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Orthogonal subspace based fast iterative

thresholding algorithms for joint sparsity recovery
Ningning Han, Shidong Li, and Jian Lu Member, IEEE

Abstract

Sparse signal recoveries from multiple measurement vectors (MMV) with joint sparsity property have many applications
in signal, image, and video processing. The problem becomes much more involved when snapshots of the signal matrix are
temporally correlated. With signal’s temporal correlation in mind, we provide a framework of iterative MMV algorithms based
on thresholding, functional feedback and null space tuning. Convergence analysis for exact recovery is established. Unlike most
of iterative greedy algorithms that select indices in a measurement/solution space, we determine indices based on an orthogonal
subspace spanned by the iterative sequence. In addition, a functional feedback that controls the amount of energy relocation from
the “tails” is implemented and analyzed. It is seen that the principle of functional feedback is capable to lower the number of
iteration and speed up the convergence of the algorithm. Numerical experiments demonstrate that the proposed algorithm has a
clearly advantageous balance of efficiency, adaptivity and accuracy compared with other state-of-the-art algorithms.

Index Terms

Multiple measurement vectors, null space tuning, thresholding, feedback, orthogonal subspace.

I. INTRODUCTION

In sparse reconstruction signal models with joint sparsity property, signals are sampled at L time instances, resulting in the

multiple measurement vector (MMV) model:

Y = ΦX + E, (1)

where Y ∈ CM×L is the observation matrix containing L measurement/snapshot (column) vectors, Φ ∈ CM×N is the

measurement matrix governed by the specific physical system, and X ∈ CN×L is the underlying source signal matrix, to

be recovered. E ∈ CM×L is an additive measurement noise matrix.

In this system, L measurements share the same row support and elements in each nonzero row of X are temporally correlated.

The solution problem to a noiseless MMV model can be formulated as

min
X

‖X‖0 s.t. Y = ΦX, (2)

where ‖X‖0 = |supp(X)|, supp(X) = {1 ≤ i ≤ N : Xi· 6= 0}, Xi· is the i-th row of X . In [1], the authors have shown that

X is the unique solution of (2) if

‖X‖0 < spark(Φ)+rank(Y )−1
2 , (3)

where spark(Φ) is the smallest number of linearly dependent columns of Φ.

A large majority of effective algorithms for solving (2) are based on two strategies: extending single measurement vector

(SMV) algorithms or exploiting signal subspaces. Well-known algorithms of the first class include simultaneous orthogonal

matching pursuit (SOMP) [2]-[5], mixed norm minimization techniques [6]-[14], simultaneous greedy algorithms [15], [16].

However, these algorithms, without exploiting subspace structures or temporal correlations, have not offered realistic improve-

ments over performances than that of SMV cases. Recently, a multiple sparse Bayesian learning (MSBL) algorithm [17]-[21], as

an extension of sparse Bayesian SMV algorithms, is seen to improve recovery performances by modeling temporal correlation

of sparse vectors. Another strategy is to exploit subspace structures spanned by measurement vectors. Representative algorithms

include, e.g., sequential compressive MUSIC (SeqCS-MUSIC) [22], [23], subspace-augmented MUSIC (SA-MUSIC+OSMP)

[24], rank aware order recursive matching pursuit (RA-ORMP) [25], [26], [27], semi-supervised MUSIC (SS-MUSIC) [28]

etc.

In this report, we provide a computationally efficient “greedy” algorithm for joint sparsity signal recoveries from their multiple

measurement vectors. The proposed algorithm combines procedures of hard thresholding (HT), functional feedback (f -FB) for

“tail” energy shrinkage and enhanced feasibility, the null space tuning (NST), and a novel variable selection mechanism. The

novel criterion of variable selection is based on estimations of significant coefficients in an orthogonal subspace of the iterative
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sequence. The cardinality of selected variables is determined by the feedback function f . Experimental results show that the

proposed algorithm provides superior performances in terms of the efficiency and the critical sparsity (i.e., the maximum

sparsity level at which the perfect recovery is guaranteed [29]). In fact, the rate of successful recovery of our algorithm has

broken through the algebraic upper bound given in (3).

180 190 200 210 220 230 240 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity

F
re

q
u

e
n

c
y
 o

f 
e
x
a
c
t 

re
c
o

v
e
ry

 

 

f(x) = x

f(x) = 3x

f(x) = 6x

f(x) = 9x

f(x) = 12x

f(x) = x2

190 200 210 220 230 240

10
1

10
0

10
1

Sparsity

R
u

n
n

in
g

 t
im

e
 (

s
)

 

 

f(x) = x

f(x) = 3x

f(x) = 6x

f(x) = 9x

f(x) = 12x

f(x) = x2

Fig. 1. Left: Frequency of exact recovery as a function of sparsity; right: running time as a function of sparsity.

II. ORTHOGONAL SUBSPACE NST+HT+f -FB ALGORITHM

A. Notations

A submatrix of Φ with columns indexed by a set I is denoted by ΦI and a submatrix of Φ with rows indexed by a set J
is denoted by Φ(J). We denote the i-th row and the j-th column of a matrix Φ by Φi·, and Φ·j , respectively. T△T ′ is the

symmetric difference of T and T ′, i.e., T△T ′ = (T \ T ′) ∪ (T ′ \ T ). HT (X) is a linear operator that sets all but elements

belong to rows indexed by T of X to zero.

Algorithm 1 OSNST+HT+f -FB

Input: Φ, Y , ǫ, f(·), K;

Output: W ;

Initialize: k = 1, W 0 = 0;

While ‖Y − ΦW k−1‖2 > ǫ and k < K do

Xk = W k−1 +Φ∗(ΦΦ∗)−1(Y − ΦW k−1);
Qk =orth(Xk);
Tk = {Indices of f(k) largest ‖Qk

i·‖2};

W k
Tk

= Xk
Tk

+ (Φ∗
Tk
ΦTk

)−1Φ∗
Tk
ΦT c

k
Xk

T c
k

;

W k
T c
k
= 0;

k = k + 1;

end while;

B. Algorithm framework

The iterative framework of approximation and null space tuning (NST) algorithms is as follows
{
W k = D(Xk),

Xk+1 = Xk + P(W k −Xk).

Here D(Xk) approximates the desired solution by various principles, and P := I −Φ∗(ΦΦ∗)−1Φ is the orthogonal projection

onto ker(Φ).
Since the sequence {Xk} is always feasible (i.e., Y = ΦXk) under the NST principle, one may split Y as

Y = ΦX = ΦTk
Xk

(Tk)
+ΦT c

k
Xk

(T c
k
),

where Tk includes indices of f(k) largest ‖Qk
i·‖2 (i ∈ {1, . . . , N}), f(·) ≥ 0 is a non-decreasing function and columns of

Qk are an orthonormal basis for the column space of Xk, i.e., Qk=orth(Xk). The mechanism of feedback is to feed the

contribution of ΦT c
k
Xk

(T c
k
) to Y back to im(ΦTk

), the image of ΦTk
. A straightforward way is to set

Λk = argmin
Λ

‖ΦTk
Λ− ΦT c

k
Xk

(T c
k
)‖2,

which has the best/least-square solution

Λk = (Φ∗
Tk
ΦTk

)−1Φ∗
Tk
ΦT c

k
Xk

(T c
k
).

The orthogonal subspace iterative thresholding algorithm with functional feedback and null space tunning (OSNST+HT+f -FB)

is then established in Algorithm 1.
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C. Convergence analysis

In this paper, we assume the number of snapshots is smaller than the dimension of measurement, i.e., L < M , and the

measurement matrix Y is full column rank, i.e., rank(Y ) = L. We now turn to the convergence of OSNST+HT+f -FB.

Definition 1. [30]. For each integer s = 1, 2, · · · , the restricted isometry constant (RIC) δs of a matrix Φ is defined as the

smallest number δs such that

(1− δs)‖X‖2F ≤ ‖ΦX‖2F ≤ (1 + δs)‖X‖2F
holds for all s row-sparse matrix X . Equivalently, it is given by

δs = max
|S|≤s

‖I − Φ∗
SΦS‖2.

Definition 2. [31]. For each integer s = 1, 2, · · · the preconditioned restricted isometry constant γs of a matrix A is defined

as the smallest number γs such that

(1− γs)‖X‖2F ≤ ‖(ΦΦ∗)−
1
2ΦX‖2F

holds for all s row-sparse matrix X . In fact, the preconditioned restricted isometry constant γs represents the restricted isometry

property of the preconditioned matrix (ΦΦ∗)−
1
2Φ. Since

‖(ΦΦ∗)−
1
2ΦX‖F ≤ ‖(ΦΦ∗)−

1
2Φ‖2‖X‖F = ‖X‖F ,

γs is actually the smallest number such that, for all s row-sparse matrix X ,

(1− γs)‖X‖2F ≤ ‖(ΦΦ∗)−
1
2ΦX‖2F ≤ (1 + γs)‖X‖2F .

It indicates γs(Φ) = δs((ΦΦ
∗)−

1
2Φ). Equivalently, it is given by

γs = max
|S|≤s

‖I − Φ∗
S(ΦΦ

∗)−1ΦS‖2.

Definition 3. Let the feasible solution space of (2) be X = {X ∈ CN×L : Y = ΦX}. Define the modified matrix condition

number of X by α = max
X∈X

σmax(X)
σmin(X) , where σmin(X) and σmax(X) denote the smallest and the largest nonzero singular values

of X , respectively.

Lemma 4. Let U, V ∈ CN×L with |supp(U) ∪ supp(V )| ≤ t, then |〈U, (I − Φ∗Φ)V 〉| ≤ δt‖U‖F‖V ‖F . Suppose |R ∪
supp(V )| ≤ t, then ‖[(I − Φ∗Φ)V ](R)‖F ≤ δt‖V ‖F .

Proof. Let T = supp(U) ∪ supp(V ), we then have

|〈U, (I − Φ∗Φ)V 〉| = |〈U, V 〉 − 〈ΦU,ΦV 〉|
= |〈U(T ), V(T )〉 − 〈ΦTU(T ),ΦTV(T )〉|
= |〈U(T ), (I − Φ∗

TΦT )V(T )〉|
≤ ‖U(T )‖F ‖(I − Φ∗

TΦT )V(T )‖F
≤ ‖U(T )‖F ‖I − Φ∗

TΦT ‖2‖V(T )‖F
≤ δt‖U‖F‖V ‖F .

The first and the second inequalities are due to the Cauchy-Schwarz inequality, and the sub-multiplicativity of matrix norms,

respectively. The last step is by Definition 1. It then follows that

‖[(I − Φ∗Φ)V ](R)‖2F = 〈(HR ((I − Φ∗Φ)V ) , (I − Φ∗Φ)V 〉 ≤ δt‖[(I − Φ∗Φ)V ](R)‖F‖V ‖F .

Therefore, ‖[(I − Φ∗Φ)V ](R)‖F ≤ δt‖V ‖F .

Remark 5. Let γt be the P-RIP constant of Φ and U, V ∈ CN×L with |supp(U)∪supp(V )| ≤ t, then |〈U, (I−Φ∗(ΦΦ∗)−1Φ)V 〉| ≤
γt‖U‖F‖V ‖F . Suppose |R ∪ supp(V )| ≤ t, then ‖[(I − Φ∗(ΦΦ∗)−1Φ)V ](R)‖F ≤ γt‖V ‖F .

Lemma 6. For E ∈ C
M×L, ‖[Φ∗(ΦΦ∗)−1E](T )‖F ≤

√
1 + θt‖E‖F , where θt = δt((ΦΦ

∗)−1Φ) and δt((ΦΦ
∗)−1Φ) is RIC

of matrix (ΦΦ∗)−1Φ.

Proof.
‖[Φ∗(ΦΦ∗)−1E](T )‖2F = 〈Φ∗(ΦΦ∗)−1E,HT (Φ

∗(ΦΦ∗)−1E)〉
= 〈E, (ΦΦ∗)−1ΦHT (Φ

∗(ΦΦ∗)−1E)〉
≤ ‖E‖F

√
1 + θt‖[Φ∗(ΦΦ∗)−1E](T )‖F .

Applying Definition 1 to the matrix Φ∗(ΦΦ∗)−1 obtains the last step. Hence, for all E ∈ CM×L, we have ‖[Φ∗(ΦΦ∗)−1E](T )‖F ≤√
1 + θt‖E‖F .
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Lemma 7. Let Y = ΦX + E, where X ∈ CN×L is s row-sparse with S =supp(X) and E ∈ CM×L is the measurement

error. If W̃ ∈ CN×L is s̃ row-sparse, X̃ = W̃ +Φ∗(ΦΦ∗)−1(Y −ΦW̃ ), Q̃ = orth(X̃), and T is an index set of t ≥ s largest

‖Q̃i·‖2, then

‖X(T c)‖F ≤
√
2α(γs+s̃+t‖X − W̃‖F +

√
1 + θt+s‖E‖F ),

where θt+s(Φ) = δt+s((ΦΦ
∗)−1Φ).

Proof. Since rank(Y ) = L and Y = ΦX̃ , it is obvious that rank(X̃) = L. Consequently, the singular value decomposition of

X̃ can be denoted as X̃ = ŨℓΣ̃(ℓ)Ṽ
∗, where Ũℓ is the first L columns of Ũ and Σ̃(ℓ) denotes the first L rows of Σ̃. Since Ũℓ

can be regarded as an orthonormal basis for the range of X̃ , without loss of generality, let Q̃ = Ũℓ, we have

‖[X̃Ṽ Σ̃−1
(ℓ) ](T )‖F ≥ ‖[X̃Ṽ Σ̃−1

(ℓ) ](S)‖F .

It then follows that

σ̃−1
min‖X̃(T )‖F ≥ σ̃−1

max‖X̃(S)‖F ,

where σ̃min and σ̃max denote the smallest and the largest singular value of Σ̃(ℓ). Eliminating the common terms over T
⋂

S,

we obtain

σ̃−1
min‖[W̃ +Φ∗(ΦΦ∗)−1(Y − ΦW̃ )](T\S)‖F ≥ σ̃−1

max‖[W̃ +Φ∗(ΦΦ∗)−1(Y − ΦW̃ )](S\T )‖F .
For the left hand,

σ̃−1
min‖[W̃ +Φ∗(ΦΦ∗)−1(Y − ΦW̃ )](T\S)‖F

= σ̃−1
min‖[W̃ −X +Φ∗(ΦΦ∗)−1(ΦX + E − ΦW̃ )](T\S)‖F

= σ̃−1
min‖[(I − Φ∗(ΦΦ∗)−1Φ)(W̃ −X) + Φ∗(ΦΦ∗)−1E](T\S)‖F .

The right hand satisfies

σ̃−1
max‖[W̃ +Φ∗(ΦΦ∗)−1(Y − ΦW̃ )](S\T )‖F

= σ̃−1
max‖[W̃ +Φ∗(ΦΦ∗)−1(ΦX + E − ΦW̃ ) +X −X ](S\T )‖F

≥ σ̃−1
max‖X(S\T )‖F − σ̃−1

max‖[(I − Φ∗(ΦΦ∗)−1Φ)(W̃ −X) + Φ∗(ΦΦ∗)−1E](S\T )‖F .
Therefore, we obtain

σ̃−1
max‖X(S\T )‖F

≤ σ̃−1
max‖[(I − Φ∗(ΦΦ∗)−1Φ)(W̃ −X) + Φ∗(ΦΦ∗)−1E](S\T )‖F

+σ̃−1
min‖[(I − Φ∗(ΦΦ∗)−1Φ)(W̃ −X) + Φ∗(ΦΦ∗)−1E](T\S)‖F

≤
√
2σ̃−1

min‖[(I − Φ∗(ΦΦ∗)−1Φ)(W̃ −X) + Φ∗(ΦΦ∗)−1E](T△S)‖F
≤

√
2σ̃−1

min‖[(I − Φ∗(ΦΦ∗)−1Φ)(W̃ −X)](T△S)‖F
√
2σ̃−1

min‖[Φ∗(ΦΦ∗)−1E](T△S)‖F
≤

√
2σ̃−1

min(γs+s̃+t‖X − W̃‖F +
√
1 + θt+s‖E‖F ).

The last step is due to Remark 5 and Lemma 6. In view of Definition 3, we derive

‖X(S\T )‖F ≤
√
2α(γs+s̃+t‖X − W̃‖F +

√
1 + θt+s‖E‖F ).

Lemma 8. Let Y = ΦX+E, where X ∈ CN×L is s row-sparse signal matrix, and E ∈ CM×L is the measurement error. Let

S =supp(X) be the index set of the s sparse rows of X . Denote by Q̃ =orth(X̃) the orthogonal basis of the row-space of X , and

T the index set of t ≥ s largest values of ‖Q̃i·‖2. If W is the feedback of X̃ given by W (T ) = X̃(T )+(Φ∗
TΦT )

−1Φ∗
TΦT cX̃(T c)

and W (T c) = 0, then

‖(X −W )‖F ≤ ‖X(Tc)‖F√
1−δ2

s+t

+
√
1+δt‖E‖F

1−δs+t
.

Proof. For any Z ∈ CN×L supported on T ,

〈ΦW − Y,ΦZ〉
= 〈ΦT X̃(T ) +ΦT (Φ

∗
TΦT )

−1Φ∗
TΦT cX̃(T c) − Y,ΦTZ(T )〉

= 〈Φ∗
T (ΦT X̃(T ) +ΦT cX̃(T c) − Y ), Z(T )〉

= 〈Φ∗
T (ΦX̃ − Y ), Z(T )〉

= 0.

The last step is due to the feasibility of X̃ . The inner product can also be written as 〈ΦW−Y,ΦZ〉 = 〈(ΦW−ΦX−E),ΦZ〉 =
0. Therefore, 〈(W −X),Φ∗ΦZ〉 = 〈E,ΦZ〉, ∀ Z ∈ CN×L supported on T . Since (W − X)T is supported on T , one has

〈(W −X),Φ∗ΦT (W −X)(T )〉 = 〈E,ΦT (W −X)(T )〉.
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Consequently,

‖(W −X)(T )‖2F = 〈(W −X),HT (W −X)〉
= |〈(X −W ), (I − Φ∗Φ)HT (X −W )〉+ |〈E,ΦHT (X −W )〉|
≤ δs+t‖X −W‖F‖(X −W )(T )‖F +

√
1 + δt‖E‖F‖(X −W )(T )‖F .

The last step is due to Lemma 4 and Definition 1. We can obtain

‖(X −W )(T )‖F ≤ δs+t‖X −W‖F +
√
1 + δt‖E‖F .

It then follows that

‖(X −W )‖2F = ‖(X −W )(T )‖2F + ‖(X −W )(T c)‖2F
≤ (δs+t‖X −W‖F +

√
1 + δt‖E‖F )2 + ‖X(T c)‖2F .

This in turn implies p(‖X − W̃‖F ) ≤ 0, where p(·) is a quadratic polynomial, defined by

p(x) = (1− δ2s+t)x
2 − 2δs+t

√
1 + δt‖E‖Fx− (1 + δt)‖E‖2F − ‖X(T c)‖2F .

Since (1− δ2s+t) ≥ 0, it means that ‖(X −W )‖F is smaller than the largest root of p(·)

‖(X −W )‖F ≤ δs+t

√
1+δt‖E‖F+

√
(1+δt)‖E‖2

F
+(1−δ2

s+t
)‖X(Tc)‖2

F

1−δ2
s+t

≤ ‖X(Tc)‖F√
1−δ2s+t

+
√
1+δt‖E‖F

1−δs+t
.

Theorem 9. Let Y = ΦX + E, where X is the s row-sparse signal matrix. Then the sequence {W k} produced by

OSNST+HT+f -FB satisfies

‖(X −W k)‖F ≤ ρk
s+f(k)+f(k−1)‖X −W 0‖F +

κs+f(k)+f(k−1)(1−ρk
s+f(k)+f(k−1))

1−ρs+f(k)+f(k−1)
‖E‖F ,

where ρℓ =

√
2α2γ2

ℓ

1−δ2
ℓ

and κℓ = (
√
1+δℓ
1−δℓ

+

√
2α2(1+θℓ)√

1−δ2
ℓ

).

Proof. Applying Lemma 7 to W̃ = W k−1 and T = Tk gives

‖X(T c
k
)‖F ≤

√
2α(γs+f(k−1)+f(k)‖X −W k−1‖F +

√
1 + θs+f(k)‖E‖F ),

and setting W = W k and T = Tk in Lemma 8 obtains

‖(X −W k)‖F ≤ ‖X(Tc
k
)‖F

√
(1−δ2

s+f(k)
)
+

√
1+δf(k)‖E‖F

1−δs+f(k)
.

Combining these two inequalities, we have

‖(X −W k)‖F ≤
√

2α2γ2
s+f(k)+f(k−1)

(1−δ2
s+f(k)

)
‖X −W k−1‖F + (

√
1+δf(k)

1−δs+f(k)
+

√
2α2(1+θs+f(k))√

1−δ2
s+f(k)

)‖E‖F .

Since δℓ and γℓ are all non-decreasing [30], ρℓ and κℓ are also all non-decreasing as ℓ increases for all integer ℓ. Note that

f(ℓ) is also a nondecreasing function, it then follows that

‖(X −W k)‖F ≤ ρk
s+f(k)+f(k−1)‖X −W 0‖F +

κs+f(k)+f(k−1)(1−ρk
s+f(k)+f(k−1))

1−ρs+f(k)+f(k−1)
‖E‖F .

Consequently, if the RIP and the P-RIP of the matrix Φ obeys 2α2γ2
s+f(k)+f(k−1)+δ2

s+f(k)+f(k−1) < 1, the OSNST+HT+FB

algorithm is guaranteed to converge.
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Fig. 2. Left: Frequency of exact recovery as a function of sparsity; right: running time as a function of sparsity.

III. EXPERIMENTS

In this experiment, the measurement matrix Φ is an 300 × 1000 Gaussian random matrix and the number of snapshots is

10. To model the temporal correlation of MMV problem, we employ an autoregressive process of order 1, AR(1). As a result,

the j-th snapshot X·j is generated according to the model

X·j = βX·(j−1) + (1 − β)ǫj ,

where β is the AR model parameter controlling the temporal correlation and ǫj is the level of white Gaussian perturbation. The

support of a sparse signal is also chosen randomly and the nonzero entries of Gaussian sparse signals are drawn independently

from the Gaussian distribution with zero mean and unit variance. A successful recovery is recorded when ‖X−X̂‖F/‖X‖F ≤
10−4, where X is the exact signal matrix and X̂ denotes the recovered signal. Each experiment is tested for 100 (random)

trials. A matlab implementation of the proposed algorithm is also available at

https://www.dropbox.com/s/2avudk770m4c6rz/OSNST%2BHT%2Bf-FB.zip?dl=0.

We first study the mechanisms of f -feedback by introducing six particular index selection functions: f(x) = x, f(x) = 3x,

f(x) = 6x, f(x) = 9x, f(x) = 12x and f(x) = x2. As discussed, higher critical sparsity represents better empirical recovery

performance. Figure 1 shows the frequency of exact recovery and the running time as functions of the sparsity levels s.

As shown, linear functions with modest gradients present similar performance, which is better than the quadratic function

f(x) = x2. In addition, one can accelerate the convergence of the class of OSNST+HT+f -FB algorithms by adjusting the

cardinality of indices per iteration.

Also presented are comparisons among our OSNST+HT+f -FB and state-of-the-art techniques such as SOMP [2], ℓ2,1 norm

[8], SHTP [15], [16], RA-ORMP [10], TMSBL [17], SA-MUSIC+OSMP [24], SeqCS-MUSIC [22], [23] in terms of frequency

of exact recovery and running time. In this experiment, we adopt a modest setting f(x) = 6x, which can be applied to other

applications. In Figure 2, experimental results show that OSNST+HT+f -FB still delivers reasonable performance better than

that of SOMP, ℓ2,1 norm, SHTP, TMSBL, SA-MUSIC+OSMP, and SeqCS-MUSIC, though slightly under-performs that of

RA-ORMP. For the execution-time comparison, our algorithm achieves the best performance. Numerical experiments show that

our algorithm has a clearly advantageous balance of efficiency, adaptivity and accuracy compared with other state-of-the-art

algorithms.
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