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F0-based Gammatone Filtering for Intelligibility
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Abstract—This letter proposes a time-domain method to im-
prove speech intelligibility in noisy scenarios. In the proposed
approach, a series of Gammatone filters are adopted to detect the
harmonic components of speech. The filters outputs are amplified
to emphasize the first harmonics, reducing the masking effects of
acoustic noises. The proposed GTFF0 solution and two baseline
techniques are examined considering four background noises with
different non-stationarity degrees. Three intelligibility measures
(ESTOI, ESII and ASIIST) are adopted for objective evaluation.
The experiments results show that the proposed scheme leads to
expressive speech intelligibility gain when compared to the com-
peting approaches. Furthermore, the PESQ and WSS objective
scores demonstrate that the proposed technique also provides
interesting quality improvement.

Index Terms—Non-stationary noises, Gammatone filtering,
intelligibility improvement.

I. INTRODUCTION

A
COUSTIC noise masking effects of speech signals is still

a key element for intelligibility improvement research.

This issue underlies many applications such as speech syntesis,

source localization, and speech and speaker recognition. The

reduction of noise distortion is a major challenge to improve

quality and intelligibility of speech signals. Speech enhance-

ment methods have been proposed to treat non-stationary

acoustic noises [1], [2], [3], leading to expressive quality

results. However, the harmonic components of speech, such

as fundamental frequency (F0) and formants, are generally

not considered in such solutions. F0 estimation is an essential

benefit for speech audition, particularly in noisy environment.

Thus, it is here considered as a potential factor to achieve

intelligibility gain.

Recently, time-domain adaptive solutions have been de-

signed to deal with the harmonics of the speech signal to

reduce the noise effects. In [4], the formant center frequencies

from voiced segments of speech are shifted away from the

region of noise. This formant shifting procedure [5] simulates

the human strategy to provide a more audible signal in noisy

environment, i.e., the Lombard effect [6]. Results showed

that the Smoothed Shifting of Formants for Voiced segments

(SSFV) is able to improve the intelligibility of speech signals

in car noise environment. A different approach was proposed

in [7], where linear harmonic models are applied to represent
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the voiced segments as a sum of sinusoids. Each voiced frame

is reconstructed as a sum of harmonics whose frequencies

correspond to the speech F0 and its first integer multiples. The

amplitude and phase estimation filter [8] was applied with the

harmonic models (APESHARM) and led to improved signal-to-

noise ratios (SNR) of the reconstructed speech signals [7].

This letter proposes a new time-domain approach namely

GTFF0 to attain intelligibility gain for speech signals corrupted

by acoustic noises. In this solution, Gammatone filters are

applied to decompose the voiced segments of speech into a

series of the harmonics components with center frequencies

defined by integer multiples of F0. The F0 values are estimated

directly from the target noisy speech signal using the HHT-

Amp method [9]. The filters outputs are amplified by a gain

factor, which emphasizes the first harmonics of the speech

signal leading to intelligibility improvement. In the proposed

GTFF0, the F0 values are not modified since such change

would not contribute to an improved speech intelligibility [10].

Furthermore, it requires no prior knowledge of the speech or

noise statistics, which makes GTFF0 suitable to any kind of

noisy environment.

Extensive experiments are conducted to evaluate the pro-

posed scheme for speech intelligibility and quality improve-

ment. For this purpose, four acoustic noises with different

non-stationarity degrees are used to corrupt the speech signals

considering SNR between -5 dB and 5 dB. The formant

shifting approach (SSFV) [4] and the technique based on

harmonic models (APESHARM) [7] are adopted as baseline.

Three objective intelligibility measures are used to compare

the proposed and baseline techniques: ESTOI [11], ESII [12]

and ASIIST [13]. PESQ [14], LLR [15] and WSS [16] are

selected to examine the speech quality. Results show that

the proposed solution outperforms the competing methods in

terms of speech intelligibility and quality scores.

II. F0 ESTIMATION IN NON-STATIONARY NOISY

SCENARIO

In urban environments, speech signals are usually distorted

by acoustic background noises. Particularly, the F0 estimation

accuracy can be highly affected by the presence of acoustic

noises. This task may become even more challenging when

the background noise is non-stationary [9].

A. Non-Stationarity of Noisy Speech Signals

The non-stationarity degrees of speech signals corrupted by

acoustic noises are here examined according to the Index of

Non-Stationarity (INS) [17]. The INS objectively compares

the target signal with stationary references called surrogates.

http://arxiv.org/abs/2012.08227v1
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Figure 1. Spectrogram and respective INS for (a) clean speech signal and
two noisy versions with (b) SSN and (c) Babble noises with SNR of 0 dB.

For each window length Th, a threshold γ is defined for the

stationarity assumption considering a confidence degree of

95%. Thus,

INS

{

≤ γ, signal is stationary;

> γ, signal is non-stationary.
(1)

Fig. 1 illustrates the spectrogram and INS values obtained

for a clean and two noisy versions of the same speech signal.

The INS is computed for different time scales Th/T , where

T refers to the total duration of the analyzed signal. A speech

shaped noise (SSN) [18] and a Babble noise [19] are used to

corrupt the speech signal with SNR of 0 dB. Note that the

presence of acoustic noises significantly changes the temporal

and spectral structures of the speech signal. These masking

effects can modify the signal harmonic components (F0 and

formants). And thus, it may induce speech intelligibility or

quality degradation. Furthermore, the noise corruption con-

siderably attenuates the non-stationary behavior of the clean

speech signal. For instance, the maximum INS value changes

from 450 with clean speech to around 150 when corrupted by

the Babble noise.

B. HHT-Amp F0 Estimation

The HHT-Amp method applies the Hilbert-Huang transform

(HHT) [20] to analyze the target speech signal. Instead of

using the instantaneous frequencies as in [21], [22], the F0 is

estimated from the instantaneous amplitude functions of the

target signal. Let x(t) denote a speech signal divided into

Q short-time frames xq(t), q = 1, 2, . . . , Q. The HHT-Amp

method is summarized as follows:

1) Apply the ensemble empirical mode decomposition

(EEMD) [23] to decompose the sample sequence xq(t)
into a series of intrinsic mode functions (IMF) and a

residual rq(t), xq(t) =
∑M

m=1 IMFm,q(t) + rq(t).
2) Compute the instantaneous amplitude functions as

Am,q(t) = |Zm,q(t)|,m = 1, . . . ,M, where the ana-

lytic signals are defined as Zm,q(t) = IMFm,q(t) +
j H{IMFm,q(t)}, and H{IMFm,q(t)} refers to the

Hilbert transform of IMFm,q(t).
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Figure 2. Block diagram of the proposed Gammatone Filter method for speech
intelligibility gain.

3) Calculate the ACF rm,q(τ) =
∑

t Am(t)Am(t + τ) of

the amplitude functions Am,q(t),m = 1, . . . ,M .

4) For each decomposition mode m, let τ0 be the lowest

τ value that correspond to an ACF peak, subject to

τmin ≤ τ0 ≤ τmax. The restriction is applied according

to the range [Fmin, Fmax] of possible F0 values. The m-

th pitch candidate is defined as τ0/fs, where fs refers

to the sampling rate.

5) Apply the decision criterion defined in [9] to select the

best pitch candidate T̂0. The estimated F0 is given by

F̂0 = 1/T̂0.

In [9], it was shown that the HHT-Amp method achieves

interesting results in estimating the fundamental frequency

of noisy speech signals. The HHT-Amp was evaluated in a

wide range of noisy scenarios, including five acoustic noises

with different non-stationarity degrees. It outperformed four

competing estimators in terms of gross error (GE) and mean

absolute error (MAE).

III. PROPOSED GAMMATONE FILTER METHOD: GTFF0

The block diagram of the proposed GTFF0 method is

illustrated in Fig. 2. The target noisy signal x(t) is first split

into Q overlapping short-time frames xq(t), q = 1, 2, . . . , Q,

with 50% overlapping. Two disjoint sets are formed after

the separation of voiced and unvoiced (V/UV) segments. Sv

is composed by frames that contain voiced speech, and Su

consists of the remaining segments, i.e., unvoiced speech

and noise. For each voiced frame q ∈ Sv , the HHT-Amp

method [9] is applied to estimate the F0 value from xq(t).
A total of L Gammatone filters, with center frequencies set

to F̂0, 2 F̂0, . . . , L F̂0, are used to filter the sample sequence

xq(t). Gain factors are employed to amplify the filters outputs

before the reconstruction of the speech frame x̂q(t). Finally,

the overlap and add method is applied to all frames to achieve

the reconstructed version x̂(t) of the target speech signal.

A. Gammatone Filtering

The Gammatone filter was introduced in [24] to describe

the impulse response of the auditory system. The time-domain

impulse response of the Gammatone filter is defined as

g(t) = atn−1 cos(2πfct+ φ)e−2πbt , t ≥ 0 , (2)

where a is the amplitude, n is the filter order, fc is the center

frequency, φ is the phase, and b is the bandwidth. In [25], it

was shown that a set of fourth-order Gammatone filters are

able to represent the magnitude characteristic of the human
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Figure 3. Spectrogram of (a) a clean speech segment, the same signal
corrupted with (b) SSN and (c) Cafeteria noise with SNR of 0 dB, and (d-e)
the corresponding signals processed with the proposed GTFF0 method.

auditory system. In the Gammatone auditory filterbank, the

bandwidth b presented in (2) is similar to the Equivalent Rect-

angular Bandwidth (ERB) derived in [26], i.e., b = 1.019ERB.

In the proposed GTFF0 method, a set of L Gammatone filters

{hk(t), k = 1 . . . , L} are applied to successively filter the

input sample sequence xq(t). Each filter hk(t) is implemented1

considering order n = 4, center frequency fc = k F̂0, and

bandwidth b = 0.25 F̂0. In order to align the impulse response

functions, phase compensation is applied to all filters, which

correspond to the non-causal filters

hk(t) = a(t+ tc)
n−1 cos(2πfct)e

−2πb(t+tc) , t ≥ −tc , (3)

where tc =
n−1
2πb ensures that peaks of all filters occur at t = 0.

Let x0
q(t) = xq(t), the filtered signals ykq (t), k = 1, . . . , L,

are recursively computed by
{

ykq (t) = xk−1
q (t) ∗ hk(t)

xk
q (t) = xk−1

q (t)− ykq (t)
, k = 1, . . . , L . (4)

The residual signal is defined as rq(t) = xL
q (t) to guarantee

the completeness of the input sequence. It means that xq(t) =
∑L

k=1 y
k
q (t) + rq(t).

B. Speech Signal Reconstruction

After the Gammatone filtering, the amplitude of the out-

put samples ykq (t), k = 1, . . . , L, are amplified by a factor

Gk ≥ 1. The idea is to emphasize the presence of the first

harmonics of the fundamental frequency. This will induce

speech intelligibility improvement without introducing any

noticeable distortion to the speech signal. The reconstruction

of the voiced frame q ∈ Sv leads to the sample sequence

x̂q(t) =

[

L
∑

k=1

Gk y
k
q (t)

]

+ rq(t) . (5)

For the reconstruction of the entire speech signal, the voiced

frames obtained in (5) and all the remaining frames in Su

are joined together keeping the original frames indices. Thus,

all frames are overlap and added to reconstruct the modified

1Code available at http://staffwww.dcs.shef.ac.uk/people/N.Ma/

version x̂(t) of the target speech signal. The completeness and

continuity of x̂(t) is guaranteed by the adoption of the Hanning

window that multiply all frames before the overlap and add

method. This means that the reconstructed signal x̂(t) and the

original signal x(t) would be exactly the same if Gk = 1 for

every k ∈ {1, . . . , L}.

Fig. 3 illustrates an example application of the proposed

GTFF0 to a speech signal selected from the TIMIT database

[27]. The spectrogram of a clean speech segment and two

noisy versions are depicted in Figs. 3(a-c). The corrupted

signals are obtained with the SSN and Cafeteria2 noises

considering SNR of 0 dB. It can be noted that the presence

of the acoustic noises clearly induce the F0 harmonics to

blur, especially the first and second ones. The GTFF0 method

considering fixed gain of 3 dB to the first L = 5 harmonics

is applied to these noisy signals. The resulting spectrograms

are shown in Figs. 3(d-e). Note that for both noises the GTFF0

method achieves more clearly distinguished harmonics when

compared to the noisy signals. This effect may reduce the

impact of the acoustic noise to speech intelligibility.

IV. EXPERIMENTS AND RESULTS

Several evaluation experiments are conducted with a subset

of the TIMIT speech database [27]. This is composed of 192

speech signals sampled at 16 kHz, spoken by 24 speakers

(16 male and 8 female). Each speech segment has an average

duration of 3 s. Four acoustic noises are applied for the

speech signals corruption. The SSN and Cafeteria noises

are selected from the DEMAND [18] and Freesound.org2

databases, respectively. Moreover, Babble and Volvo noises

are collected from the RSG-10 [19] database.

The proposed GTFF0 is implemented considering frames of

32 ms and Gammatone filters bandwidth b = 0.25 F̂0. The

first L = 4 harmonics are amplified considering the following

gain factors: G1 = G2 = 5.0 dB, G3 = 4.0 dB, and G4 = 2.5
dB. The baseline formant shifting approach (SSFV) considers

the formant modification function that led to the best results

in [5]. The harmonic models solution with the APES filter

(APESHARM) is applied as described in [7].

A. Objective Intelligibility Evaluation

Tab. I presents the average ESTOI, ESII and ASIIST scores

obtained with the noisy unprocessed (UNP) speech signals.

The intelligibility improvement achieved with the proposed

and baseline solutions are depicted in Fig. 4. Note from the

ESTOI results that the GTFF0 leads to the highest gain for all

noisy scenarios. In average, it outperforms the SSFV approach

in 10% for the Babble, Cafeteria and SSN noises. For the

highly non-stationary Cafeteria noise, the proposed method

attains an improvement of 10.1 at 0 dB, compared to 0.4 and

-4.8 for the SSFV and APESHARM techniques, respectively.

In terms of ESII and ASIIST scores, it can be seen that the

GTFF0 leads to the best results for three noise sources: Babble,

Cafeteria and SSN. The only scenario where this solution does

not achieve the highest rates is the Volvo noise. In this case,

all approaches lead to negative intelligibility gain. It is due to

2Available at www.freesound.org.

http://staffwww.dcs.shef.ac.uk/people/N.Ma/
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Table I
ESTOI, ESII, AND ASIIST MEASURES [%] FOR UNP SPEECH SIGNALS

ESTOI ESII ASIIST

SNR (dB) -5 -3 0 3 5 -5 -3 0 3 5 -5 -3 0 3 5

Babble 0.28 0.33 0.40 0.48 0.53 0.34 0.38 0.44 0.50 0.54 0.38 0.40 0.45 0.50 0.54
Cafeteria 0.30 0.35 0.43 0.51 0.57 0.36 0.39 0.45 0.52 0.56 0.39 0.41 0.46 0.51 0.55
SSN 0.28 0.33 0.40 0.47 0.53 0.31 0.34 0.40 0.46 0.50 0.35 0.37 0.42 0.47 0.50
Volvo 0.71 0.74 0.79 0.83 0.86 0.82 0.85 0.89 0.92 0.94 0.77 0.80 0.84 0.87 0.89

Table II
PESQ OBJECTIVE SCORES FOR NOISY CONDITIONS AT DIFFERENT SNRS

Babble Cafeteria SSN Volvo Overall
SNR (dB) -5 -3 0 3 5 -5 -3 0 3 5 -5 -3 0 3 5 -5 -3 0 3 5 Average

UNP 1.98 2.14 2.41 2.71 2.90 2.15 2.33 2.59 2.89 3.05 1.91 2.07 2.34 2.64 2.84 3.75 3.89 4.08 4.25 4.35 2.86
GTFF0 2.17 2.36 2.66 2.94 3.12 2.39 2.58 2.86 3.13 3.30 2.10 2.30 2.61 2.89 3.08 3.83 3.93 4.06 4.17 4.23 3.04
SSFV 1.98 2.14 2.42 2.71 2.90 2.17 2.33 2.59 2.87 3.05 1.93 2.08 2.35 2.64 2.84 3.73 3.87 4.05 4.22 4.31 2.86
APESHARM 2.01 2.18 2.47 2.75 2.91 2.17 2.35 2.62 2.89 3.05 1.95 2.14 2.44 2.72 2.90 3.36 3.47 3.64 3.77 3.84 2.78
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Figure 4. (a) ∆ESTOI, (b) ∆ESII, and (c) ∆ASIIST intelligibility improve-
ment [×10−2] in four noisy conditions.

the fact that the ESII and ASIIST scores for Volvo are higher

than 0.77 for the noisy signals (refer to Tab. I). The values are

defined as very good intelligibility [28], [29]. Among all the

scenarios, GTFF0 accomplishes the highest overall ∆ESII and

∆ASIIST of 8.4 and 6.6, respectively, for the non-stationary

Babble noise with SNR of -3 dB. The APESHARM baseline

method is outperformed by GTFF0 and SSFV in all scenarios.

B. Objective Quality Evaluation

The predicted quality scores computed with PESQ [14]

are shown in Table II. As it can be seen, GTFF0 attains

the best PESQ results for three background noise sources:

Babble, Cafeteria and SSN. Considering the Volvo noise, the

-5 -3 0 3 5
0

1

2

L
L

R

UNP

-5 -3 0 3 5
SNR (dB)

0

75

150

W
SS

SSFV

-5-3

GTF
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-5-3

APES
HARM

Figure 5. Mean LLR (top) and WSS (bottom) quality scores for Babble,
Cafeteria, SSN and Volvo noises.

unprocessed speech signals present good quality. It means that

the highest PESQ scores are obtained by UNP with SNR ≥ 0

dB. The GTFF0 attains the best average PESQ value of 3.06,

which is 0.17 greater than the noisy signals result.

The LLR [15] and WSS [16] measures are also adopted here

to objectively examine the speech signal in terms of quality.

LLR scores are limited in the range [0, 2], and just like WSS,

smaller values indicate better quality. Fig. 5 shows the results

as mean scores computed for the four noise sources at each

SNR. Note that the GTFF0 presents the smallest WSS values

for all SNR values. These results reinforce the capacity of

the proposed solution to emphasize the harmonic components

of speech signals, providing improvement in terms of both

intelligibility and quality.

V. CONCLUSION

This letter introduced the time-domain GTFF0 method to

improve intelligibility and quality of speech signals. In this

solution, F0 estimation and Gammatone filtering are applied

to emphasize the first harmonics of the noisy speech signal.

Four acoustic noises were considered to compose the evalua-

tion scenario. Six objective prediction measures were applied

to examine the proposed and competitive solutions. Results

showed that GTFF0 achieved the best intelligibility and quality

scores considering ESTOI and PESQ prediction measures for

all acoustic noises.
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