.3045)T . The left
figure indicates the search trajectories of the original fixed-point iteration and
the accelerated iteration by the Chebyshev inertial iteration. The right figure
presents the error from the fixed point.

If the initial point is sufficiently close to the solution, one
can solve a nonlinear equation with a fixed-point iteration.
Figure 6 explains the behaviors of two-dimensional fixed-point
iterations for solving a non-linear equation y = x+ tanh(x).
We can see that the Chebyshev inertial provides much steeper
error curves compared with the original iteration in Fig. 6
(right).

Consider the proximal iteration x(k+1) = tanh(Ax(k))
where A ∈ R512×512. The Jacobian J∗ at the fixed point
is identical to A and the minimum and maximum eigenvalues
of J∗ are 0 and 0.9766, respectively. Figure 7 shows the
normalized errors ‖x(k) − x∗‖/n for the original and the

Chebyshev inertial iterations. This figure also includes the
theoretical values [ρ(J∗)]2k and [qCI(T )]

2k under the condition
a = 0.0234 and b = 1.0. We can observe that the error curves
of the Chebyshev inertial iteration shows a zigzag shape as
well. The lower envelopes of the zigzag lines (corresponding to
periodically bounded errors) and the theoretical values derived
from Theorem 1 have almost identical slopes.
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Fig. 7. Nonlinear fixed-point iteration in a high dimensional space: The
fixed-point iteration is x(k+1) = tanh(Ax(k)) and A is a random Gram
matrix A = MTM of size 512 × 512. Each element of M follows i.i.d.
Gaussian distribution with mean zero and standard deviation 0.022. The solid
lines represent the normalized squared error ‖x(k) − x∗‖2/n for the original
fixed point iteration and the Chebyshev inertial iterations (T = 2, 4, 8). The
fixed point is the origin. The doted lines (Theory) indicate ρ(J∗)2k (original),
and [qCI(T )]

2k where T = 2, 4, 8, and a = 0.0234, b = 1.0.

C. ISTA for sparse signal recovery

ISTA [4] is a proximal gradient descent method designed
for sparse signal recovery problems. The problem setup of the
sparse signal recovery problem discussed here is as follows.
Let x ∈ Rn be a source sparse signal. We assume each element
in x = (x1, . . . , xn)

T follows i.i.d. Berrnoulli-Gaussian
distribution, i.e, non-zero elements in x occur with probability
p and these non-zero elements follow the normal distribution
N (0, 1). Each element in a sensing matrix M ∈ Rm×n is
assumed to be generated randomly according to N (0, 1). The
observation signal y is given by y =Mx+w, where w ∈ Rm
is an i.i.d. noise vector whose elements follow N (0, σ2). Our
task is to recover x from y as correct as possible. This problem
setting is also known as compressed sensing [17], [18].

A common approach to tackle the sparse signal recovery
problem described above is to use Lasso formulation [19], [20]:

x̂ := arg min
x∈Rn

1

2
‖y −Mx‖2 + λ‖x‖1. (39)

ISTA is the proximal gradient descent method for minimizing
the Lasso objective function. The fixed-point iteration of ISTA
is given by

rt = st + βMT (y −Mst), (40)
st+1 = η(rt; τ), (41)



where η(x; τ) is the soft shrinkage function defined by
η(x; τ) := sign(x)max{|x| − τ, 0}.
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Fig. 8. Reconstructed signals by ISTA: The system parameters are n =
512,m = 256, p = 0.1, σ = 0.1. The left and right figures indicate the
recovered signal after 200 iterations of ISTA and Chebyshev-ISTA, respectively.
The source sparse signal x is the same in both figures.

The softplus function sp(x) is defined as

sp(x) := (1/β) log(1 + exp(βx)). (42)

In the following experiments, we will use a differentiable soft
shrinkage function defined by

η̃(x; τ) := sp(x− τ) + sp(−(x+ τ)) (43)

with β = 100 instead of the soft shrinkage function η(x; τ)
because η̃(x; τ) is differentiable.

Let G = MTM . The step size parameter and shrinkage
parameter are set to γ = τ = 1/λmax(G). We are now ready
to write the ISTA iteration (40), (41) in the form of proximal
iteration:

x(k+1) = η̃(Ax(k) + b; τ), (44)

where A := I − γG and b := γMT y.
Figure 8 presents recovered signals by the original ISTA

and Chebyshev-ISTA. The reconstructed signals are the results
obtained after 200 iterations. It can be immediately observed
that Chebyshev-ISTA provides sparser reconstructed signal
than that of the original ISTA. This is because the number of
iterations (200 iterations) is not enough for the original ISTA
to achieve reasonable reconstruction.

Figure 9 indicates the averaged error for 1000 trials. The
Chebyshev-inertial ISTA (T = 8) requires only 250–300
iterations to reach the point where the original ISTA achieves
with 3000 iterations. The convergence speed of the Chebyshev-
inertial ISTA is almost comparable to that of FISTA but the
proposed scheme provides smaller squared errors when the
number of iterations is less than 70. This result implies that
the proposed scheme may be used for convex or non-convex
problems as an alternative to FISTA and the Nesterov’s method.
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Fig. 9. Sparse signal recovery by ISTA: n = 512,m = 256, p = 0.1, σ =
0.1. The observation vector is modeled by y =Mx+w where M ∈ Rm×n.
The normalized squared error ‖x(k) − x‖2/n is averaged over 1000 trials.
As a reference, the error curve of FISTA [15] is also included.

D. Modified Richardson iteration for deblurring

Assume that a signal x ∈ Rn is distorted by a nonlinear
process y = f(x). The modified Richardson iteration [3] is
usually known as a method for solving a linear equation but it
can be applied to solve a nonlinear equation. The fixed-point
iteration is given by

x(k+1) = x(k) + ω(y − f(x(k))), (45)

where ω is a positive constant. Figure 10 shows the case where
f expresses a nonlinear blurring process to the MNIST images.
We can see that the Chebyshev inertial iteration can accelerate
the convergence as well.

VI. CONCLUSION

A novel method for accelerating the convergence speed of
fixed-point iterations is presented in this paper. The analysis
based on linearization around a fixed point unveils the local
convergence behavior of the Chebyshev inertial iteration.
Experimental results shown in the paper support the theoretical
analysis on the Chebyshev inertial iteration. For example,
the results shown in Fig. 7 indicate excellent agreement
with the experimental results. The proposed method appears
effective in particular for accelerating the proximal gradient
methods such as ISTA. The proposed scheme requires no
training process to adjust the inertial factors compared with
the deep-unfolding approach [21], [22] for accelerating ISTA.
The Chebyshev inertial iteration can be applied to many
iterative algorithms with fixed-point iterations without requiring
additional computational cost.
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Fig. 10. Nonlinear deblurring by modified Richardson iteration: The blurring
process is the following: A 7×7 convolutional kernel with the value 0.1 except
for the center (the value 1.5) is first applied to a normalized MNIST image in
[0, 1]28×28 and then a sigmoid function is applied to the convoluted image.
The parameter ω is set to 0.8. (A) Original image, (B) Blurred image, (C)
Recovered image by Richardson iteration with the Chebyshev inertial iteration
(number of iterations is 128, T = 8, λmin(B) = 0.18, λmax(B) = 0.98).
The graph represents the normalized errors ‖x(k) − x‖2/282 of the original
fixed-point iteration and the accelerated iteration.
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APPENDIX

A. Proof of Lemma 1

Since any eigenvalue of J∗ is real, all the eigenvalues of
B = I − J∗ are also real. Because f is a locally contracting
mapping, ρ(J∗) < 1 should be satisfied. This means that
λmin(J

∗) > −1 and λmax(J
∗) < 1. It is thus clear that

λmin(B) > 0 and λmax(B) < 2 are satisfied.

B. Proof of Lemma 2

From the definition of the ATMC polynomial, we have

β̃T (λ) =
[
ĈT (0; a, b)

]−1
ĈT (λ; a, b) (46)

=
CT (λ; a, b)

CT (0; a, b)
(47)

=
CT

(
2λ−b−a
b−a

)
CT

(
− b+ab−a

) . (48)

Due to the property of the Chebyshev polynomial such that
|CT (x)| ≤ 1 for x ∈ [−1, 1], the absolute value of the
numerator is bounded as∣∣∣∣CT (2λ− b− a

b− a

)∣∣∣∣ ≤ 1 (49)

for a ≤ λ ≤ b. By using this inequality, the absolute value of
β̃T (λ) can be upper bounded by

|β̃T (λ)| ≤
∣∣∣∣CT (−b+ a

b− a

)∣∣∣∣−1 (50)



for a ≤ λ ≤ b.
It is known that the Chebyshev polynomial can be expressed

as Ck(x) = (−1)k cosh(k cosh−1(−x)) if x ≤ −1 [5]. By
using this identity, the absolute value of β̃T (λ) can be upper
bounded by

|β̃T (λ)| ≤
∣∣∣∣CT (−b+ a

b− a

)∣∣∣∣−1
= sech

(
T cosh−1

(
b+ a

b− a

))
, (51)

where 1/ cosh(x) = sech(x).

C. Proof of Theorem 1

Expanding S(k)(x) around the fixed point x∗, we have

S(k)(x) = S(k)(x∗)+(I − ωkB) (x−x∗)+o(‖x−x∗‖). (52)

By substituting x = x(k), the above equation can be rewritten
as

x(k+1)−x∗ = (I − ωkB) (x(k)−x∗)+o(‖x(k)−x∗‖). (53)

Let

ξ := max
0≤k≤T−1

‖x(k) − x∗‖
‖x(0) − x∗‖

(54)

and δ := ξ‖x(0)−x∗‖. Note that ξ is finitely bounded because
of the definition of the Chebyshev inertial factors. From these
definitions, we have

o(‖x(k) − x∗‖)
δ

→ 0. (55)

for k = 0, 1, . . . , T − 1 if δ → 0. Replacing o(‖x(k) − x∗‖)
by o(δ), we obtain

x(k) − x∗ = (I − ωk−1B) (x(k−1) − x∗) + o(δ) (56)

for k = 1, 2, . . . , T . This equation leads to

x(T ) − x∗ =

(
T−1∏
k=0

(I − ωkB)

)
(x(0) − x∗) + o(δ). (57)

By taking the norm of the both sides, we have

‖x(T ) − x∗‖ =

∥∥∥∥∥
(
T−1∏
k=0

(I − ωkB)

)
(x(0) − x∗) + o(δ)

∥∥∥∥∥
≤

∥∥∥∥∥
(
T−1∏
k=0

(I − ωkB)

)
(x(0) − x∗)

∥∥∥∥∥+ ‖o(δ)‖
≤

∥∥∥∥∥
(
T−1∏
k=0

(I − ωkB)

)∥∥∥∥∥∥∥∥(x(0) − x∗)∥∥∥+ ‖o(δ)‖
= ρ

(
T−1∏
k=0

(I − ωkB)

)∥∥∥(x(0) − x∗)∥∥∥+ ‖o(δ)‖ ,
(58)

where the first inequality is due to the triangle inequality and the
second inequality is due to sub-multiplicativity of the operator
norm. By dividing both sides by ‖x(0) − x∗‖, we get

lim
δ→0

‖x(T ) − x∗‖
‖x(0) − x∗‖

≤ ρ

(
T−1∏
k=0

(I − ωkB)

)
. (59)

Since the inertial factors ωk are periodical, we can apply the
same argument for k > T and obtain

lim
δ→0

‖x(`T ) − x∗‖
‖x((`−1)T ) − x∗‖

≤ ρ

(
T−1∏
k=0

(I − ωkB)

)
, (60)

where ` is a positive integer. By using the inequality (60), we
have

lim
δ→0

‖x(`T ) − x∗‖
‖x(0) − x∗‖

= lim
δ→0

(
‖x(`T ) − x∗‖
‖x((`−1)T ) − x∗‖

‖x((`−1)T ) − x∗‖
‖x((`−2)T ) − x∗‖

· · ·
)

≤ ρ

(
T−1∏
k=0

(I − ωkB)

)`
. (61)

From this inequality, we immediately obtain the claim of the
theorem.

D. Proof of Theorem 2

From the assumption g′(x) ≥ 0, Q∗ is a diagonal matrix
with non-negative diagonal elements. Since A ∈ Rn×n is a
full-rank matrix, the rank of Q∗A coincides with the number
of non-zero diagonal elements in Q∗ which is denoted by r.

Darazin-Hynsworth theorem [23] presents that the necessary
and sufficient condition for X ∈ Cn×n having m(≤ n)
linearly independent eigenvectors and corresponding m real
eigenvalues is that there exists a symmetric semi-positive
definite matrix S with rank m satisfying XS = SXH . The
matrix XH represents Hermitian transpose of X . As we saw,
Q∗ is a symmetric semi-positive definite matrix with rank r.
Multiplying Q∗ to Q∗A from the right, we have the equality

(Q∗A)Q∗ = Q∗(AQ∗) = Q∗(Q∗TAT )T = Q∗(Q∗A)T ,
(62)

which satisfies the necessary and sufficient condition of
Darazin-Hynsworth Theorem. This implies that Q∗A has r
real eigenvalues.
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