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Abstract—This letter studies the problem of Direction of
Arrival (DoA) estimation from low-resolution few-bit quantized
data collected by Sparse Linear Array (SLA). In such cases,
contrary to the one-bit quantization case, the well known arcsine
law cannot be employed to estimate the covaraince matrix of
unquantized array data. Instead, we develop a novel optimization-
based framework for retrieving the covaraince matrix of unquan-
tized array data from low-resolution few-bit measurements. The
MUSIC algorithm is then applied to an augmented version of
the recovered covariance matrix to find the source DoAs. The
simulation results show that increasing the sampling resolution
to 2 or 4 bits per samples could significantly increase the
DoA estimation performance compared to the one-bit sampling
regime while the power consumption and implementation costs
is still much lower in comparison to the high-resolution sampling
implementations.

Index Terms—Direction of arrival (DoA) estimation, low-
resolution quantization, Sparse linear arrays, few-bit quantiza-
tion.

I. INTRODUCTION

Direction of Arrival (DoA) estimation from Uniform Linear
Array (ULA) measurements is extensively studied in the
literature [1H3]]. However, the number of identifiable sources
with ULAs is limited to the number of array elements minus
one [3| |4]. Deployment of Sparse Linear Arrays (SLAs), e.g.
Minimum Redundancy Arrays (MRAS) [5]], co-prime arrays [6]]
and nested arrays [7[], allows for transcending this limitation
under the assumption of uncorrelated source signals such that
the number of identifiable sources can go considerably beyond
the number array elements. A detailed study on the performance
of DoA estimation via SLAs has been conducted in [[8] through
an analysis of the Cramér-Rao Bound (CRB). Further, a variety
of algorithms for estimating DoAs from SLA data have been
presented in the literature [[7, [9-H15].

Most of the algorithms developed for estimating DoAs from
SLA measurements are based on the assumption that quantiza-
tion errors are negligible as a result of using high-resolution
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Analog-to-Digital Converters (ADCs). However, use of high-
resolution ADCs is typically expensive and power-hungry [16].
Hence, to reduce energy consumption and production costs,
DoA estimation with binary measurements collected by one-
bit ADCs has been recently proposed and discussed in the
literature [17H27]. One-bit ADCs represent each sample of the
analog array observations with only a single bit offering, an
exceedingly high sampling rate at a low production cost and
very low power consumption [16]]. The analytical performance
bounds for DoA estimation from one-bit data have been studied
in [28430f]. Further, a number of one-bit DoA estimators have
been provided in [23H25| [27]], which rest on retrieving the
covariance matrix of unquantized array observations using the
well-known Bussgang theorem [31]].

In this paper, as opposed to the previous works which have
studied the problem of DoA estimation under two extreme
scenarios for analog-to-digital conversion, i.e., infinite-bit
quantization and one-bit quantization, we aim to investigate
the problem of estimating DoAs from low-resolution few-bit
SLA measurements. In such cases, contrary to the one-bit
quantization case, the Bussgang theorem may not be directly
employed to retrieve the covaraince matrix of array unquantized
observations. Instead, we develop a novel optimization-based
framework for retrieving the covaraince matrix of unquantized
array observations from low-resolution multi-bit measurements.
Then, we apply the Co-Array-Based MUSIC (CAB-MUSIC)
[[7, [13]] to the recovered covariance matrix to find the DoAs
of interest. The simulation results show that increasing the
sampling resolution with a few bits per samples could signif-
icantly improve the DoA estimation performance compared
to the one-bit sampling case while the power consumption
and implementation costs are still much lower than the high-
resolution scenario.

Paper organization: The system model is described in
Section Section presents the proposed algorithm for
estimating DoAs from few-bit data. Simulation results are
shown and discussed in Section Finally, conclusions are
drawn in Section [V]

Notation: : Lightface, lower- and upper-case bold-face letters
denote scalars, vectors and matrices, respectively. The conju-
gate, transpose and Hermitian (conjugate transpose) operations
are referred to by the superscripts *, T', H, respectively. | Al »
and rank(A) stand for the Frobenius norm and the rank of
A, respectively. [a]; indicates the i*" entry of a. diag(a) is
a diagonal matrix made out of entries of a. I); denotes an
M x M identity matrix. #{a} and 3{a} stand for the real
and imaginary parts of a, respectively.
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Figure 1.
difference co-array with D = {0, 1, - -

(@) An SLA with M = {1,2,3,4,8,12}; (b) corresponding
S 11}

II. SYSTEM MODEL

We consider an SLA with M elements located at positions

mlg,mQA ,mM% with m; € IM. Here A denotes the

wavelengtﬁ of the incoming signals and IM is a set of integers
with a cardinality of M. It is assumed that K narrowband
signals with distinct DoAs =0, 605, -- ,0x]7 impinge on
the SLA from far-field. The signal received by the array at
time instance t can be modeled as

y(t) = A(@)s(t) +n(t) e C**', t=0,--- ,N—1, (1)

where s(t) € CK*! denotes the vector of K source

signals, n(t) € CM*! is additive noise, and A() =
[a(61),a(6), - ,a(0k)] € CM*K represents the SLA
steering matrix with

_ 1. JmsinOpmy _jmwsinfpmo
a(fr)=|[e kT e LA

, 7ej7rsint9kmM]T7 (2)

being the SLA manifold vector for the kth signal. Further, the
following assumptions are made on source and noise signals:

A1l n(t) follows a zero-mean circular complex Gaussian distri-
bution with the covariance matrix E{n(¢)n (t)} =02I,,.

A2 The source signals are modeled as zero-mean uncor-
related circular complex Gaussian random variables
with covariance matrix E{s(t)s” (t)} = diag(p) where
p=[p1.p2,-,px)" € RES! (e, pp >0, V).

A3 No temporal correlation is assumed between the snapshots,
i.e., E{n(tl)nH(tz)} = E{S(tl)SH(tg)} = 0 when t1 7&
ty and O is an all-zero matrix of appropriate dimensions.

Based on the above assumptions, the covariance matrix of y(t)

is given by

R=E{y(t)y” (t)}=A(8)diag(p)A" (8)+ 0L, e CM**M . (3)

It is readily verified that R is a structured matrix with only

2D—1 free parameters where D =|D| with D={|m, — m,]:

My, My €IM}. The set D is called the difference co-array [8|

15]. Noticing the structure in R, it can be rewritten as follows

D—-1 D—1
R(u) = uoLo + »  unLn + > unly, 4)
n=1 n=1
where uo = 02 + YK pr, up = oK pred™n 0k and

L,
[Ln]p,q = { 0,

with £, € D, mp,mg € M, 1 < p,g < M and 0 < n <
D — 1. A proper design of SLA allows for identifying more
uncorrelated source signals than the number of array elements
by exploiting the resulting structure of R efficiently [6H8| [15].
Fig. [T] illustrates an SLA along with its difference co-array.
In the classical mode, the received signals are sampled at
Nyquist rate and processed assuming full-precision analog-to-
digital conversion. On the other hand, herein, we assume that
each array sensor is equipped with a low-resolution multi-bit
ADC converting the received analog signal into digital data

if mp —mg =4y,
otherwise,

5

using ¢ bits per sample. A generic g-bit ADC has 27 — 1
threshold levels where a1 <ao <+ <0<+ <ag¢ <aza—1. The
g-bit ADC at the m'" array element transforms the real and
imaginary parts of [y(¢)],, into one of the 27 — 1 prescribed
qunatization levels {vi,v2,---,72¢—1} by comparing them
individually with the threshold levels. Particularly, the g¢-bit
quantized output signal at the m'" array element is expressed
as

x(O)]m = QUR{y ()}]m) + jQRUS{y ()}]m), (6)

where ()(.) denotes the ¢-bit quantization operation defined as

Qla) =~y if an<a<apsr. @)
We are interested in estimating DoAs from g¢-
bit quantized output signals of the SLA, ie,

X=[x(0), x(1), ---, x(N-1)].

IIT. MULTI-BIT DOA ESTIMATION WITH SPARSE ARRAYS

In this section, we first formulate an optimization problem
whose solution provides us with an estimate of the covariance
matrix of y(¢), i.e., R, using ¢-bit quantized array measure-
ments, i.e., X. Subsequently, we apply the CAB-MUSIC [7,
13]] to obtain DoA estimates from the estimate of R.

It follows from that R is fully described by the complex
vector u = [ug,uy,--- ,up_1]T. Hence, for a given Y =

(0), y(1), ---, y(N—1)], R can be obtained from
the solution of the following optimization problem

IR(u) - YY¥|?
R(u) > 0.

However, Y is unknown here, and instead, we only have access
to its ¢-bit quantized values, i.e., X. It follows from @ and
that each element of the observation matrix X determines
a lower and an upper bound for the real and imaginary parts of
the corresponding element in Y. Putting these lower and upper
bound into the matrices I'; and I',,, an optimization problem
for joint estimation of u and Y can be cast as follows:

minimize
u (8)

subject to

minirgize |R(u) - YYH|%
subj,ect to R(u) >0,
vec(R{Y} — R{I':}) >0, 9)

vee(S{Y} — S{Ii}) > 0,

— [vee(R{Y} — (L' })] > 0,

~[vee(3{Y} — 3{Tu})] > 0.
where the last four constraints in (9) aim to enforce the
consistency of Y with the g-bit measurements by ensuring
that the elements of Y lie in the regions determined by the
observation matrix X. The above optimization problem is non-
convex as its objective is a quartic function with respect to Y.
In what follows, we first present an equivalent reformulation for
(), which paves the way for iteratively solving this non-convex
optimization problem.

Theorem 1. Consider slack variables G € CAMHNIXM W ¢

CMMand ¢ € R. The optimization problem Q) is equivalent to
minimize |R(u) — W||% +n¢
u,Y W, G ¢
subject o R(u) > 0,

vee(R{Y} — R{I',}) > 0
vee(S{Y} — S{I}) > ?,
]

— [vec(R{Y} — R{T'.})] > 0, (10
— [vec(S{Y} - S{I'.})] = O,

T > 0,

£y — GITG =0,

GHG = IIVI7
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H
I{{v %V} € CM+N)IX(M+N)  and 1 is a regular-

ization parameter.

Proof. Consider the slack variables W =YY Then it is
readily seen that the optimization problem (9) is equivalent to:

where T =

. . . R _ -W 2
minimize IR (u) 52
subject to R(u) »= 0,

vec(R{Y} — R{I'}}) > 0,
vee(S{Y} — S{T;}) > 0,

~ [vee(R{Y} — R{Tu})] = 0,
— [vee(3{Y} — {T0})] = 0,
W=YYH,

(1)

It is readily confirmed that W = YY¥ if and only if
rank(W —YY#) = 0. Further, rank(W —YY#) = 0 can be
equivalently expressed as rank(Ix) +rank(W - YYH) = N,
Since Iy is positive definite, it follows from the Guttman rank
additivity formula [32] that rank(Iy) + rank(W — YY) =
rank(T). Moreover, it follows from W — YY# = 0 and
In > 0 that T has to be positive semi-definite. These imply
that the equality constraint in (TI)) can be replaced with a rank
constraint on a semi-definite matrix. Hence, the optimization
problem (T1I), and equivalently (@), can be recast as follows:

minimize |[|R(u) — W||?
u, YW
subject to  R(u) > 0,

vec(R{Y} — R{I'}}) > 0,
vee(S{Y} — ${T;}) > 0,

~ [vec(R{Y} - R{Tu})] > 0,
~ [vec(S{Y} - S{Tu})] > 0,
T > 0,

rank(T) = N.

12)

The constraint rank(T) = N in (I2) is equivalent to imposing
the constraint that the M smallest eigenvalues of T are all
zero. This constraint on the M smallest eigenvalues of T
can be formulated by introducing the new slack variables
G € CMHNXM apd ¢ € R with GHG = I,;. Indeed, in
what follows, we will show the M smallest eigenvalues of T’
are all zero if {1, — GHTG > 0 and E—0.Let py < p2 <
< < pypyn and v; < vy < --- < vy denote the eigenvalues
of T and GETG, respectively. From &I, — GHTG = 0, we
have v; < ¢ fori =1,2,---, M. Additionally, it follows from
[33, Corollary 4.3.16] that 0 < p; < v; fort =1,2,--- | M.
Hence, we observe that

0 < diag([p1, p2, -+ par]") = diag([vi,ve, -+ var]") < €l
(13)

It easily observed from (I3) that £ — O leads the M smallest
eigenvalues of T to go to zero. Accordingly, we can deduce
that, by properly selecting n in (I3) such that the optimum
value of £ goes to zero, the constraints {1, — GH2TG = 0 and
GG =1, in (T3) will be equivalent to the rank constraint
in (T2). This implies that (I3) is equivalent to (IZ) and thus
to (@). This completes the proof. O

The optimization problem (I0) can be solved iteratively by
alternating between G and the other parameters, i.e., u, Y,
W and & Let G, u®)| Y®) W) and ¢(F) be the values
of the parameters G, u, Y, W and ¢ at the k-th iteration,

respectively. Given G(*~1)| the optimization problem with
respect to u, Y, W and ¢ at the k-th iteration becomes

minimize R(u®) — w2 (k)
RORZOR SIS IR (u™) 7 +n¢
subject to R(u®) - 0,

vec(R{Y®} —R{I;}) > 0,
vec(S{Y®} — 3{1y}) > 0,

— |vec(R{Y®} —R{T.})| >0, (14)
— |vec(S{Y®} — 3{T.})| >0,

™™ >0,

Py — gD pmk k-1 » o

f(k) < f(k—l).

Once T, u®) and £ are found by solving (T4), G*) can
be obtained by seeking an (M+N)xM matrix with orthonormal
columns such that G# T T®G®) < ¢®M1,,. Choosing G*)
to be equal to the matrix composed of the eigenvectors of T(*)
corresponding to its M smallest eigenvalues, and following
similar arguments provided after , we have

k) H m(k k . k k k)T
GWTTMGW = diag([p{”, 8", o)1)

< diag([{* Y oY) 2 €W, (19)
where pi < i < < ey and Y <
yékfl) < ... < 1/](\’;71) denote the eigenvalues of T®) and

G- gE-1), respectively. It follows from (T3)) that
the matrix composed of the eigenvectors of T*) corresponding
to its M smallest eigenvalue is a right choice of G(*),
Accordingly, at each iteration of the proposed algorithm, we
need to solve a Semi-Definite Program (SDP), which can be
solved efficiently, followed by an Eigenvalue Decomposition
(ED). The alternating optimization procedure is repeated until
either the objective or the optimization variables converge to
a constant value. Algorithm [I] summarizes the steps of the
aforementioned iterative approach to solving (9). Further, to
initialize the algorithm, G(®) can be found through the ED of
T©) obtained from solving (T2) without considering the rank
constraint. We note that the proposed algorithm, which is based
on alternating optimization method, is guaranteed to converge
to at least a local minimum of [34]. Once R is retrieved
from Algorithm |1} the CAB-MUSIC [/, |13] is applied to the
retrieved R to estimate DoAs.

IV. SIMULATION RESULTS

In this section, numerical results are provided for assessing
the performance of the proposed algorithm for estimating DoAs
from low-resolution few-bit SLA output. In all experiments,
each simulated point has been computed by 1000 Monte
Carlo repetitions over noise realizations. In addition, the K
independent sources with an equal power p are equispaced
in the angular domain [—60°, 60°] with respect to a 8-sensor
nested array with M : {1,2,3,4,5,10,15,20} . The SNR is
also defined as 10log ;.

Fig. |2 depicts the Root-Mean-Squares-Error (RMSE) for 65
in degree versus SNR for different bit-width when N = 300,
M =8and: (a) K =4 < M; (b) K =10 > M. Fig. 2] demon-
strates that increasing the number of quantization bits from one
to two and then to four leads to a considerable performance
improvement. Further, it is observed that the RMSE of 4-bit
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Algorithm 1 Covarinace Matrix Estimatiton from Low-
Resolution Few-Bit Data
Input: The problem information T';, Ty, 7, €1, €2, e3 and eq4.
Output: The estimate of the covariance matrix of the full-
precision data.
1: initialization: Set £ =0 and obtain G(® by dropping the
rank constraint.
2: while |[u(®) —u* =D |5 > ¢, [WFE) —WED||p > e, [YR) —
Y(k_l)”F > €3 and é’(k) > €4 do
Increase & by one.
Find u®, W®), y*) and ¢*) by solving (T4).
Compute the ED of T,
G(*) equals the matrix composed of the eigenvectors
of T(®) corresponding to its M smallest eigenvalues.
7: end while
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Figure 2. RMSE in degree for 62 versus SNR for a nested array with M = 8
elements and configuration given in (IV), N = 300, and: (a) K =4 < M;
(b) K =10 > M.

DoA estimation is very close to that of DoA estimates obtained
from the unquantized array observations. For instance, when
K = 4, the performance loss arising from quantization, defined
as 10 log(RMSEquantized /RMSEunquantized ), at SNR = 5 dB are
about 3.33 and 1.39 dB in case of 1-bit and 2-bit quantization,

respectively, while it is almost zero in case of 4-bit quantization.

However, the implementation costs and power consumption
of 4-bit and 2-bit ADCs are still much lower compared to
high-resolution ADCs. For example, at sampling frequency
of 10 MHz, a 14-bit ADC consumes roughly 10% times more
power than 2-bit and 4-bit ADCs [35]. The gap between the
power consumption of low- and high-resolution ADCs further
increases with higher sampling frequencies, e.g. at sampling
frequency of 1 GHz, a 14-bit ADC consumes roughly 10°
times more power than 2-bit and 4-bit ADCs [35]). Further, it is

—00-bit
— 4-bit
=y —2-bit
S 5 — L-bit |
%D 10 1-bit (Bussgang-aided)
=
=
=
2P|
2]0 3
o
10
f
10 s—— o 00-bit
~ — 4-bit
N\ —2-bit

—1-bit
1-bit (Bussgang-aided)

(b)

Figure 3. RMSE in degree for 62 versus the number of snapshots for a nested
array with M = 8 elements and configuration given in (IT_V[), SNR = 0 dB,
and: (a) K =4 < M; (b) K =10 > M.

relatively easy to implement 4-bit and 2-bit ADCs even at very
high sampling frequencies while implementation feasibility
of high-resolution ADCs moves from difficult at sampling
frequencies of ~ 1 MHz to infeasible beyond those sampling
frequencies [35]. Moreover, it is seen that the proposed method
in case of 1-bit quantization performs as well as the one-bit DoA
estimator in [24]], which relies on estimating the covariance
matrix of unquantized array observations directly from one-bit
data using the Bussgang theorem.

Fig. 3] plots the RMSE for 65 in degree versus the number
of snapshots for SNR = 0 dB and: (a) K =4 < M, and (b)
K =10 > M. Fig. |3| shows that, to achieve an RMSE of 0.1
for example, infinite-bit, 4-bit, 2-bit and one-bit cases need
300, 300, 500 and 800 samples when K = 4, respectively.
This indicates that the total number of bits required to achieve
an RMSE of 0.1 is, respectively, 1200, 1000 and 800 bits for
4-bit, 2-bit and one-bit sampling scenarios.

V. CONCLUSION

The problem of DoA estimation from low-resolution few-
bit SLA data was investigated. Firstly, the covariance ma-
trix of unquantized array observations was retrieved from
low-resolution few-bit SLA data by employing an iterative
optimization-based algorithm. Then, DoAs were estimated by
applying CAB-MUSIC to the recovered covariance matrix
of unquantized array observations. The simulation results
showed that increasing the sampling resolution to 2 or 4 bits
per samples could significantly increase the DoA estimation
performance compared to the one-bit sampling case while the
power consumption and implementation costs are still much
lower than the high-resolution sampling scenario.
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