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Graph Signal Processing: Vertex Multiplication
Aykut Koç and Yigit E. Bayiz

Abstract

On the Euclidean domains of classical signal processing, linking of signal samples to the underlying coordinate
structure is straightforward. While graph adjacency matrices totally define the quantitative associations among
the underlying graph vertices, a major problem in graph signal processing is the lack of explicit association of
vertices with an underlying quantitative coordinate structure. To make this link, we propose an operation, called
the vertex multiplication, which is defined for graphs and can operate on graph signals. Vertex multiplication,
which generalizes the coordinate multiplication operation in time series signals, can be interpreted as an operator
which assigns a coordinate structure to a graph. By using the graph domain extension of differentiation and graph
Fourier transform (GFT), vertex multiplication is defined such that it shows Fourier duality, which states that
differentiation and coordinate multiplication operations are duals of each other under Fourier transformation (FT).
The proposed definition is shown to reduce to coordinate multiplication for graphs corresponding to time series.
Numerical examples are also presented.

Index Terms

Graph Signal Processing, Graph Fourier Transform, duality, coordinate multiplication, vertex multiplication.

I. INTRODUCTION

Classical digital signal processing (DSP) provides a useful tool for the analysis of signals defined
by sampling an Euclidian space such as time-series signals and the R2 plane for images. However, the
classical DSP theory is not designed to capture the complicated structures of large networks, such as
social and economic networks, networks arising from the world wide web, and sensor networks. The graph
signal processing (GSP) provides a new framework that can make the analysis of these large networks
possible, [1]–[14]. The GSP framework aims towards developing efficient methods for analyzing and
processing signals with complex underlying structures such as networks or graphs [2], [14]. Graph based
extensions to several other areas such as machine learning and analysis of brain signals have also been
investigated [15], [16].

Classical signal processing concepts have been extended to the graph domain [2]–[4]. Specifically,
filtering [1]–[3], [5], [6], [13], [14], [17], frequency analysis [5], [8], [18], sampling [10], [19], interpolation
[20], Fourier transform (FT) [21], signal reconstruction [22], processing of stationary signals and processes
[23], [24], and multiscale decomposition methods [25] have been considered for graph signals.

Much of the developments in the processing of graph signals rely on extending the definition of FT and
frequency analysis to graph signals [8]. This allows the translation of many signal processing algorithms
to graph signals, and provided a framework that has proved to be foundational in many novel GSP
applications, including filtering, sampling and interpolation theory, [10], [19], [20], big data analysis, [7],
and classification, [26], [27]. There are two main approaches for extending the FT to the graph domain.
The first is derived from the spectral graph theory and uses the graph Laplacian. This framework describes
the graph Fourier transform (GFT) as a change of basis into the basis of the eigenvectors of the graph
Laplacian [1]. Although this approach is generally considered to be limited to analysis of undirected
graphs, there also exist extensions to directed graphs, [28]. Built upon the algebraic signal processing,
the second approach is based on the adjacency matrix of the graph and describes the GFT as a change
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of basis into the eigenvectors of the adjacency matrix [14]. This reflects the intuition that the adjacency
matrix is analogous to the discrete shift matrix, and the eigenvalues of the latter form a basis for the
discrete Fourier transform (DFT). The second approach, which we have adopted throughout this letter,
supports both directed and undirected graphs.

The relationships between operators on graphs and their FT counterparts have also been studied, [1], [2],
[5], [8], [14], [18]. Specifically, important operations like convolution, translation, modulation, dilation,
and filtering have been generalized to GSP domain in [1]. In [29], the uncertainty relation has been
generalized to signals defined on graphs. FT relations for some of the familiar operators such as shift,
modulation and dilation have also been studied in [1]. Yet, Fourier duality for the differentiation on graphs
has not been addressed.

In this letter, by using the Fourier duality, we propose an operation, called the vertex multiplication
(VM) for graphs. VM mimics the coordinate multiplication operator of time series signals (Uf(u) =
uf(u)), which is the Fourier dual of differentiation. While discretization of coordinate multiplication is
straightforward, generalization to the graph domain is problematic since the vertices of a graph do not
correspond to certain quantitative values, apart from just indices of order. Defined in a matrix form,
VM can be interpreted as an operator which assigns a coordinate structure to a graph by associating a
“coordinate vector” (represented by the columns of the matrix) for each vertex, and can also operate
on graph signals (represented as vectors) through matrix multiplication. Since several established metrics
and quantitative manipulations can be applied to coordinate vectors, the proposed direct assignment of
coordinate structure to the vertex domain can also be instrumental in efforts to define “distance” metrics
in the vertex domain, [30], [31], study the notion of smoothness of signals on graphs, [32], localization
of signals in the vertex-domain and study of transforms on graphs, [1], [33]–[35].

The proposed VM generalizes a fundamental operation like coordinate multiplication to graph domain
and defines the Fourier duality of differentiation for GSP. Moreover, VM, being defined totally consistent
with the circulant and dual structure of the DFT, can also be considered a natural way to overcome a
major obstacle in embedding the underlying structure of irregular vertex domain to a quantitative coordinate
structure assigned to the vertices. This coordinate association is important in the ongoing generalizations
from DSP to GSP.

II. DUALITY RELATION

The duality between differentiation and coordinate multiplication operators is particularly important in
classical signal processing [36], [37]. This duality between time (space) and frequency (spatial-frequency)
domains is also one of the most fundamental properties of the FT. In mathematical terms, let U , D
and F denote the coordinate multiplication, differentiation and FT operators, respectively. Continuous
manifestations of the former two are:

Uf(u) = uf(u), (1)

Df(u) = 1

2πj

df(u)

du
, (2)

where (2πj)−1 is included to make U and D precise Fourier duals (the effect of either in one domain is
its dual in the other domain). Then, the duality is given as:

U = FDF−1. (3)

This relation can also manifest itself between shift and modulation operations, both of which are funda-
mental properties of Fourier analysis, [1]. The duality relations of the FT in the classical signal processing
theory are crucial for understanding much of the underlying theory as well as for being instrumental in
applications, [38]. Therefore, an extension of these relations to GSP is inescapable. The duality relation
creates a way to define the coordinate multiplication operator without needing coordinates to be explicitly
defined once a differential operator on graphs and GFT are provided. Therefore, the extension of Fourier
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duality to graphs can be used to define a coordinate structure on graphs where one replaces D with the
differential operator on graphs and F with GFT.

III. GFT AND DIFFERENTIATION ON GRAPHS

A finite graph G = (V ,A) is a finite set of N ordered points V = {v0, v1 . . . vN−1} (called vertices)
which are connected to each other according to some relation. The connections in G are represented by
an adjacency matrix A. The element aij of A is the weight of the connection between i’th vertex and
j’th vertex where i, j = 0, 1, ..., N − 1. In general, this connection is directed. However for undirected
graphs for which the connections are not directed, we have a symmetric A with aij = aji.

Any complex valued function x defined on the set of vertices V , i.e.: x : V → C is called a graph
signal. Since V is finite, it is convenient to represent x as a vector where each index of x is the value the
signal takes on the corresponding vertex:

x = [x0, x1, . . . , xN−1]
>, xi = x(vi). (4)

When viewed as a vector, operators acting on x can be represented by left multiplication with matrices.
Of these operators, the one represented by the adjacency matrix itself is of particular importance, since
it implicitly contains the connectivity information of G. This operator is called a graph shift and extends
the cyclic shift operator defined on a periodic time series signal in the DSP which has the graph structure
shown in Fig. 1a (G1 at the top part). In this case, the adjacency matrix is identical to the cyclic shift [8]:

A =


0 0 0 ... 0 1
1 0 0 ... 0 0
0 1 0 ... 0 0
. . . . .
0 0 0 ... 1 0

 . (5)

Let G be a graph with adjacency matrix A and x be a graph signal defined on G. Then A can be
written in the Jordan canonical form as:

A = VΛV−1. (6)

Then, the Graph Fourier Transform (GFT) of x, denoted by x̃, is defined as [14]:

x̃ = V−1x. (7)

GFT of a signal x is unique up to the ordering of the Jordan blocks in the Jordan canonical form. If the
adjacency matrix A of G is diagonalizable, then the Jordan Canonical form is identical to diagonalizing
A. In this case GFT becomes a change of basis into the basis of eigenvectors of A, and this process is
unique up to the ordering of the Fourier basis vectors. It is also easy to see that if we are to take the GFT
of a time series graph, which has the adjacency matrix of the form given in Eq. 5, then the GFT basis
becomes the eigenvectors of the cyclic shift matrix, and the GFT reduces to the DFT.

We now consider the definition of differentiation operation on GSP domain, [39]. Let xc : R → C
be any smooth periodic function with period T , and t = (t0, t1, ..., tN−1) be an ordered set of numbers
selected from the interval [0, T ). Then an irregular sampling of xc with respect to sampling points t is
the finite discrete signal x ∈ RN where:

xn = xc(tn) ∀n ∈ {0, 1, . . . , N − 1}. (8)

Let S0 be the circular forward shift operator defined in the space of finite discrete signals of length N .
Then the matrix representation of S0 is of the same cyclic shift form given in Eq. 5. Then, if we let the



4

addition and subtraction on the vector indices to be defined in modulo N (i.e. if we write x−1 = xN−1
and t−1 = tN−1 − T ), one can use the Taylor series expansion to write:

(S0x)n = xn−1 = xc(tn−1) =
∞∑
k=0

(
(tn−1 − tn)k

k!

dk

dtk

∣∣∣∣
tn

xc
)

=

(( ∞∑
k=0

(tn−1 − tn)k

k!

dk

dtk

)
xc
)
(tn)

= exp
(
(tn−1 − tn)

d

dt

)
xc(tn). (9)

Thus, the discrete differential operator ∇ should satisfy:

S0 = exp(−∆t∇), (10)

where ∆t = diag(t0 − t−1, t1 − t0, ..., tN−1 − tN−2). Then, the matrix manifestation of the differential
operator defined on unequal sampling of xc resulting in the vector x is defined as:

∇ = −∆−1t logS0, (11)

where the complex logarithm can be defined on any branch cut as long as it is consistent throughout the
analysis. In this letter, we assume the argument to be in the interval [0, 2π).
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Fig. 1: Three different graph structures and their associated vertex multiplication operators. (a) The input
signal x = [1, 1, . . . , 1] plotted on three graphs where colormaps represent signal values. (b)-(c) Real
and imaginary parts of vertex multiplication matrices. (d) Magnitudes of the graph signals resulting from
applying graph vertex multiplication to the input, i.e. yi = UGi

x.

IV. GRAPH VERTEX MULTIPLICATION

Consider a graph G with an adjacency matrix A. Then the eigenvalues of A can be written as
the ordered set {r0ejω0 , . . . , rN−1e

jωN−1} where ri’s are the magnitudes and ωi ∈ [0, 2π) are given
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in an increasing order. Then for any graph signal x with a GFT of x̃, the elements of x̃ can be
ordered with respect to their corresponding eigenvalues. That is, if we write the eigenvalue decompo-
sition of A as A = VΛV−1 where the diagonal elements of Λ are ordered in an increasing order:
Λ = diag(r0e

−jω0 , r1e
−jω1 , ..., rN−1e

−jωN−1). Then, x̃ = V−1x. Notice that we implicitly assume that
A has eigenvalues with distinct arguments (frequencies) when we write the diagonalization of A. In
this ordering, each coordinate of x̃ are in the order of (possibly irregularly) increasing frequency. Since
x̃ has no two coordinates corresponding to the same frequency, we can always find a smooth function
x̃c : R→ C such that x̃ induces an irregular sampling on x̃c:

x̃n = x̃c(ωn). (12)

Then the discrete differentiation of x̃ can be defined as:

(∇F x̃)n (13)

where ∇F is the FT domain discrete differential operator:

∇F = −∆−1ω logS0, (14)

where ∆ω = diag(ω0 − ω−1, ω1 − ω0, ..., ωN−1 − ωN−2) with ω−1 = (ωN−1 − 2π). Before proceeding,
to be able to use the precise duality relation given in Eq. 3, we first alter the definition for the discrete
derivative by dividing Eq. 14 by j:

∇̃F = j∆−1ω logS0, (15)

which is analogous to the definition of differential operation with constant multiplier (2πj)−1 as given in
Eq. 2. (Please note that 2π term is already encapsulated in frequency w.)

Finally, by using the duality in Eq. 3, we can define the precise Fourier dual of ∇̃F as a new operator
called vertex multiplication denoted by UG , in abstract operator notation. The matrix manifestation of UG ,
using GFT, is then given by:

UG = V−1∇̃FV = jV−1(∆−1ω logS0)V. (16)

The proposed VM operator UG can be interpreted as a collection of vectors ui assigned to each vertex
on the graph such that UG = [u0,u1, . . . ,uN−1]. Also, it operates on a graph signal x = [x0, . . . , xN−1]

>

as:

y = UGx =
N−1∑
i=0

xiui. (17)

This definition provides a generalization of the coordinate multiplication operator. As such, the VM
operator computes the superposition of the multiplication of the signal value on each vertex with the
vector ui associated with the same vertex. Hence, the columns of the VM matrix mimic the coordinate
values in the coordinate multiplication operator in DSP (Eq. 1). Thus, we shall call these columns ui the
coordinate vector of the i’th vertex. Due to the summation in Eq. 17, the coordinate vector of a vertex
has a global effect on the behavior of the VM, and the output graph signal value yi depends on values
of the input signal at all vertices through the coordinate vectors.

The coordinate multiplication of classical DSP can be interpreted as a special case of VM. The matrix
representing the coordinate multiplication, denoted by U, is diagonal. It is composed of one-hot column
vectors with the non-zero entries being only at the corresponding indices of each vertex. Then the effect
of each coordinate vector in Eq. 17 can be represented locally and thus, the diagonal elements of U can be
assigned to each vertex as proper coordinates. This can be stated more formally in the following lemma:

Lemma 1: For time series graphs, Eq. 17 is equivalent to the coordinate multiplication of the classical
DSP.

Proof: Consider the graph representation of a time-series. The adjacency matrix in this case is equivalent
to the forward time shift, i.e. A = S0. The eigenvalues of A are then equally spaced on the unit circle
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in the complex plane and are of the form ejωk where ωk = 2kπ/N . Thus we have

∆ω = diag(
2π(0− (−1))

N
,
2π(1− 0)

N
, ...,

2π((N − 1)− (N − 2))

N
) =

2π

N
I,

(18)

where I is the N × N identity matrix. Then, the Fourier domain derivative becomes − N
2π

logS0. This
leads to the following vertex multiplication operator:

UG = jV−1(
N

2π
logS0)V = j

N

2π
log(V−1S0V), (19)

where V−1 reduces to the DFT. Using elementary properties of the DFT, we can obtain

V−1S0V = diag(e−jω0 , e−jω1 , ..., e−jωN−1) = Λ. (20)

Then, UG is the diagonal matrix with entries Nωk

2π
. Finally,

UG = U = diag(0, 1, 2, ..., N − 1), (21)

which is consistent with the discrete coordinate multiplication operator, which can be written as (Ux)n =
nxn. �

V. NUMERICAL EXAMPLES

The effects of the underlying graphs on the corresponding VM operators and their subsequent effects
on a graph signal are numerically demonstrated in Fig. 1. G1 is the time series graph. We have chosen G2

such that it deviates from time series by only having v0 makes an extra connection to v2; and G3 such that
each vertex vi has connections to the vi+1 and vi+2. It is immediately clear that any deviation from the time
series graph yields to the matrix manifestation of the VM operator to have complex components. Fig. 1 also
presents the vertex-multiplied output graph signals shown by colormaps on the vertices. In fact, experimen-
tation with similar graph structures seems to imply that the largest cycle in the structure has a significant
effect on the resulting VM matrix. Further study of this relation can lead to methods for detecting the largest
cycles in graph structures. Since VM enables us to define quantitative coordinate vectors, possibilities for
manipulations are endless. As an example, in Fig. 2, L1-norms of the columns of the VM matrices are
also plotted, i.e. given UG = [u0,u1, . . . ,uN−1], ui’s are assigned to each vertex and coordinates are
calculated by ||ui||1. Both L1-norms and their normalized values to the reference coordinates (0, 1, ..., 7)
of the time series by using the scaling 7 ∗ (||ui||1 −mini ||ui||1) / (maxi ||ui||1 −mini ||ui||1) are plotted.
Intuitive behavior can be observed in Fig. 2. First, the extra connection between v0 and v2 at the very
beginning of the graph almost merges v0 and v1 so that their coordinates become close to each other;
then the linearly increasing coordinate structure continues as in the time series. Second, G3 leads to an
interesting coordinate pattern due to the regular structure of the graph. Still, a linearly increasing diagonal
coordinate structure exists with the abrupt deviation where central vertices v3 and v5 seem to exchange
their coordinates.

VI. CONCLUSIONS

We proposed a generalization of the coordinate multiplication operation to the graph domain, called
vertex multiplication. By using Fourier duality, the proposed VM is in consistence with the classical
signal processing in which differentiation and coordinate multiplication are duals. VM can be interpreted
as an operator that assigns a coordinate structure to a graph by assigning each vertex a coordinate vector.
These coordinate vectors, which are intrinsically consistent with the FT theory and its dual structure,
can be manipulated to further assign single coordinates to the vertices or for other purposes. We showed
that the VM reduces to the coordinate multiplication for time series signals. Given an adjacency matrix,
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Fig. 2: Coordinates are calculated by L1-norm of the coordinate vectors for G1, G2, and G3. (Left:
L1-norms. Right: L1-norms normalized to the time-series coordinate interval [0, 7].

such an explicit coordinate association can be helpful in the ongoing generalizations from classical signal
processing to GSP. It may also lead to new theoretical and computational endeavors, and deepen our
theoretical understanding of the link between vertex and frequency domains with possible insights and
applications to the notion of smoothness, distance metrics and localization in the vertex-domain, and
transform designs for signals on graphs.
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