2106.08685v1 [cs.SD] 16 Jun 2021

arxXiv

Drum-Aware Ensemble Architecture for Improved
Joint Musical Beat and Downbeat Tracking

Ching-Yu Chiu, Student Member, IEEE, Alvin Wen-Yu Su, and Yi-Hsuan Yang, Senior Member, IEEE

Abstract—This paper presents a novel system architecture that
integrates blind source separation with joint beat and down-
beat tracking in musical audio signals. The source separation
module segregates the percussive and non-percussive components
of the input signal, over which beat and downbeat tracking
are performed separately and then the results are aggregated
with a learnable fusion mechanism. This way, the system can
adaptively determine how much the tracking result for an input
signal should depend on the input’s percussive or non-percussive
components. Evaluation on four testing sets that feature different
levels of presence of drum sounds shows that the new architecture
consistently outperforms the widely-adopted baseline architecture
that does not employ source separation.

Index Terms—Beat/downbeat tracking, source separation.

I. INTRODUCTION

EATS and downbeats, usually referred to as the sequence

of times to tap to when listening to a piece of music, are
fundamental information for analyzing and understanding mu-
sic [1]-[S]. Besides being important in its own right, automatic
beat and downbeat tracking holds downstream applications in
tasks such as music transcription [6]], structural segmentation,
automatic accompaniment [7]], and music generation [§]. As
such, beat/downbeat tracking has been an important topic in
signal processing and music information retrieval. And, along
with the development of deep learning based techniques, the
performance of beat/downbeat tracking has been improved
greatly over the recent years [9]—[15].

Research on blind monaural source separation, which con-
cerns with segregating the sound sources involved in a monau-
ral audio recording, has also seen remarkable progress in
recent years thanks to deep learning [[16]—[19]. Although not
yet widely noted in recent work, we conjecture that source sep-
aration is mature enough to be integrated to a beat/downbeat
tracking model, with the parameters of both optimized jointly,
to improve the performance of the latter. We are in par-
ticular interested in the case of using a source separation
module that separates an input audio to merely two streams—
a “drum” component and a “non-drum” component—and then
learning to track beats and downbeats also over the resulting
two streams, which are supposed to have the same metrical
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Fig. 1. Overview of the proposed drum-aware ensemble architecture.

structure as the original input. The rationale behind is that,
with or without the drum sounds, human can steadily tap to
a song by switching their attention between the percussive
and non-percussive parts [20]. Presenting not only the original
input but also the separated components to the machine allows
it to develop specialized trackers for three types of inputs
(i.e., original mixture, drum and non-drum), whose predictions
can be fused later on adaptively depending on the acoustic
characteristics of the input (see Fig. [T] for an illustration and
Section [III] for details). Doing so endows the machine with the
ability to shift its attention to non-conventional parts of the
music, and may in turn improve its tracking accuracy across
signals that feature different usages of the drum sounds.

It is a recurring observation (e.g., [11]) that the performance
of beat/downbeat tracking can vary a lot across different test
sets. We conjecture that this is partly because the drum sounds
can play fairly different roles in different songs. For example,
while acting as a timekeeper in many cases (e.g., in Pop and
Rock), drum sounds can be more creative in Jazz and Funk,
while be absent in classical or choral music [21]. Using a
single network to fit it all, as done in many recent work (e.g.,



[O, [22]]), may lead to a model that relies on features that
do not necessarily present in all types of audio signals. While
there are many other factors that can limit the performance
of beat/downbeat tracking (e.g., the presence of local tempo
changes [12], [23]), the impact of the versatile role of the
drum sounds has not been much studied in the literature, to our
best knowledge. It is therefore our goal to quantify this factor.
Accordingly, the evaluation of the proposed model architecture
is carried out using four test sets that are large enough, and that
feature different levels of presence of drum sounds, including
a new dataset of classical piano music proposed lately [24]], as
listed in Table[l] Three of the four test sets are kept completely
unseen to our training scheme.

We implement our source separation and beat/downbeat
tracking modules based on the bidirectional long-short term
memory (BLSTM) architectures of the respective SOTA, the
Open-Unmix model [16] and the RNNDownBeatProcessor of
the Madmom library [9], [[10]. We open source our code at
https://github.com/SunnyCY C/drum-aware4beat.

II. RELATED WORK

Early work on beat/downbeat tracking tends to target on a
one specific genre or style at a time with in-depth analysis
of the signal properties [4], [23]], [25]. For example, the work
from Goto and Muraoka [26]]-[28]] presented a series of signal
analysis methods for beat tracking in music with or without
drum sounds. Harmonic-percussive source separation methods
were also adopted to enhance the performance of dynamic
programming-based beat tracking models [29], [30].

In more recent years, researchers began to focus on building
systems capable of dealing with different kinds of music, via
either feature or model design [31f]. The multi-model approach
used to be mainstream. For example, both Durand et al. [32],
[33] and Krebs er al. [34] tried to improve the performance and
robustness of downbeat tracking with multiple complementary
musical features that are fed to independent neural network
modules, using the average of these modules to yield the
activation functions for the final postprocessing stage. For
beat tracking, Bock er al. [2]] also proposed a system that
combines multiple recurrent neural networks specialised on
certain musical styles with a model switcher.

While beat and downbeat tracking used to be treated as
separate tasks, multi-task models that jointly estimate beat,
downbeat, and even also tempo, have become popular due to
the work of Bock et al. [9], [[12], [22]. Joint beat/downbeat
tracking models proposed since then tend to be a single model
that aims to fit all the musical genres. Under the single-model
framework, researchers employed data augmentation to deal
with unseen or unpopular type of data [[12], [35].

The proposed model can be viewed as a multi-task multi-
model system that uses learnable drum separation to divide the
joint estimation of beats and downbeats in a signal into sub-
problems, conquer them in parallel, and then fuse the result.
This divide-and-conquer idea, which has not been explored
before in deep learning based beat/downbeat tracking to our
best knowledge, can be easily integrated with any existing
models, such as the BLSTM-based model [9] adopted here.

TABLE I
THE ADOPTED DATASETS. THOSE ON THE TOP ARE SPLIT INTO 80%, 10%,
10% FOR TRAINING, VALIDATION, AND TESTING, WE REFER TO THE
UNION OF THE TEST SPLITS AS “MERGED.” THE BOTTOM THREE
DATASETS ARE KEPT TOTALLY UNSEEN AS TEST SETS. THE RATE ON THE
LAST COLUMN SHOWS THE PERCENTAGE OF FRAGMENTS WITH
PERCUSSIVE SOUNDS PER DATASET (SEE SECTION [[V-A]FOR DETAILS).

Dataset # song d thal Drum

uration  presence
RWC Classical [36] 54 5h 19m 0%
RWC Jazz [36] 50 3h 42m 29.8%
RWC Music Genre [37]] 100 7h 20m 39.3%
Ballroom [[1], [38] 685 5h 57m 59.1%
Hainsworth [39] 222 3h 19m 65.0%
GTZAN [40], [41] 999 8h 20m 71.2%
Carnatic [42] 176 16h 38m 72.8%
Beatles [43] 180 8h 09m 75.8%
RWC Popular [36] 100 6h 47m 89.5%
Robbie Williams [44] 65 4h 31m 93.5%
Merged (10% of the above datasets) \ 263 6h 30m 72.7%
ASAP [24] 520 48h 07m 0%
Rock [45] 200  12h 53m 83.2%
HIDB [46] 235 3h 19m 99.2%

III. PROPOSED METHODS

Figure || depicts the proposed model architecture for joint
beat and downbeat tracking. As shown on the right hand side
of the figure, the model comprises four modules: feature sep-
aration, beat/downbeat tracking, fusion, and post processing.
From the result of feature separation, which performs source
separation in a feature domain, the model uses an ensemble of
three beat trackers to get the activation likelihoods of beats,
downbeats, and non-beats for the input audio mixture, the
drum, and non-drum parts respectively. The fuser aggregates
the result from the three trackers (optionally with a two-stage
fusion method; see later), and then a postprocessing module,
implemented as a hidden Markov model (HMM) [10], makes
the final beat and downbeat prediction.

While we follow the BLSTM architectures of Open-Unmix
[16]] and RNNDownBeatProcessor [9] for the first two modules
of our model, the parameters of these two modules, as well as
those of the third fuser module, are all to be learned from the
training set. Specifically, the loss of all these three modules are
detached so that the parameters of each module are optimized
using its own training loss function. All the three beat trackers
(i.e. mixture, drum, non-drum) are independently supervised
by the same set of beat/downbeat annotations for each song
in the training set, in the light that the corresponding audio
signals share the same metrical structure.

For the last module, we use the HMM available in Madmom
[10], with the hyperparameters tuned using our validation set.

A. Feature Separation

The input audio is firstly represented by the combination of
three magnitude spectrograms and their first-order derivatives
with different window sizes following [9]. This representation,
dubbed the mixture feature in Fig.[T] is then fed to a drum/non-
drum source separation module with a three-layer BLSTM
architecture akin to the Open-Umix (OU) model [16] to gen-
erate the drum and non-drum features by masking. The feature
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separation module is supervised by the mean squared error
between the features it produced and the features calculated
from the reference drum and non-drum audio computed in
advance by another source separation library named Spleeter
[17]. The officially pretrained Spleeter was trained on a large
private dataset and was claimed to outperform the officially
pretrained OU. We use the officially pretrained Spleeter for
preparing the supervisory drum and non-drum audio signals,
instead of adopting its fully-convolutional model architecture
for our own feature separation module, as the recurrent neural
network based architecture adopted by OU can more easily
deal with variable-length audio signals at the inference time.

B. Parallel Beat/Downbeat Trackers

It happens that the RNNDownBeatProcessor of Madmom also
has a three-layer BLSTM architecture [10]. We implement
such an architecture on our own following the referenced
publication [9]. We use the same BLSTM architecture for
our three trackers, which take as input the mixture feature,
drum feature, and non-drum feature respectively. They each
produces a 3 x T" matrix indicating the activation likelihood of
beat, downbeat, and “non-beat” of each of the T' time frames,
shown as separate rows in each 3 x 8 matrix in Fig. [T](T' = 8
here). Namely, each tracker tracks the presence of beats and
downbeats jointly (and with separate activation functions),
regarding the rest as the non-beat. Cross-entropy loss is applied
with an empirically determined weight (67:200:1) to deal with
the class imbalance among beat, downbeat, and non-beat.

C. Fusion Mechanism

At the fusion stage, the activation functions from the parallel
trackers are combined and used as input to the fuser tracker,
also a three-layer BLTSM but with smaller input feature size
and less hidden units (10 units in our implementation). The
output of the fuser is also a 3 x T" matrix. We implement two
variants of the fuser. The first variant, DA1 (drum-aware en-
semble), simply concatenates the output of the three individual
trackers as its input. The second variant, DA2 (two-stage DA),
uses additionally the output of the last BLSTM layer of the
preceding trackers as input, with an enlarged number of 25
hidden units in the fuser tracker. We assume DA2 may work
better as it has access to not only the final output but also the
intermediate states of the individual trackers.

IV. EXPERIMENTAL SETUP
A. Datasets

Table [I] shows the datasets adopted in our experiment. We use
the first ten datasets to train our models. Specifically, each
of these datasets is randomly split into 80%, 10%, 10% to
become part of the training, validation, and the first test set
called “Merged.” The last three datasets are kept as completely
unseen test sets, including ASAP—a drum-less collection of
classical piano music [24]], Rock—200 of the Rolling Stone
magazine’s list of the “500 Greatest Songs of All Time”
[45], and HIDB—a drum-heavy dataset comprising Hardcore,
Jungle and Drumé&Bass music excerpts [40].
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To have an idea of the difference in drum usage in these
datasets, we also present in Table [I| the “drum presence” rate
(in %) calculated by the following ad-hoc method. For each
song, we employ the officially pretrained Spleeter [17] to
derive its drum stem. Then, we compute the mean value of the
drum stem’s absolute magnitude (ABSM) in the time domain,
and consider the song as a drum-less song if the ABSM is less
than 0.01, an empirically set threshold. The drum presence rate
is defined as the percetage of songs in a dataset that are not
drum-less. We can see that the datasets differ a lot in this rate.

B. Baselines

We implement the following baselines or ablated variants to
validate the effectiveness of the proposed ensemble architec-
ture, which is denoted as fuser in Table

o baseline: The widely-adopted architecture comprising a
single BLSTM-based beat/downbeat tracker and an HMM
postprocessing module, implemented following Madmom
[9]. Namely, neither source separation nor fusion is used.
Similar to [34], we find increasing the layers of BLSTM
not helpful and retain the three-layer BLSTM setting.

o mix, drum, nodrum: The single-headed cases where we
train the proposed model as usual yet use the output of
only one of the individual trackers (i.e., mixture tracker,
drum tracker, or non-drum tracker, respectively) as input
to the HMM to get the final estimate at evaluation time.
This is to validate the advantage of fusion.

« bagging: We implement a simple fuser that takes the av-
eraged activation of the three individual trackers, instead
of using the sophisticated BLSTM-based fusion.

C. Model Training & Evaluation Metrics

Our models are trained with the Lookahead Adam optimizer
[47] with 10~2 learning rate. If no improvement on validation
loss can be observed for 20 epochs, we reduce the learning
rate by a factor of five. To reduce the influence of random
initialization, we repeat the training of all models for five
times and report the averaged evaluation results. Following the
convention of beat/downbeat tracking (e.g., [12]), we report
the F-measure (F1) with a tolerance window of +70 ms [48]].

V. RESULTS AND DISCUSSION

Table [lI| shows the evaluation result. Looking at the first row
shows that the Madmom-like baseline already performs quite
well across the test sets, especially for beat tracking. The F1
scores degrade and exhibit larger variation across the datasets
for downbeat tracking, suggesting downbeats are in general
more difficult to track than beats. Both tasks are challenging on
ASAP, which is expected as our training set does not contain
many classical music pieces.

The next block of rows in Table [[IL namely the result of the
DA1 based models, shows that the proposed ensemble model
DA _fuser consistently outperforms its ablated versions across
different test sets in both beat & downbeat tracking, validating
the effectiveness of the proposed design. Compared to the
result of the baseline, we see salient performance gain in beat



TABLE II
EVALUATION RESULT (IN F1 SCORE) ON THE TEST SETS; THE THREE BEST RESULT IN EACH COLUMN UNDERLINED, AND THE BEST ONE ITALICIZED.
DAGGERS (OR TWO DAGGERS) DENOTE THAT THE MODEL HAVE PARTIALLY (OR COMPLETELY) SEEN THE SPECIFIC TEST SETS. BOLDED ONES INDICATE
THE ONE-TAILED T-TEST RESULT FOR THE PERFORMANCE ADVANTAGE OVER BASELINE IS SIGNIFICANT (P-VALUEE<O0.05).

Model Beat Downbeat

HJDB Merged  Rock ASAP [ Mean | HIDB Merged  Rock ASAP [ Mean
Baseline (our implementation of [9]) | 0.886 0.884 0.908 0.585 0.762 | 0.699 0.715 0.842 0.399 0.599
Madmom API [9] 0997 09047 09577 0468 | 0746 | 09747 073f] 09277 0275 | o616
DA1 mix 0.875 0.876 0.901 0.584 0.756 | 0.656 0.713 0.817 0.396 0.585
DAl drum 0.897 0.847 0.891 0.512 0.722 | 0.720 0.669 0.768 0.273 0.528
DAl nodrum 0.759 0.854 0.878 0.578 0.724 | 0.487 0.671 0.814 0.393 0.542
DA1 bagging 0.875 0.875 0.907 0.574 0.753 | 0.754 0.736 0.844 0.383 0.608
DAL fuser 0.914 0.894 0.907 0.587 0.770 | 0.769 0.743 0.842 0.402 0.620
DA2 mix 0.879 0.877 0.901 0.587 0.759 | 0.651 0.701 0.831 0.403 0.587
DA2 drum 0.906 0.847 0.886 0.522 0.727 | 0.750 0.666 0.775 0.273 0.534
DA2 nodrum 0.775 0.863 0.885 0.584 0.732 | 0.521 0.699 0.813 0.402 0.558
DA2 bagging 0.904 0.880 0.910 0.582 0.764 | 0.802 0.739 0.853 0.387 0.621
DA2 fuser 0.914 0.891 0.911 0.596 0.774 | 0.775 0.743 0.853 0.415 0.628

and downbeat tracking for HIDB (+7.0% relative improvement TABLE III

in downbeat), which comprises songs from musical genres that
are seldom seen in the training set. Looking at the performance
of the individual trackers DAI_mix, DA1__ drum, DAI_nodrum
for HIDB shows that the performance of DAI_drum is the
strongest among the three, which is again expected since
HIDB features fairly high drum presence rate. This might also
explain why the fused result outperforms the baseline. We take
this as an evidence of the benefit of building tailored trackers
for percussive and non-percussive sounds to take care of the
versatile role of the drums in different music signals.

Table [lI| also shows that DAI_drum performs the worst
among the three individual trackers for beat & downbeat track-
ing for ASAP. While the simple fusion method DAI_bagging
may suffer from the inconsistent performance of the individual
trackers across datasets, DAI_fuser can nicely aggregate the
result of the three trackers. Instead of simply take the average,
DAI_fuser might be aware of the absence of the drum sounds
from the output of the drum tracker and accordingly decide to
rely more on the other two individual trackers.

The last block of rows in Table [lI} the result of the DA2
based models, shows that DA2 is in general slightly better
thanDA1. DA2_fuser outperforms DAI_fuser in most cases
and leads to the best mean F1 scores in both beat tracking
(0.774) and downbeat tracking (0.628). This indicates that we
can achieve more effective fusion by taking advantage of the
intermediate result of the individual trackers.

In mean F1 scores, DA2_fuser outperforms the baseline by
0.012 in tracking beats and by 0.029 in downbeats. The larger
improvement in the latter might be partly due to the available
room for improvement, but might also suggest the prediction
of downbeats benefits more from separating the effect of the
percussive and non-percussive instruments.

One-tailed ¢-test shows that the per-song performance dif-
ference in F1 (averaged over the five runs) between either
the pair baseline vs. DAI_fuser, or baseline vs. DA2_fuser,
is significant (p-value<0.05) in many cases (bolded in Table
[). We also see significant performance difference between
DA1_fuser, DA2_fuser for both beats & downbeats on ASAP.

Lastly, we evaluate the models using another metric, called

CMLT RESULTS OF THE BASELINE (BSL), DA_FUSER AND DA2_FUSER

Beat / Downbeat
HJDB

Merged Rock ASAP
BSL | 0.870/0.748 0.784/0.638  0.795/0.750  0.296 / 0.217
DA1 | 0.902/0.804 0.805/0.668 0.807/0.761 0.293/0.212
DA2 | 0.904/0.811 0.798 / 0.669  0.805/0.767  0.307 / 0.225

CMLt [43]], defined as the ratio of the total number of correct
beats (or downbeats) at correct metrical level to the total num-
ber of annotations. While F1 treats a beat/downbeat estimate
as correct by whether or not it falls within a fixed-length
tolerance window (£70 ms), CMLt adopts a variable-length
tolerance window (i.e., ==17.5% of the current inter-annotation
interval), and additionally demands consistency between the
inter-annotation interval and the inter-beat (or -downbeat)
interval. This downplays the effect of tempo drift where
occasional beats will be in phase [43]. Table shows that
both DAI_fuser and DA2_fuser still outperform the baseline
in CMLt. In many cases (highlighted in Table [[TI) the per-
song performance difference in CMLt between either baseline
vs. DAI_fuser, or baseline vs. DA2_fuser, is also significant
(p-value<0.05) under the one-tailed ¢-test.

VI. CONCLUSION

Aiming to improve the performance of joint beat/downbeat
tracking across different types of musical audio signals, we
have presented in this paper a drum-aware ensemble archi-
tecture that employs and fuses the result of multiple parallel
beat/downbeat trackers for different sound sources in an input
signal. Experiment results demonstrated the advantage of
such a new multi-model approach over a single-model, Mad-
mom’s RNNDownBeatProcessor-like baseline [9]. Ablation
experiments also confirmed the effectiveness of the proposed
BLSTM-based fusion mechanism. For future work, we are
interested in experimenting with different architectures for the
tracking and fusion modules, such as temporal convolutional
networks [49] or Transformer [50], and in further improving
the performance of beat/downbeat tracking for classical music.



TABLE IV
EVALUATION RESULT OF SDA MODELS (IN F1 SCORE) ON THE TEST SETS; BOLDED ONES INDICATE THE BEST HEAD OF EACH MODEL ON THAT COLUMN.

Model Beat Downbeat

HIDB  Merged Rock ASAP [ Mean | HIDB  Merged Rock  ASAP | Mean
SDA1 mix 0.885 0.885 0917  0.587 0.764 | 0.661 0.707 0.838  0.404 0.592
SDA1 drum 0.897 0.781 0.871  0.130 0.543 | 0.763 0.596 0.724  0.043 0.415
SDA1 nodrum | 0.701 0.835 0.875 0.572 0.705 | 0.421 0.666 0.801  0.395 0.527
SDA1 bagging | 0.846 0.845 0919 0452 0.691 | 0.758 0.708 0.850 0.291 0.564
SDA1 fuser 0.927 0.894 0916  0.585 0.773 | 0.800 0.735 0.844 0.414 0.630
SDA2 mix 0.882 0.871 0.888  0.596 0.760 | 0.701 0.707 0.825 0.428 0.607
SDA2 drum 0.886 0.793 0.858 0.173 0.559 | 0.745 0.606 0.698  0.057 0.416
SDA2 nodrum | 0.679 0.846 0.871  0.577 0.705 | 0.391 0.673 0.795 0.402 0.525
SDA2 bagging | 0.855 0.855 0.896 0.457 0.694 | 0.775 0.727 0.835 0.313 0.579
SDA2 fuser 0.908 0.890 0.895 0.587 0.767 | 0.808 0.744 0.817  0.429 0.635

APPENDIX our system would require extra feature processing to convert

We add to this ArXiv preprint some materials that cannot fit
in the SPL paper due to the space limit. First, we comment on
the difference between the present work and our earlier work
adopting source separation for data augmentation (Aug4Beat)
[51]]. Second, we present the result of an ablated version of our
system which uses the officially pretrained Spleeter module
instead of a trainable feature separation module. Lastly, we
discuss the averaged activation functions of different trackers
on two test sets.

A. On the Difference between Aug4Beat and the Present Work

Aug4Beat [51]], a precursor of the present paper, represents
our first attempt in using source separation to improve the
performance of beat and downbeat tracking. The main idea
of Aug4Beat is to use source separation as a way to create
additional data for model training. We consider similar exper-
imental setup there and here, using exactly the same training
sets and almost the same test sets, making it valid to compare
the results in these two papers. But, we remark that we actually
use a different optimizer in this paper, and this may play some
role. Specifically, in Aug4Beat, we adopt stochastic gradient
descent with momentum (SGDM) with a learning rate of 1072,
following [9]]. However, in this paper we adopt the Lookahead
Adam optimizer [47] with 10~2 learning rate, following [12].
We find the new optimizer greatly reduces training time and
achieves better overall performance for the DA architecture.
Comparing the result of the ‘baseline’ systems in Table III
of [51] and Table II of this paper, we see that SGDM performs
better than Lookahead Adam on ASAP, but much worse on
the Rock dataset. Future work can be done to more closely
examine the influence of the optimizers, and to integrate the
idea of data augmentation and DA.

B. On the Effect of the Feature Separation Module

We opt for training the feature separation module together
with other modules (cf. Section as STOA beat tracking
models and source separation (SS) models tend to use different
input features; the former usually use magnitude-filtered spec-
trograms plus their first-order derivatives (e.g., [9]), while the
latter use high resolution STFT spectrograms (e.g., Spleeter
[L7]). Accordingly, adopting the pretrained Spleeter “as is” in

the output of the source separation model to become the input
to the beat and downbeat tracking system.

To empirically examine the effect of this, we implement
such a “Spleeter DA” (or SDA for short) where we replace
the trainable feature separation module with a fixed, officially
pretrained Spleeter model. Table [[V|shows the result, averaged
over five runs for each model. We can see that, except for
the beat F-score on ASAP, the SDA_fusers benefit from the
DA idea just like the proposed DA models reported in Table
Similar trends between SDA and DA models can also be
observed. For example, fusers gain more improvements on
HIDB and Merged test sets and bagging performs well on
the Rock test set. The major differences between SDA and
DA are in the results on ASAP. First, unlike the DA_fusers,
the SDA_fusers do not gain improvement on ASAP beat
performance. Second, the SDA_drums get significantly worse
performance on ASAP. We conjecture that this is due to the
high-quality SS results of Spleeter. As Spleeter could perform
very well on SS, the drum stems it isolates out from pieces in
ASAP would be nearly silent, providing SDA_drum nearly no
information to track the beats and downbeats. In similar lights,
we can also see that the SDA_nodrums perform much worse
than the DA_nodrums on HIDB. We take this as an empirical
support of the design proposed in Section

C. Inside the Activation Functions

To gain insights into the behavior of the DA idea, we plot
the “averaged” activation function of different trackers for the
regions from 10 frames before beat/downbeat position to 10
frames after beat/downbeat position, over all the pieces in a
specific test set. This approach enables us to see how each
head (i.e. fuser, mix, drum, nondrum) reacts to a beat/downbeat
on average. Figures 2] and [3] show the results for ASAP and
HIDB, respectively. We can see that for both test sets, each
head reacts differently (and sometimes complementarily) to a
beat/downbeat. And the fusers of both SDA and DA generally
integrate information from other heads and produce the highest
peak near beat/downbeat position (i.e. position 10.0 at x-axis).
More specifically, we can observe that the drum heads of DA
and SDA are clearly more confident than the mix heads on
HJDB dataset. And on ASAP dataset, the nodrum heads still
react differently than the mix heads. These observations echo
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Fig. 2. Averaged activation function derived on ASAP test set for regions
from 10 frames before beat or downbeat position to 10 frames after beat or
downbeat position. ‘db’ denotes downbeat.

our hypothesis that the models are driven by the sound source
composition of training data. As a mix head is trained with
mixture input feature, it learns to rely on patterns related to
both drum and non-drum feature. Therefore, it could be less
sensitive than a drum head to specific drum-related patterns.
On the other hand, since the nodrum head is trained with
non-drum features, it would be less sensitive than the mix
head to the drum-related patterns. In summary, the source-
separation design of the system enables the individual trackers
(i.e. mix, drum, nodrum) to learn to interpret the input feature
differently. And, the fuser head therefore has higher chance
to access to more or better preserved beat/downbeat related
information/pattern and generate more confident results.
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