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Hybrid Beamforming Optimization for DOA

Estimation Based on the CRB Analysis
Tian Lin, Xuemeng Zhou, Yu Zhu, and Yi Jiang

Abstract—Direction-of-arrival (DOA) estimation is one of the
most demanding tasks for the millimeter wave (mmWave) com-
munication of massive multiple-input multiple-output (MIMO)
systems with the hybrid beamforming (HBF) architecture. In
this paper, we focus on the optimization of the HBF matrix for
receiving pilots to enhance the DOA estimation performance.
Motivated by the fact that many existing DOA estimation algo-
rithms can achieve the Cramér-Rao bound (CRB), we formulate
the HBF optimization problem aiming at minimizing the CRB
with the prior knowledge of the rough DOA range. Then,
to tackle the problem with intractable non-convex constraint
introduced by the analog beamformers, we propose an efficient
manifold optimization (MO) based algorithm. Simulation results
demonstrate the significant improvement of the proposed CRB-
MO algorithm over the conventional random HBF algorithm,
and provide insights for the HBF design in the beam training
stage for practical applications.

Index Terms—Hybrid beamforming, Cramér-Rao bound,
direction-of-arrival estimation, manifold optimization.

I. INTRODUCTION

Hybrid beamforming (HBF) is regarded as a promising tech-

nology for millimeter wave (mmWave) massive multiple-input

multiple-output (MIMO) communication systems due to its

advantage of achieving considerable beamforming gains with

much lower hardware cost and power consumption when com-

pared with the fully digital beamforming [1], [2]. However,

its performance heavily relies on the accuracy of direction-

of-arrival (DOA) estimation. There have been many works

focusing on the design of DOA estimation algorithms with the

HBF architecture. For example, an algorithm using the two-

dimension (2D) discrete Fourier transform (DFT) approach has

been proposed in [3]. Subsequently, a fast root multiple signal

classification (root-MUSIC) algorithm has been developed in

[4] by extending the conventional MUSIC algorithm.

For massive MIMO systems, the hybrid beamformers of

high dimensions are endowed with sufficient freedom to

customize the baseband pilots and benefit the subsequent DOA

estimation. However, most related works simply adopted the

random hybrid beamformers or DFT based hybrid beamform-

ers for DOA measurements [3]–[6], which requires a large

number of training pilots to guarantee good performance. In

this letter we investigate the DOA estimation and optimize

the HBF to improve the performance based on the Cramér-

Rao bound (CRB) analysis with the utilization of the prior
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information of the DOA range. Our contributions can be

summarized as follows:

• Recognizing that many existing estimation algorithms,

e.g., [4], [7], perform closely to the CRB, we propose

to optimize HBF aiming at minimizing the CRB. The

simulation results verify that our optimized HBF can

improve the performance of existing DOA estimation

algorithms.

• As there is usually some prior information about the

(rough) range of DOA, we elaborate how to utilize the

prior information to specify the optimization objective for

better performance.

• Due to the partially-connected (PC) HBF architecture

and the implementation of the phase shifters, the feasible

region of the CRB minimization problem is non-convex,

which complicates the solution. To tackle the highly non-

convexity, we propose an efficient manifold optimization

(MO) based algorithm with guaranteed convergence.

Notations: Matrices and vectors are denoted by boldface

capital and lower-case letters, respectively. [a]8 denotes the

8-th entry of a vector. [A]8 9 denotes the (8, 9)-th entry of a

matrix. (·)∗, (·)) , and (·)� denote the complex conjugate,

transpose, complex conjugate transpose of a matrix or vector.

d(A) denotes the differential of A. tr(·), ‖.‖� , and Re(·) denote

the trace, the Frobenius norm, and of the real part of a matrix,

respectively. diag(x) is a diagonal matrix with the entries of x

on its main diagonal and blkdiag(X1, . . . ,X=) denotes a block

diagonal matrix whose diagonal components are X1, . . . ,X=.

CN(0,K) denotes the circularly symmetric complex Gaussian

distribution with zero mean and covariance matrix K. ⊗ and

⊙ denote the Kronecker product and the Hadamard product,

respectively.

II. SYSTEM MODEL

Consider the DOA estimation in the uplink of a block-fading

mmWave MIMO communication system, where a base station

(BS) is equipped with a large number (#BS) of antennas and

adopts the PC-HBF architecture to reduce the hardware cost,

and a user equipment (UE) is equipped with a small number

(#UE) of antennas and adopts the fully digital beamforming.

Define the transmitted training sequence at the UE as s =

[B0, . . . , B#−1]) , where # is the length and |B= | = 1. As the

training sequence s are being beamformed by v ∈ C#UE , the

equivalent baseband received signal at the BS antenna array

is given by [8], [9]

r= = HvB= + z=, for = = 0, . . . , # − 1, (1)

http://arxiv.org/abs/2103.15357v1
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where z= denotes the additive Gaussian noise vector with

z= ∼ CN(0, f2I#BS
) and f2 represents the noise variance, the

transmit power is represented by % = ‖v‖2. H is the mmWave

MIMO channel matrix and assumed unchanged during the

whole training process. Normally H can be characterized by

the geometry-based channel model as follows

H =

√
#BS#UE

!

!−1∑

;=0

U;aBS,; (\; , q;)a�UE,; (k; , W;), (2)

where ! is the number of propagation paths and ; = 0 denotes

the line-of-sight (LoS) link which has the strongest gain.

Furthermore, U; is the complex path gain of the ;-th path,

aBS,; and aUE,; represent the antenna array response vectors of

the BS and the UE, respectively. \; (q;) denotes the associated

azimuth (elevation) angle of arrival, and k; (W;) denotes the

associated azimuth (elevation) angle of departure, respectively.

Given that a uniform planar array (UPA) of % × & elements

is deployed at the BS, the array response is [1], [2]

aBS,; (\;, q;) = aH (\;, q;) ⊗ aI (q;), (3)

where aH (\; , q;) = 1√
&
[1, 4jc sin \; sin q; , . . . , 4jc (&−1) sin \; sin q; ])

and aI (q;) = 1√
%
[1, 4jc cos q; , . . . , 4jc (%−1) cos q; ]) . Denote the

hybrid combiner at the BS as W= = WRF,=WBB,= ∈ C#BS×#RF ,

where WRF,= ∈ C#BS×#RF denotes the analog combiner and

WBB,= ∈ C#RF×#RF denotes the digital baseband one. Then,

the combined signal at time instance = can be represented as

y= = W�
= r= = W�

= HvB= +W�
= z=. (4)

It should be mentioned that due to the implementation

of phase shifters in the PC-HBF architecture, WRF,= =

blkdiag(w=,1, . . . ,w=,#RF
), where w=,<, for < = 1, . . . , #RF,

is an
#BS

#RF
× 1 column vector with its elements having a unit

modulus, i.e., | [w=,<]8 | = 1, ∀=, <, 8 [1], [4].

III. CRB ANALYSIS AND PROBLEM FORMULATION

Inspired by the fact that the existing DOA estimation

algorithm can closely approach the CRB [4], [6], [7], we

propose to optimize the hybrid combiner with the objective of

minimizing the CRB. In this section we first analyze the CRB

with HBF, and then formulate the HBF optimization problem

for DOA estimation.

To simplify the analysis, we recognize that the downlink

mmWave transmission is usually dominated by the LoS path

due to its much higher gain compared with the none LoS

(NLoS) paths [10]. Thus, in the following derivation, we focus

on the estimation of the DOA of the LoS path and ignore

the effect of the NLoS paths. However, such effect will be

considered in the simulation.

A. CRB Analysis

As the training sequence is known at both the BS and the

UE, we have

ỹ= = y=B
∗
= = VW�

= aBS(\, q) +W�
= z̃=, (5)

where the subscript (.)0 of the channel parameters of the LoS

path is omitted for simplicity, V = Ua�
UE
(k, W)v, and z̃= =

B∗=z= has the same distribution as z=. By collecting ỹ= for

= = 0, . . . , # − 1, we have

ỹ = VW�aBS(\, q) + Ŵ� z̃, (6)

where ỹ = [ỹ)
0
, . . . , ỹ)

#−1
]) , W = [W0, . . . ,W#−1], Ŵ =

blkdiag(W0, . . . ,W#−1), and z̃ = [z̃)
0
, . . . , z̃)

#−1
]) . To de-

rive the CRB, first define ( , [\, q,Re{V}, Im{V}] as the

vector containing the parameters to be estimated. As ỹ ∼
CN

(
VW�aBS(\, q), f2Ŵ�Ŵ

)
, according to [11], the Fisher

information matrix (FIR) can be derived as follows

F =
2

f2
Re{A�W(Ŵ�Ŵ)−1W�A}, (7)

where A =
m(VaBS (\,q))

m(
is an #BS × 4 matrix and is given by

A = [Va1, Va2, aBS (\, q), jaBS (\, q)], (8)

where

a1 =

(
jc cos \ sin q[0, 1 . . . , & − 1]) ⊙ aH (\, q)

)
⊗ aI (q)

a2 =

(
jc sin \ cos q[0, 1 . . . , & − 1]) ⊙ aH (\, q)

)
⊗ aI (q)

+ aH (\, q) ⊗
(
−jc sin q[0, 1, . . . , % − 1]) ⊙ aI (q)

)
.

Recalling that W= = WRF,=WBB,=, we have

W = WRFWBB, Ŵ = ŴRFWBB, (9)

where WRF = [WRF,0, . . . ,WRF,#−1] ∈ C#BS×#RF# , WBB =

blkdiag(WBB,0, . . . ,WBB,#−1) ∈ C#RF#×#RF# , and ŴRF =

blkdiag(WRF,0, . . . ,WRF,#−1) ∈ C#BS#×#RF# . By substitut-

ing (9) into (7), we find that F can be simplified as

F=
2#RF

f2#BS

Re{A�WRFW�
RFA}, (10)

which follows from the fact that WBB is an invertable matrix

and Ŵ�
RF

ŴRF =
#BS

#RF
I. Then, the CRB matrix C = F−1, where

the diagonal elements reveal the minimum variances of the

associated estimates. As we focus on the estimation of \ and

q, we are interested in the left-top 2×2 sub-matrix of C, which

is denoted by C11. By rewriting F as a block matrix, we have

F =

[
F11 F12

F21 F22

]
, C11 = (F11 − F12F−1

22 F21)−1, (11)

where F<= = Re{A�
<WRFW�

RF
A=} for <, = = {1, 2}, and A1

and A2 are defined as the sub-matrices containing the first two

columns and the last two columns of A in (8), respectively.

B. Problem Formulation

From (11), we see that the CRB is a function of WRF. Thus,

one can improve the estimation performance via optimizing

WRF to minimize the CRB. That is, to solve

WRF,opt = arg min
WRF

tr(C11). (12)

The CRB, however, is associated with the unknown V and

DOA, and thus cannot be directly used as the objective

function. Nevertheless, we first propose the following lemma:

Lemma 1 The solution of (12) is independent of V.



3

Proof : According to (7) and the defination of F<=, both F11

and F12F−1
22

F21 in (11) are of form V2 5 (\, q,WRF), where

5 (\, q,WRF) is a function not related to V. Thus, tr(C11) is of

form V−2 5 (\, q,WRF). As V is not a function of W according

to its definition, the solution of (12) is not a function of V.

This completes the proof. �

According to Lemma 1, V can be set to 1 in the following

derivation without loss of generality. Further, if the range of

the DOA to be estimated is known a priori, we can then

optimize WRF to minimize the average CRB over that range.

Denoting the prior ranges of the azimuth and elevation angles

as [\b, \u] and [qb, qu], respectively, we uniformly sample

them as follows

\ 9 = \b +
( 9 − 1)
�
(\u − \b), for 9 = 1, . . . , �,

q: = qb +
(: − 1)
 
(qu − qb), for : = 1, . . . ,  .

(13)

Instead of solving the problem in (12), we optimize WRF

aiming at minimizing the average CRB over the sampled DOA

range subject to the unit modulus constraints. That is,

minimize
WRF

5 =
�∑
9=1

 ∑
:=1

tr(C11 (\ 9 , q:))

subject to | [w=,<]8 | = 1, ∀=, <, 8.
(14)

where C11 (\ 9 , q:) corresponds to the one by replacing \ and

q with \ 9 and q: in (11).

IV. MANIFOLD OPTIMIZATION ALGORITHM

It appears difficult to solve (14) because of not only the

complicated objective function, but also the highly non-convex

feasible set. Specifically, the analog beamformer WRF,= has a

block diagonal structure and only the non-zero elements in the

block matrices need to be optimized. Furthermore, they should

satisfy the unit modulus constraint. To tackle these difficulties,

we first introduce a sparse mask matrix P ∈ C#BS×#RF# as

P8 9 =
{

1 [WRF]8 9 ≠ 0

0 [WRF]8 9 = 0,
(15)

then we can rewrite the analog beamformer in a form of

WRF = P ⊙ W̃RF, where W̃RF ∈ C#BS×#RF# is an auxiliary

matrix variable without the block diagonal matrix constraint

and all of its elements should satisfy the unit modulus con-

straints. Thus, the feasible set of W̃RF is essentially a typical

Riemannian manifold [1], [12], i.e., X = {X ∈ C#BS×#RF# :��[X]8 9
�� = 1,∀8, 9}. Therefore, to minimize 5 with respect to

W̃RF (instead of WRF) becomes a Riemannian optimization

problem, which has been studied in [1], [12].

In this letter, we propose to extend the gradient-descend

(GD) algorithm to minimize the objective in (14) over the

Riemannian manifold. The basic idea is that in the 8-th

iteration, we first update the optimization variable W̃
(8)
RF

along

the opposite direction of the Riemannian gradient to achieve

a local minimizer on its tangent space, where the tangent

space is a linear space composed of all the vectors that

tangentially pass through W̃
(8)
RF

, and the Riemannian gradient is

the projection of the conjugate Euclidean gradient ∇ 5 (W̃(8)
RF
)

onto the tangent space. Subsequently, we retract the minimizer

on the tangent space back to the manifold to obtain W̃
(8+1)
RF

as

the finish of the iteration.

However, the application of manifold optimization is not

straightforward and the conjugate Euclidean gradient needs

to be derived first. Based on the differential rule d(X−1) =
−X−1d(X−1)X−1, we have from (11)

d (tr(C11)) = tr(Td(F11)) − tr(Td(F12)F−1
22 F21)

+ tr(TF12F−1
22 d(F22)F−1

22 F21) − tr(TF12F−1
22 d(F21)),

(16)

where T = −(F11 −F12F−1
22

F21)−2. We can further obtain from

(10) that 1

d(F<=) = W
(
A�
<WRFd(W�

RF)A= + A)<d(W∗RF)W)
RFA∗=

)
,

where W ,
#RF

f2#BS
. Substituting them into (16) and using

the fact that d(WRF) = P ⊙ d(W̃RF) and tr (A(B ⊙ C)) =

tr
(
(A ⊙ B) )C

)
for arbitrary matrices A, B and C, we have

d (tr(C11)) = Wtr

(( (
A1TA�

1 + A2F−1
22 F21TF12F−1

22 A�
2 −

2Re{A2F−1
22 F21TA�

1 }
)
WRF ⊙ P

)
d(W̃�

RF)
)
.

(17)

According to that d( 5 (W̃RF)) = tr(∇ 5 (W̃RF)d(W̃�
RF
)), we

obtain the Euclidean gradient from (17)

∇ 5 (W̃RF) = W
�∑

9=1

 ∑

:=1

( (
J 9 : +K 9 : − 2Re{Q 9 : }

)
WRF

)
⊙ P,

(18)

where

J 9 : = (A1TA�
1 ) | \=\ 9 ,q=q:

,

K 9 : = (A2F−1
22 F21TF12F−1

22 A�
2 ) | \=\ 9 ,q=q:

,

Q 9 : = (A2F−1
22 F21TA�

1 ) | \=\ 9 ,q=q:
.

(19)

The Riemannian gradient can be obtained by projecting the

Euclidean gradient onto the tangent space of W̃RF, i.e.,

grad 5
(
W̃RF

)
= ∇ 5

(
W̃RF

)
− Re{∇ 5

(
W̃RF

)
⊙ W̃∗RF} ⊙ W̃RF.

(20)

With the derived Riemannian gradient, W̃RF in the 8-th itera-

tion is updated as follows

[W̃(8)
RF
] ?@ =

[W̃(8−1)
RF
+ U (8)D(8) ] ?@

| [W̃(8−1)
RF
+ U (8)D(8) ] ?@ |

, (21)

where D(8) = −grad 5 (W̃(8−1)
RF
) and U (8) denote the negative

direction of Riemannian gradient and the Armijo backtrack-

ing step size, respectively. According to [14], [15], W̃RF is

guaranteed to converge to a local minimum of 5 (W̃RF) and

satisfy the unit modulus constraints. The overall algorithm is

summarized in Algorithm 1 and termed as CRB-MO, where

n is the convergence threshold. It is worth noting that as W

can be optimized offline, it thus does not lead to any extra

computational complexity in the real-time implementation.

1According to the differential rule [13], the term WRF is regarded as a
constant matrix during the derivation of the conjugate gradient.
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Algorithm 1 CRB-MO Algorithm

1: Randomly initialize W̃
(0)
RF

and set 8 = 0;

2: repeat

3: Compute the Riemannian gradient grad 5 (W̃(8)
RF
) accord-

ing to (18) and (20);

4: Update W̃
(8+1)
RF

according to (21);

5: 8 ← 8 + 1;

6: until 5 (W̃(8−1)
RF
) − 5 (W̃(8)

RF
) ≤ n;

7: WRF = P ⊙ W̃
(8)
RF

;

V. SIMULATION RESULTS

Throughout the simulations, we set #BS = 512 (% = 16,

& = 32), #UE = 4, #RF = 4 and # = 4. Without loss of gen-

erality, a typical maximum likelihood (ML) based algorithm

in [16] is adopted for DOA estimation with different receive

beamformers, i.e., the traditional random beamformers and the

beamformers optimized via proposed CRB-MO algorithm with

� =  = 180 to guarantee sufficient angular resolutions. The

mean square error (MSE) of the azimuth angle \ is adopted

as the performance metric in the following figures, while the

MSE of the elevation angle q has been observed with similar

result. The SNR is defined as %
f2 . All the results were obtained

from the average over 1000 independent channel realizations.

Fig. 1 shows the average MSE as a function of SNR in a

typical mmWave communication scenario with \ ∈ [− c
3
, c

3
],

q ∈ [ 5c
12
, 7c

12
] and U ∼ CN(0, 1). It is assumed that such

DOA range is known a priori in the CRB-MO algorithm. We

can see that with the optimized receive beamformers from

the CRB-MO algorithm, the CRB is significantly improved

by around 5dB in the required SNR over that with randomly

generated beamformers. Meanwhile, the ML DOA algorithm

with the optimized beamformers achieves similar performance

improvement and approaches the CRB.

To better explain the phenomenon in Fig. 1, Fig. 2 further

depicts the array power response, which is defined as 6(q) =
|WaBS (\, q) | with a fixed \ = c

2
, of the resulting beamformers

of the two algorithms. We can see that the random beamformer

exhibits a relatively flat power distribution in the whole angle

domain. However, the proposed CRB-MO algorithm utilizes

the prior information and generates a beam whose power is

more concentrated on the specific DOA range. This provides

some insight for the HBF design in the beam training stage

for practical applications.

Fig. 3 further demonstrates the comparison result with

\ ∈ [− c
6
, c

6
] and q ∈ [ 5c

12
, 7c

12
], which can be regarded

as a scenario in the warm boot stage where one may have

more accurate information about the DOA range. Compared

to the result in Fig. 1, both algorithms achieve a lower

MSE as the DOA range is narrowed. However, the CRB-

MO algorithm achieves a higher gain due to the more specific

prior information. This is because, as similar to that in Fig.

2, we observed a more concentrated power distribution with a

narrower DOA range.

Finally, Fig. 4 depicts the estimation result in a typical two-

path scenario, where the power of the NLoS path is −5dB

lower than that of the LoS path [10]. The DOA ranges of the
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Fig. 4. Comparison of optimized HBF
and random HBF under a multi-path
channel model.

two paths are set as follows: \0 ∈ [− c3 ,
c
3
], q0 ∈ [ 5c12

, 7c
12
],

\1 ∈ [− c2 ,
c
2
] and q1 ∈ [0, c]. For the CRB-MO algorithm,

we only utilize the prior information of the LoS path. The

CRB curves correspond to the joint estimation of the two paths

based on the received signal, while the ML curves correspond

to the DOA estimation of only the LoS path by taking the

NLoS interference as part of the noise. Thus, at high SNRs,

the ML curves become flat. However, it can be seen that the

CRB-MO algorithm still significantly outperforms the random

algorithm in the multi-path scenario. Although in this letter we

focus on the DOA estimation of the LoS path, the proposed

CRB-MO algorithm can also be extended to the beamformer

design for the joint DOA estimation of the multiple paths.

VI. CONCLUSION

This letter proposed an HBF design approach for improving

the DOA estimation performance based on the CRB analysis.

By exploring the a prior information of the DOA range, we

formulated an HBF optimization problem aiming at minimiz-

ing the average CRB over the prior DOA range subject to

the constraint on the PC analog beamformer, and solved it by

applying MO with guaranteed convergence. Simulation results

have demonstrated the substantial performance improvement

of the proposed CRB-MO algorithm over the convectional

random beamforming.
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