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Abstract—Within the compressive sensing paradigm, sparse
signals can be reconstructed based on a reduced set of mea-
surements. The reliability of the solution is determined by its
uniqueness. With its mathematically tractable and feasible cal-
culation, the coherence index is one of very few CS metrics with
considerable practical importance. In this paper, we propose an
improvement of the coherence-based uniqueness relation for the
matching pursuit algorithms. Starting from a simple and intuitive
derivation of the standard uniqueness condition, based on the
coherence index, we derive a less conservative coherence index-
based lower bound for signal sparsity. The results are generalized
to the uniqueness condition of the l0-norm minimization for a
signal represented in two orthonormal bases.

I. INTRODUCTION AND BASIC CS SETTING

Compressive Sensing (CS) is a field that provides a rigorous
framework for efficient data acquisition [1]–[6]. Examples
include applications that rest upon reliable sensing from the
lowest possible number of measurements, such as the recovery
of sparse signals from vastly reduced sets of measurements and
practical solutions in critical cases when some measurements
are physically unavailable or heavily corrupted by disturbance.

Within the CS theory, several approaches have been es-
tablished to reconstruct a sparse, N -dimensional vector, X,
from a reduced M -dimensional set of measurements, y. The
main concern in the reconstruction is to provide the conditions
for a unique solution. Several frameworks for establishing
the conditions for a unique solution are developed. The most
important ones rely on the restricted isometry property (RIP)
and the coherence index. While the RIP-based approach pro-
vides theoretically well-founded conditions, the main problem
is in its computational feasibility [1], [2], [7], [8]. Namely,
the RIP constant calculation is even more computationally
demanding than the direct combinatorial solution of the CS
problem itself. The coherence index-based condition is simple
and computationally efficient. Its main disadvantage is that
the reconstruction conditions based on this metric are quite
pessimistic [4], [9].

Here, we will present an approach to alleviate this deficiency
of the coherence index approach, introducing a computation-
ally simple improved bound for the uniqueness relation based
on the coherence index. The approach will be applied to a
signal representation in two bases [10], being used for the
derivation of the general sparsity bounds when the `0 and `1
minimizations are used to solve a CS problem.
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A. Definitions and Notation
A sequence {X(k)}, k = 0, 1, . . . , N − 1 is referred to as

a sparse sequence if the number, K, of its nonzero elements,
X(k) 6= 0, is much smaller than its total length, N , that is,

X(k) 6= 0 for k ∈ {k1, k2, . . . , kK}, K � N.

A linear combination of elements of X(k), given by

y(m) =

N−1∑
k=0

am(k)X(k), (1)

is called a measurement, with the weights denoted by am(k).
The above set of the measurements, y(m), m =

0, 1, . . . ,M − 1, admits a vector/matrix form given by

y = AX, (2)

where y = [y(0), y(1), . . . , y(M − 1)]T is an M × 1 column
vector, A is an M ×N measurement matrix which comprises
the weights am(k) as its elements, and X is an N × 1 sparse
column vector with elements X(k).

Without loss of generality, we shall assume that the mea-
surement matrix, A, is normalized so that the energy of
its columns sums up to unity. Consequently, the diagonal
elements of its symmetric Gram form, AHA, are equal to
1, where AH is the complex conjugate transpose of A.

The compressive sensing theory task is to reconstruct the
N -dimensional K-sparse vector X from a set of M mea-
surements, y = AX, with K � M < N . There are
several approaches to solve this problem (for reviews of these
approaches see [3], [8]). Here we will consider the orthogonal
matching pursuit (OMP) approach [3], [5], [8], [9].

B. OMP Solution to the CS Paradigm
A matching pursuit reconstruction algorithm is typically

based on a two-step strategy:
Step 1: Detect the positions of nonzero elements,
Step 2: Recover the signal by exploiting the relations
between measurement matrix, A, detected positions and
the vector of measurements, y.

It will be further shown that the physically relevant condi-
tions for the reconstruction are in fact related to challenges
emerging in the first step of the presented methodology.
Otherwise, if arbitrary positions of K nonzero elements of X
are known, meaning that X(k) 6= 0 for k ∈ {k1, k2, . . . , kK},
then a reduced set of measurement equations will follow as

y = AMKXK ,
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with AMK being an M×K dimensional sub-matrix of matrix
A, formed by keeping the columns corresponding to the
positions {k1, k2, . . . , kK}. Unknown values X(k), located at
k ∈ {k1, k2, . . . , kK}, are here conveniently grouped into a
K × 1 vector XK . This system of M equations and K < M
unknowns has a solution in a Least Square (LS) sense, in form

XK = (AH
MKAMK)−1AH

MKy = pinv(AMK)y. (3)

A sufficient condition for this reconstruction with known
positions is that the matrix AH

MKAMK is regular. The more
demanding condition is that the positions of the nonzero
elements in the sparse vector are exactly determined.

The reconstruction solution is exact if the positions
{k1, k2, . . . , kK} of nonzero elements in a K-sparse vector
X are exactly determined for any set {k1, k2, . . . , kK} and if
there exist at least K independent measurements [5], [9].

This means that the detection step of the OMP approach
is crucial for the exact solution. The detection is based on
the initial estimate, defined as the back-projection of the
measurements, y, to the measurement matrix, A, in the form

X0 = AHy = (AHA)X. (4)

If AHA ensures that the largest K elements of the initial
estimate, X0 are positioned at exact k ∈ {k1, k2, . . . , kK},
then the detection is performed by taking the positions of the
highest magnitude elements in the initial estimate, which is
followed by the reconstruction based on (3). The condition that
K elements in the initial estimate, X0 located at the positions
of non-zero elements in the original sparse vector, X are larger
than any other component in the initial estimate can be relaxed
through an iterative procedure.

In such methodology, being the basis of matching pursuit
algorithms such as the OMP [5], in order to find the position,
k1 of the largest non-zero element in X0, it is required
that its value is larger than any value at the original zero-
valued element position. Upon detecting the position, k1,
and estimating the component value based on (3), with AK

being formed based on k1, the contribution of this component
is removed from measurements vector, y. The procedure is
iteratively repeated for the remaining (K−1) elements. If the
uniqueness condition is satisfied for the exact detection of the
position of the largest nonzero element, then this condition
is satisfied for the remaining (K − 1)-sparse problem (less
restrictive problem, with the sparsity reduced from K to
K − 1).

II. UNIQUENESS OF THE OMP RECONSTRUCTION

The uniqueness condition based on the coherence index can
be formulated as follows.
The reconstruction of a K-sparse signal, X, is unique if the
coherence index,

µ = max
k,l
k 6=l

∣∣∣∣∣
M−1∑
m=0

am(k)a∗m(l)

∣∣∣∣∣ , (5)

of the normalized measurement matrix, A, satisfies [2]

K <
1

2

(
1 +

1

µ

)
, (6)

The coherence index, µ, is equal to the maximum absolute off-
diagonal element of AHA, while its diagonal elements are
equal to 1. The condition in (6) guarantees that the solutions
obtained by minimizing the `0-norm and `1-norm produce the
same common unique solution [7]. This condition guaranties
unique solution produced by the OMP algorithm [4], [5], [9],
[11], [13].

Although this criterion is commonly derived based on the
support uncertainty principle [4], [7] or Gershogorin disk
theorem [13], the coherence index condition (5) follows also as
a result of the analysis in the process of detection of positions
of non-zero values in original vector X [11].

By definition, any measurement represents a linear combi-
nation of nonzero elements of the sparse vector X, that is

y(m) =

K∑
i=1

X(ki)am(ki).

Furthermore, without loss of generality, it can be assumed
that the largest element is X(k1) = 1, whereas the remaining
nonzero elements do not take values greater than this value,
|X(ki)| ≤ 1, i = 2, 3, . . . ,K. In that case, the initial estimate

X0(k) =

K∑
i=1

X(ki)

M−1∑
m=0

am(k)a∗m(ki) =

K∑
i=1

X(ki)µ(k, ki)

can be expressed, for the element at k = k1, as follows

X0(k1) = X(k1) +

K∑
i=2

X(ki)µ(k, ki), (7)

where µ(k, ki) =
∑M−1

m=0 am(k)a∗m(ki). The maximum possi-
ble absolute value of µ(k, ki) is then equal to the coherence
index, that is, µ = maxk,ki

|µ(k, ki)|.
In the worst case scenario for the detection of the element

at position k1, the value of this element, |X0(k1)| in (7)
is maximally reduced by the term

∑K
i=2X(ki)µ(k, ki). The

maximally reduced coefficient |X0(k1)| takes the value

min |X0(k1)| = 1−
K∑
i=2

|X(ki)µ(k, ki)| = 1−(K−1)µ, (8)

assuming that all K − 1 remaining elements X(ki) have the
most unfavorable value, X(ki) = 1, whereas |µ(k, ki)| = µ,
for each ki ∈ {k1, k2, . . . , kK}.

The maximum value of disturbance at the positions
where the elements were originally zero-valued, k /∈
{k1, k2, . . . , kK} = K is equal to

max
k,k/∈K

|
K∑
i=1

X(ki)µ(k, ki)| = Kµ. (9)

In the worst case scenario, the exact and unique detection
of the position of the largest element X0(k1) is possible when
its maximally degraded value, exceeds the maximal value of
the disturbance

min |X0(k1)| > max
k 6=ki

|
K∑
i=1

X(ki)µ(k, ki)|,

or equivalently, 1− (K − 1)µ > Kµ, producing (6).
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Upon successfully detecting, reconstructing, and removing
the first non-zero component in a sparse X, the same procedure
and relations can be iteratively applied to the remaining
“deflated” signal which now exhibits a reduced (K − 1)-
sparsity level, thus guaranteeing an exact and unique solution.

III. IMPROVED BOUND DERIVATION

In the previous derivation of the reconstruction relation (6),
it has been assumed that K maximum absolute values of
µ(k, ki) = µ in (9) add up to form the disturbance. Moreover,
it has been assumed that the component X0(k1), that we aim
to detect at a position k1, is reduced by K − 1 maximal
values of µ(k, ki) = µ. This is, however, an overly pessimistic
assumption, since even in the worst case scenario all the largest
2K − 1 values of µ(k, ki), in general, may not be equal to µ.

Actually, when the first maximum is taken |µ(k, ki)| = µ,
in the next sample only the second largest value of |µ(k, ki)|
can be taken. Subsequently, only the third largest value of
|µ(k, ki)| can be taken, and so on. To take this fact into account
and derive a less conservative reconstruction bound, denote the
sorted values of |µ(k, ki)| as

s(p) = sortk,ki
{|µ(k, ki)|}, (10)

k, ki = 1, 2, . . . , N, p = 1, 2, . . . , N2,

assuming a nonincreasing order, s(1) ≥ s(2) ≥ · · · ≥ s(N2).
In the worst case scenario, instead of 2K−1 values of µ, now
we can use the first (2K − 1) (largest) values of s(p) to get

1 >

2K−1∑
p=1

s(p) = (2K − 1)αA(2K − 1),

instead of 1 > (K − 1)µ + Kµ, where αA(2K − 1) is the
mean value of the (2K − 1) largest values of |µ(k, ki)|,

αA(2K − 1) =
1

2K − 1

2K−1∑
p=1

s(p) = mean
1≤p≤2K−1

s(p).

The bound for the reconstruction now becomes

K <
1

2

(
1 +

1

αA(2K − 1)

)
. (11)

This implicit inequality is easily solved by direct check,
starting from K = 1, and then increasing the value of K by
one, until the inequality holds [11]. The procedure is stopped
for the smallest K when (11) does not hold.

In the special case of an equiangular tight frame (ETF)
measurement matrix, when the factor |µ(k, ki)| = µ is
constant, then αA(2K−1) = µ and (6) holds. In all cases, for
any measurement matrix A, condition αA(2K−1) ≤ µ holds.
This means that a more optimistic bound for K is obtained
by (11) than the conventional CS bound in (6).

Furthermore, it will be shown that even a less conservative
bound than that in (11) can be derived following some simple
observations of the initial estimate calculation based on the
Gram matrix AHA. Recall that the value of the initial
estimate, X0(k), at a non-zero position k1 can be calculated
using (7) at k = k1.

In the described worst possible scenario, the observed
“largest” term X(k1) = 1 is maximally reduced. This happens

when |µ(k1, ki)| takes the largest possible values only within
a row with index k1 of matrix AHA. If we sort into a
nonincreasing order values of rows (for any k1) and form

s1(p) = sort|µ(k1, l)| (12)

l = 1, 2, . . . , N , such that s1(1) ≥ s1(2) ≥ · · · ≥ s1(N), then
in the worst case scenario, X(k1) will be reduced for

(K − 1)
1

K − 1

K−1∑
p=1

s1(p) = (K − 1)βA(K − 1) (13)

that is, by the first (K − 1) coefficients sp(l), being in fact
the largest possible (K − 1) values of |µ(k1, l)| for any k1,
that is βA(K − 1) = maxk1{mean1≤p≤K−1s1(p)}. Note that
(13) is obtained based on the second part of (7). The fact
that X(k) = 1 for all k ∈ {k1, k2, . . . , kK} implies that each
component equally contributes to this reduction.

The largest possible disturbance value is obtained when
absolute values of the elements |µ(k, ki)| of matrix AHA take
the largest values in the given row at the disturbance position
k /∈ {k1, k2, . . . , kK} and are summed in phase. If we take
into account the notation for sorted values in (12), then this
accumulated disturbance value becomes

KγA(K) = K
1

K

K∑
p=1

s2(p) = K mean
1≤p≤K

s2(p) (14)

having in mind that |µ(k, ki)| takes K largest values from
one row (excluding the values in the rows taken in s1(p)), as
opposed to the previous assumption that it takes the single
largest value µ repeatedly K times (which leads to the
traditional coherence index bound).

The successful detection of component X(k1) will not be
compromised if the component, assuming its smallest possible
value, is still larger than the largest value of the disturbance
at k /∈ {k1, k2, . . . , kK}

1−
K∑
i=2

|X(ki)µ(k, ki)| <
K∑
i=1

X(ki)µ(k, ki)

or, having in mind (13) and (14)

1 > (K − 1)βA(K − 1) +KγA(K),

where

βA(K − 1) = mean
1≤p≤K−1

s1(p) and γA(K) = mean
1≤p≤K

s2(p).

The reconstruction of a K-sparse signal, X, is exact and
unique if the measurement matrix, A, guarantees that the
following condition is satisfied

K <
1 + βA(K − 1)

βA(K − 1) + γA(K)
. (15)

The three discussed sparsity bounds are related as

1 + βA(K − 1)

βA(K − 1) + γA(K)
≥ 1

2
(1 +

1

αA(2K − 1)
) ≥ 1

2
(1 +

1

µ
).

The equality holds for the ETF measurement matrices when
βA(K − 1) = γA(K) = αA(2K − 1) = µ.
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Fig. 1. A graph (top) and the matrix AHA. The elements of matrix AHA
used for the calculation of βA(K − 1) are circled using a white line, while
its elements used for the calculation of γA(K) are circled using a red line,
with K = 9, being the smallest K when inequality (15) is not satisfied.

IV. NUMERICAL EXAMPLES

The presented relations are tested on several numerical
examples: a graph matrix, a measurement matrix of a Gaussian
form, partial DFT and DCT matrices, and an ETF form.

An unweighted and undirected graph is given in Fig. 1(a).
The graph Fourier transform (GFT) matrix, for the spectral
representation, is defined by the eigenvectors of the graph
Laplacian, as its columns [14]. It has been assumed that
the graph signal is K-sparse in the GFT domain and that
the samples at vertices n = 21 and n = 38 are missing.
The Gram matrix AHA of A, corresponding to M = 62
available samples of the GFT matrix, is shown in Fig. 1(b).
This matrix guarantees unique reconstruction for K < 6.8917,
K < 7.4618, and K < 8.3118, respectively, with the three
presented approaches for the sparsity bound determination,
given by relations (6), (11), and (15), respectively. We can
conclude that the sparsity limit is improved from the maximal
sparsity K = 6, with (5), to K = 8 using (15). The results are
statistically checked. It has been concluded that in 106 random
realizations for K ≤ 8 all reconstructions were successful.

For a Gaussian measurement matrix we used N = 80 and
M = 70. In 1000 realizations (with various Gaussian matrices)
we obtained the mean value of the limit K < 1.6761 with a
standard deviation (SD) of 0.08, while the presented method
produced the mean value limit K < 2.3523 with an SD of
0.16. The same experiment with a 1000 × 900 measurement
matrix produced K < 3.6175 with an SD of 0.15 and K <
4.3580 with an SD of 0.07, meaning that the sparsity of a
certain exact reconstruction is improved from 3 to 4.

For a partial DCT matrix, with dimension 128 × 124, we
obtained the mean values K < 9.7849 and K < 12.1354, with
(6) and (15). The best case in 1000 random realizations of the
available samples, with improved bound, was K < 14.2238.

For an 128×124 partial DFT matrix, we obtained the mean
values K < 16.9068 and K < 19.8323, with (6) and (15). The
best case in 1000 random realizations of the available samples
was K < 21.4307 with (15). For just 2 missing samples, the
measurement matrix behaves close to an ETF and produced
the limits for K very close to N/4 = 32. For 128 × 112
measurement matrix the best limit was K < 10.3770. For half
of the available samples, M = N/2, all limits drop toward the
theoretically the worst case when no unique solution can be

achieved. In 1000 realizations the mean values are just above 3,
the best form of the measurement matrix produced the sparsity
limit slightly above 4, while for the worst measurement matrix
in these 1000 realizations, the limit dropped to K < 1.9545.
With a 128× 20, corresponding to just 20 available samples,
the mean limits were K < 1.6325, and K < 2.2649.

Finally, for an ETF matrix of dimension 18 × 9 all the
presented limits were the same, as expected since the absolute
values of the off-diagonal elements of AHA are the same.
The common limit is K < 2.5616.

V. GENERALIZATION FOR TWO BASES AND `0-NORM

The presented framework can be used to generalize the
results obtained analyzing the signal representation in two
bases, as introduced in [10]. This kind of signal representation
was used to find the general sparsity bounds for the unique
solutions, obtained using the `0-norm and the `1-norm min-
imizations. Consider representations of a unit energy signal,
x(n), in two arbitrary bases uk(n) and vl(n), with respective
transformation elements X(k) and Y (l). Assume, as in [2],
[10], that the signal is sparse in these bases with sparsities
||X||0 = K and ||Y||0 = L, and that the Parseval’s theorem
holds in both bases, ||X||22 = 1 and ||Y||22 = 1. Form a
function L(n, k, l) = X(k)Y ∗(l)uk(n)v

∗
l (n) as in [12] such

that∑
n

x(n)x∗(n) =
∑
n

∑
k

∑
l

X(k)Y ∗(l)uk(n)v
∗
l (n) = 1,

where k ∈ {k1, k2, . . . , kK} and l ∈ {l1, l2, . . . , lL}, then
using Schwartz’s inequality we get

1 =
∣∣∣∑

k

∑
l

X(k)Y ∗(l)
∑
n

uk(n)v
∗
l (n)

∣∣∣2 ≤
∑
k

∑
l

|X(k)|2|Y (l)|2
∑
k

∑
l

|µ(k, l)|2 ≤ KL 1

KL

∑
p

s2(p)

where s(p) is defined in (10). Using the notation ηA(KL) =
1

KL

∑
k

∑
p s

2(p) and
√
ab ≤ (a+ b)/2, a > 0, b > 0, we get

1

ηA(KL)
≤ KL = ||X||0||Y||0 ≤

(1
2
(||X||0 + ||Y||0)

)2
or ||X||0 + ||Y||0 ≥

2√
ηA(KL)

.

The solution of the `0-norm minimization is unique if the
sparsity, ||X||0, is smaller than half of the uncertainty bound

K <
1√

ηA(K2)
≥ 1

µ
.

This relation can be used to derive improved coherence index-
based conditions when the `0-norm and `1-norm minimization
produce the same and unique solution [2], [10].

VI. CONCLUSION

A numerically efficient calculation of an improved coher-
ence index-based sparsity bound is proposed. The calculation
is demonstrated on a graph signals example and several com-
monly used measurement matrices. The results are generalized
for the l0-norm and two bases.
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