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Xi-Vector Embedding for Speaker Recognition
Kong Aik Lee, Senior Member, IEEE, Qiongqiong Wang, and Takafumi Koshinaka

Abstract—We present a Bayesian formulation for deep speaker
embedding, wherein the xi-vector is the Bayesian counterpart of
the x-vector, taking into account the uncertainty estimate. On the
technology front, we offer a simple and straightforward extension
to the now widely used x-vector. It consists of an auxiliary
neural net predicting the frame-wise uncertainty of the input
sequence. We show that the proposed extension leads to substan-
tial improvement across all operating points, with a significant
reduction in error rates and detection cost. On the theoretical
front, our proposal integrates the Bayesian formulation of linear
Gaussian model to speaker-embedding neural networks via the
pooling layer. In one sense, our proposal integrates the Bayesian
formulation of the i-vector to that of the x-vector. Hence, we refer
to the embedding as the xi-vector, which is pronounced as /zai/
vector. Experimental results on the SITW evaluation set show a
consistent improvement of over 17.5% in equal-error-rate and
10.9% in minimum detection cost.

Index Terms—Speaker Verification, Neural Embedding, Un-
certainty

I. INTRODUCTION

Automatic speaker recognition is the task of identifying
or verifying an individual’s identity from samples of his/her
voice using machine learning algorithms, without any human
intervention [1]. How speaker recognition is carried out has
changed substantially throughout these years with increasing
accuracy and robustness against various sources of variability
in the speech signal. Modern speaker recognition systems
[2], [3], [4], [5], [6] consist of a speaker embedding front-
end followed by a scoring backend. In this approach, speech
utterances are first represented as fixed-length vectors – the
so-called speaker embeddings. The current de-facto standard
of speaker embedding is x-vector [7]. For scoring backend,
probabilistic linear discrimination analysis (PLDA) [8], [9] is
commonly used.

Unlike passwords that have zero uncertainty conditioned on
a person’s identity [10], human voices exhibit both extrinsic
and intrinsic variability. Major sources of extrinsic variability
in speech signals are background noises, channel distortion,
and room acoustics. Intrinsic factors include the physiological
nature of the vocal apparatus and psychological states (e.g.,
emotion, mental health condition, etc.) of the speaker, and the
biological constraint of the vocal tract leads to acoustically
different utterances every time we repeat the same sentence.
X-vectors, and similar forms of deep speaker embedding,
do not consider the uncertainty of features. In a restricted
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sense, uncertainty is merely captured implicitly with empirical
variance estimates at the utterance level. Consequently, they
show low robustness against local and random perturbation
which is the inherent property of speech utterances.

The ability to handle uncertainty has been the cornerstone in
the successful use of generative models for speaker recognition
[11], [12], [13]. In the universal background model or UBM,
the uncertainty of feature vectors is modeled with the covari-
ance matrices associated with its Gaussian components [11].
In the i-vector embedding, uncertainty is captured with the
prior and posterior covariance matrices of its latent variable
[12], [13].

Under the big data regime, deep learning is used to
achieve state-of-the-art performance, notwithstanding that
most speaker-embedding neural networks are not able to
represent uncertainty. In this paper, we bridge the gap by
incorporating uncertainty modeling in a speaker embedding
neural network. To this end, we first estimate the frame-wise
uncertainty of the input sequences with an auxiliary neural
network. This operation is handled with a linear Gaussian
model at the pooling layer and trained as part of the neural
network.

In addition to good performance, our study sheds light
on the role of uncertainty in speaker embedding. It turns
out that the variance estimate is used as the indicator to
which feature vectors, and which dimensions of the feature
vectors, are useful in speaker classification. Higher weights
are given to those frames and features with lower uncertainty
and vice versa. In a way, it plays a role similar to the attention
model reported in [14], [15]. The difference here is that the
usefulness, or importance of feature vectors, is associated with
the uncertainty estimate while this is loosely defined in prior
works. Furthermore, the prior in the linear Gaussian model has
its effect on the weights assigned to each frame and feature.
More importantly, we show that a generative model could be
inserted as part of a discriminative neural network to handle
uncertainty.

II. NEURAL SPEAKER EMBEDDINGS

We define speaker embedding vectors as the representation
of variable-length utterances as fixed-length continuous-valued
vectors. Embeddings from the same speakers are close together
in the embedding vector space, and therefore allow easy com-
parison between speakers with simple geometric operations.
Depending on how the embedding extractor is trained, we
divide speaker embeddings into two broad categories, namely,
(i) unsupervised embedding, and (ii) supervised embedding.
The celebrated i-vector [13], and the classical Gaussian mix-
ture model (GMM) supervector [16] and alike [17], belong to
the first category. A popular example of the second category
is the x-vector embeddings [7], [18]. Different from that of
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the latter, both i-vector and GMM supervector are based on
a generative model trained using an unsupervised maximum
likelihood criterion. Supervised embeddings rely on the use
of labelled data for discriminative training, typically, with a
multi-class speaker-discriminative loss.

Recent development has shown the benefit of supervised
learning with deep neural networks (DNNs) coupled with the
massive use of data augmentation. Both have advanced the
performance of neural speaker embedding by a large margin.
The conventional x-vector extractor is a DNN consisting of
three functional blocks:

• An encoder (or a frame processor) implemented with
multiple layers of time-delay neural network (TDNN)
[19], [20]. In [21], it’s shown that a TDNN could be
implemented as a 1D-CNN with dilation. In [4], [22],
[23], 2D-convolution has shown to be effective as well.

• A temporal pooling layer to compute an aggregated
measure from the frame-level feature vectors produced
by the encoder.

• A decoder to classify the utterances to speaker classes.
One of the layers is designed to be a bottleneck layer,
the output of which (after affine projection, and before
the non-linearity) is the so-called x-vector speaker em-
bedding.

One element that is missing in the current framework is the
ability to handle uncertainty induced by the random factors
inherent in the generation (intrinsic) and transmission (extrin-
sic) of human voices. In particular, the frame-level features
produced by the encoder are point estimates, which do not
consider the uncertainty of the latent representation. In this
paper, we bridge the gap with the provision of (i.) an encoder
that infers the uncertainty in addition to the point estimate of
frame-level features, and (ii.) a generative model that leverages
the uncertainty measure in deep speaker embedding. It is
worth mentioning that the frame-wise uncertainty estimated
by the encoder neural network is regarded as aleatoric uncer-
tainty [24] in Bayesian deep learning.

III. UNCERTAINTY MODELING IN THE LATENT SPACE

To incorporate uncertainty measurement and modeling into
the neural speaker embedding framework, we introduce two
new concepts here.

A. Uncertainty estimation

The encoder maps an input frame xt to a point estimate
zt in a latent space. We propose to characterize the frame
uncertainty with a covariance matrix L-1

t associated with each
estimate zt. This is accomplished by using a base neural
network with two heads, one for zt and one for L-1

t , and train
simultaneously. Without loss of generality, we denote these
operations as

zt = fenc(xt|xt±n
t ) and log Lt = genc(xt|xt±n

t ) (1)

where a context of ±n neighbouring frames is taken into
account for each estimate. Note that the second equation in
(1) is absent in the conventional x-vector embedding. Also,

we assume that the covariance (and precision) matrices are
diagonal and chose to estimate directly the log-precision which
turns out to be more convenient as we shall see in the next
section.

With the construct in (1), the frame encoder maps an input
sequence {x1,x2, ...xT } of length T to another sequence
of enhanced features {z1, z2, ...zT } with their corresponding
uncertainty measures given by −1× log {L1,L2, ...LT }.

B. Posterior inference using frame-wise uncertainty

We assume that a linear Gaussian model is responsible for
generating the representations zt, as follows:

Generative model: zt = h+ εt

Latent variable: h ∼ N
(
µp,L

-1
p

)
Uncertainty: εt ∼ N

(
0,L-1

t

) (2)

Here, h is the latent variable assigned to the entire sequence,
and εt is a random variable caters for the uncertainty covari-
ance measure for each frame. We also impose a Gaussian prior
on the variable h with the prior mean vector µp and covariance
matrix L-1

p .
Given the input sequence and uncertainty estimate, it can

be shown that the posterior distribution of h is also Gaussian:

p
(
h|z1, . . . , zT ,L-1

1 , ...,L
-1
T

)
= N

(
h|φs,L-1

s

)
(3)

with its posterior mean vector and precision matrix computed
as

φs = L-1
s

[
T∑

t=1

Ltzt + Lpµp

]
=

T∑
t=0

Atzt (4)

and

Ls =

T∑
t=1

Lt + Lp =

T∑
t=0

Lt (5)

respectively. For sake of clarity, we have assigned the index
t = 0 to the prior such that z0 = µp, L0 = Lp, and therefore

At = L-1
s Lt for t = 0, 1, ..., T (6)

Notice that the posterior mean in (4) is the weighted average
of latent feature vectors zt and prior µp, each weighted with
a gain factor At determined by the uncertainty measure L-1

t

and the posterior covariance L-1
s .

The posterior inference entails a temporal aggregation oper-
ation since we use one latent variable h for the entire sequence.
A similar operation was used in the classical i-vector inference.
The difference lies in how the uncertainty measures are
derived. In the i-vector paradigm, the uncertainty covariance
matrix is drawn from a finite set (i.e., the covariance matrices
of the UBM). Here, the uncertainty is predicted on the fly
using a neural network. We refer to this as the heteroscedastic
aleatoric uncertainty.
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Fig. 1. An exemplary xi-vector embedding neural network implemented with
multiple TDNN and fully-connected (fc) layers. The round corner indicates
layers that process utterance-level representations at the decoder. Shaded bars
indicate non-linear activation functions. All layers use ReLU except for aux-
fc2 that uses a softplus followed by 2 × log operation for log-precision
estimation and a softmax at the output.

IV. XI-VECTOR EMBEDDING WITH UNCERTAINTY

We aim to incorporate frame uncertainty measures into
deep speaker representation learning. This is achieved by
inserting the generative linear Gaussian model into the speaker
embedding neural network. Our proposal is based on the
observation that Gaussian posterior inference is essentially
a mapping operation where sequences of point estimates,
zt, and uncertainty measures, L-1

t , are mapped to a fixed-
length posterior mean vector. Figure 1 shows an exemplary
neural network that implements the model. Compared to the
conventional x-vector, three new components are:

• Frame uncertainty is inferred at the output of the frame
encoder in addition to a point estimate,

• Gaussian posterior inference is used for temporal aggre-
gation, and

• Posterior mean vector is used as input to the decoder
replacing the first and second-order moments in conven-
tional x-vector.

The posterior inference entails a temporal aggregation oper-
ation replacing the simplistic statistical pooling used in the
conventional x-vector. The second-order moment is no longer
required for utterance classification layers since frame uncer-
tainty has been accounted for. As in the x-vector framework,
an embedding representation is obtained by taking the pre-
activation output of the first hidden layer of the decoder
network.

Algorithm 1 shows the minibatch stochastic gradient descent
training. In lines 6 and 7, the encoder produces a point estimate
and the log-precision for each input frame, respectively. In

Algorithm 1: Stochastic gradient descent training of
the xi-vector neural network. A training example con-
sists of a speech segment Xs of T frames and a speaker
label ys. The set θ includes network parameters, the
prior mean, and log-precision.

1 Initialize: µp ← 0, log Lp ← 0;
2 while stopping criterion not met do
3 Sample a mini-batch of M examples (Xs, ys)

M
s=1;

4 g← 0;
5 for s = 1 to M do
6 {z1, z2, ...zT } ← fenc(Xs);
7 log {L1,L2, ...LT } ← genc(Xs);
8 log L[i]← log {L0[i],L1[i], ...,LT [i]};
9 A[i]← softmax(log L[i]), i = 1, 2, ..., D;

10 φs ←
∑T

t=0 Atzt;
11 ŷs ← fdec(φs);
12 Compute loss L (ŷs, ys);
13 g← g + 1

M∇L;
end

14 θ ← θ + ηg
end

lines 8 and 9, the algorithm estimates the gain factor using (5)
and (6). Since we assume that the precision matrix is diagonal
and the encoder predicts directly the log-precision, the i-th
diagonal element of the gain factor is computed as:

At[i] =
Lt[i]∑T

t′=0 Lt′ [i]
=

elogLt[i]∑T
t′=0 e

logLt′ [i]
(7)

for i = 1, . . . , D, where D is the dimension of the pooling
layer. Line 9 implements Eq. (7) with a softmax function
across the temporal index t. The entire neural network is
trained by minimizing the cross-entropy loss.

Note that the prior mean and log-precision are initialized
to zeros. The prior parameters are updated simultaneously
with other network parameters via a posterior inference step
followed by gradient back-propagation, which combines the
generative nature of the i-vector with the benefit of speaker
discrimination of the x-vector. Hence, we refer to the speaker
embeddings as the xi-vectors – pronounced as the /zai/ vector.

V. EXPERIMENTS

We present two sets of experiments. The first set was
conducted on the Speakers in the Wild (SITW) dev and eval
sets [25]. The training data was drawn from the VoxCeleb-1
and VoxCeleb-2 corpora [5]. The second set of experiments
was conducted on the NIST SRE’18 and SRE’19 eval sets.
The training set consists primarily of English speech corpora,
which encompasses Switchboard, Fisher, and the MIXER cor-
pora used in SREs 04 – 06, 08, and 10. Since the SRE eval sets
consist of enrollment and test segments in Tunisian Arabic,
domain adaptation was performed on the PLDA using the
unlabeled subsets provided for the evaluation. We used 40 and
23-dimensional MFCCs with 10ms frameshift for the first and
second sets of experiments, respectively. Mean-normalization
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TABLE I
PERFORMANCE COMPARISON OF XI-VECTOR EMBEDDING WITH

X-VECTOR ON THE SITW DEV AND EVAL SETS.

SITW-Dev SITW-Eval

EER (%) MinDCF EER (%) MinDCF

x-vector (µ, σ) 2.38 0.251 2.65 0.278
xi-vector (φ, σ) 1.72 0.216 2.30 0.239
x-vector (µ) 2.93 0.333 3.23 0.362
xi-vector (φ) 1.96 0.214 2.19 0.248

TABLE II
ABLATION ANALYSIS OF XI-VECTOR ON SITW DEV AND EVAL SETS.

SITW-Dev SITW-Eval

EER (%) MinDCF EER (%) MinDCF

No-Prior (φ) 1.96 0.235 2.43 0.268
Isotropic (φ) 2.52 0.273 3.03 0.325
No-Prior (φ, σ) 2.10 0.240 2.35 0.254
Isotropic (φ, σ) 2.28 0.244 2.54 0.264

over a sliding window of 3s and energy-based VAD were then
applied. Data augmentation [26] was performed on the training
sets using the MUSAN dataset [27]. As in most state-of-the-
art implementations, speaker embeddings were reduced to 200
dimensions via LDA projection before PLDA.

We first compare the performance of the proposed xi-vector
to the conventional x-vector baseline. We used a TDNN-5
base architecture [7], [14] for both x-vector and xi-vector
extraction, with a pooling layer of D = 1500 dimensions for
all experiments. For the xi-vectors, frame precision matrices
were assumed to be diagonal and estimated with a two-layer
feed-forward neural network (1500×256→ 256×1500). The
size of the hidden layer was set to 256 so that the number
of parameters of the auxiliary neural network amounts to
(1500×256)×2, which is the same as the number of weights
required to map the standard deviation of the pooled statistics
to form the x-vector, i.e., 1500× 512. Note that the standard
deviation is no longer required in the xi-vector.

Table I shows the performance comparison in terms of the
EER and MinDCF (Ptarget = 0.01). Comparing the baseline
x-vector (µ, σ) to the xi-vector (φ) in the first and last rows
of Table I, respectively, the results show that the proposed
xi-vector embedding gives consistent improvement on both
EER and MinDCF. The performance gain amounts to 17.5%
in EER and 10.9% in MinDCF on the SITW-Eval set. Similar
performance gain could be observed on SITW-Dev set. The
results in the second and third rows of Table I show that the
use of standard deviation is not required in the xi-vector but
essential for x-vector embeddings. This proves the case that
frame uncertainty estimate gives a better account for variability
in the inputs. Note that we used the gain factor in (7) to
compute the weighted standard deviation for the xi-vector
results in the second last row of Table I.

Table II show the results of ablation analysis. We removed
the prior (denoted as No-Prior) and further replaced the di-
agonal variance estimate with a spherical covariance estimate
(denoted as No-Prior + Isotropic). Comparing the results in
the first two rows to that of the xi-vector (φ) in Table I,
we observe consistent degradation across all decision points

TABLE III
PERFORMANCE COMPARISON OF XI-VECTOR EXTRACTOR WITH

X-VECTOR.

SRE’18-Eval SRE’19-Eval

EER (%) MinDCF EER (%) MinDCF

x-vector (µ, σ) 7.53 0.503 6.97 0.510
xi-vector (φ) 7.13 0.483 6.34 0.478

except the EER on the dev set. On the eval set, the EER degra-
dation amounts to 11.2% with the prior removed and further to
38.7% when the isotropic variance assumption was imposed.
The results in the last two rows of Table II corresponds to
the xi-vector (φ, σ) in Table I. Similar degradation could be
observed with the prior removed and the isotropic assumption,
though the degradation is considerably smaller. Comparing the
last two row of Table II to the results with x-vector (φ, σ)
in Table I, it is clear that inclusion of frame uncertainty
estimate helps. Above all, these results show that a proper
frame uncertainty estimation and the use of Gaussian posterior
inference formulation for temporal aggregation outperform
simplistic statistical pooling which depends on the empirical
mean and standard deviation estimate.

The second set of experiments was conducted on the
SRE’18 and SRE’19 eval sets. Table III shows the performance
comparison in terms of EER and MinDCF (Ptarget = 0.01).
We observe consistent performance improvement with xi-
vector on both test sets. The performance gain on the SRE’18
is 5.3% in EER and 4.0% in MinDCF. The performance gain is
slightly higher on SRE’19 which amounts to 9.0% and 6.3% in
terms of EER and MinDCF, respectively. These results confirm
the effectiveness of the proposed xi-vector on the narrowband
SRE and wideband SITW test sets.

VI. CONCLUSION

From i-vector to x-vector, and xi-vector, the central theme
is speaker representation learning – to find fixed-length repre-
sentations that allow easy comparison between speakers with
simple geometric operations. What sets apart the proposed xi-
vector from its predecessor is the use of generative modeling
in a supervised training framework. One essential element
of a generative model is its ability to handle uncertainty.
Discriminative embeddings, like x-vectors, do not take the
uncertainty (distribution) of features into consideration. We
propose to characterize the uncertainty of input sequences with
frame-wise uncertainty estimates, which are then used with the
point estimates to derive speaker embedding vectors. This is
accomplished with a linear Gaussian model trained as part of
the embedding neural network. Given the capability to take
into account frame-wise uncertainty, the proposed xi-vector
embeddings exhibit improve robustness to perturbation and
therefore better performance.
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