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Adaptive State-Space Multitaper Spectral Estimation
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Abstract—Short-time Fourier transform (STFT) is the most
common window-based approach for analyzing the spectrotem-
poral dynamics of time series. To mitigate the effects of high
variance on the spectral estimates due to finite-length, inde-
pendent STFT windows, state-space multitaper (SSMT) method
used a state-space framework to introduce dependency among
the spectral estimates. However, the assumed time-invariance
of the state-space parameters makes the spectral dynamics
difficult to capture when the time series is highly nonstationary.
We propose an adaptive SSMT (ASSMT) method as a time-
varying extension of SSMT. ASSMT tracks highly nonstationary
dynamics by adaptively updating the state parameters and
Kalman gains using a heuristic, computationally efficient expo-
nential smoothing technique. In analyses of simulated data and
real human electroencephalogram (EEG) recordings, ASSMT
showed improved denoising and smoothing properties relative
to standard multitaper and SSMT approaches.

This manuscript is an extended version of the IEEE Signal
Processing Letters paper (doi:10.1109/LSP.2022.3142670),
with the supplementary material as the appendix.

Index Terms—State-space model, spectral estimation, multita-
per method, adaptive estimation, Kalman filter

I. INTRODUCTION

NONSTATIONARY time series with time-varying proba-
bility structures are ubiquitous. Some examples include

speech and image recordings [1], [2], oceanographic and
seismic signals [3], neural spike trains [4], and electroen-
cephalogram (EEG) [5]. We are interested in analyzing the
nonstationary data through the lens of the time-varying spectral
dynamics, which yields valuable information on the underlying
system. The traditional approach has been to segment the data
into independent overlapping or non-overlapping windows,
assuming local stationarity [6] within each window, and to
apply Fourier or wavelet transform [7], [8].

Despite the popularity, the windowing approach suffers from
spectral estimates of high variance within each window, due
to finite window-length [9] and the restrictive independence
assumption for different windows. The state-space multitaper
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(SSMT) framework [10] and its extensions [11]–[14] have
been proposed as the solutions, by positing a time-invariant
latent state-space model in the time-frequency domain, with
each state representing the Fourier coefficients in each window.
Since the states are linked by stochastic continuity constraint
across windows, the spectral estimates are not independent.

However, the use of time-invariant parameters limits the
capacity of SSMT to track strong nonstationarity that com-
monly occurs in systems neuroscience and manifests as strong
spectral fluctuations due to fluctuations in system properties.
Although time-varying state-space model offers an obvious
solution, traditional parameter estimation approaches based
on expectation-maximization (EM) algorithm [15] makes it
less practical for real-time applications - The parameters must
be re-estimated with every incoming batch of data, and thus
incurs high computational costs.

We propose a time-varying extension of SSMT with an
efficient and adaptive parameter estimation scheme, termed
an adaptive SSMT (ASSMT) method. Based on a novel non-
stationarity metric derived from spectral fluctuation, ASSMT
adaptively adjusts the state parameters and consequently
Kalman gain. This allows ASSMT to switch between re-
moving background noise and tracking spectral fluctuation
in a data-driven manner. The estimation for time-varying
parameters requires only single pass through the data, making
it well suited for real-time applications. The paper is organized
as follows. In Section II, we review the SSMT framework. In
Section III, we formulate the ASSMT framework. In Section
IV and V, the results and conclusion are presented.

II. REVIEW OF STATE-SPACE MULTITAPER METHOD

We first review the SSMT algorithm in [10]. Consider a
nonstationary time series yt sampled at frequency fs as

yt = xt + εt, t = 1, . . . , T (1)

where xt is a locally stationary latent Gaussian process [16]
with the measurement noise εt ∼ N (0, σ2

ε). Leveraging the
local stationary property, we divide these signals into K
nonoverlapping stationary intervals of J samples, such that
T = KJ . The segmented vectors for interval k are denoted as
Yk, Xk, εk ∈ RJ , with the jth element as Yk,j = yJ(k−1)+j

for k = 1, . . . ,K and j = 1, . . . , J .
To perform time-frequency analysis, we introduce the latent

Zk = (Zk,1, . . . , Zk,J) ∈ CJ , where Zk,j is a complex
Gaussian variable with the magnitude corresponding to the
power at the normalized frequency ωj = 2π(j − 1)/J and
interval k [17]. To model the evolution of spectra across the
windows, we assume that {Zk}Kk=1 follow a random walk prior

Zk = Zk−1 + vk, (2)
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where the state noise vk is a complex Gaussian process with
a diagonal covariance I(σ2

v,j), i.e., vk ∼ CN (0, I(σ2
v,j)). The

prior encodes two important properties of {Zk}Kk=1. First, the
state variance σ2

v,j controls the smoothness of the process, with
a large value indicative of non-smooth or fluctuating process.
Second, Zk,j and Zk,j′ for j 6= j′ are independent a priori.

We can link the time-frequency process {Zk}Kk=1 with time-
domain observation {Yk}Kk=1, using the Fourier transform
matrix F ∈ CJ×J with Fj,l = J−1/2 exp(−i2π(l − 1)j/J)
and the inverse Fourier matrix W ∈ CJ×J , such that FW = I ,

Yk = Xk + εk = WZk + εk (3)

⇒ FYk = FWZk + Fεk = Zk + εFk ,

where εFk ∼ CN (0, I(σ2
ε)), since FI(σ2

ε)W = I(σ2
ε).

Along with the state-space model, we incorporate the data
tapers to further reduce the variance of the spectral estimates.
Specifically, we use M Slepian tapers, leading to the multi-
taper (MT) method that optimally balances the bias-variance
trade-off via bandwidth adjustment [18], [19]. This essentially
produces M independent set of state-space models,

Y
(m),F
k = Z

(m)
k + ε

(m),F
k (4)

Z
(m)
k = Z

(m)
k−1 + v

(m)
k , (5)

where v(m)
k ∼ CN (0, I(σ

2,(m)
v,j )), ε(m),F

k ∼ CN (0, I(σ
2,(m)
ε )),

Y
(m)
k denotes the mth Slepian taper applied to Yk, Y (m),F

k

denotes Fourier transform of Y (m)
k , i.e., Y (m),F

k = FY
(m)
k ,

and Z(m)
k represents the mth spectral eigen-coefficient of Zk.

The variants of SSMT modify Eqs. (4) or (5) [11]–[14].
We now focus on ωj for simplicity. Based on Eqs. (4) and

(5), we derive a Kalman filter algorithm for the estimation of
Z

(m)
k,j using Kalman gain C(m)

k,j

Z
(m)
k|k,j = (1− C(m)

k,j )Z
(m)
k−1|k−1,j + C

(m)
k,j Y

(m),F
k,j (6)

σ
2,(m)
k|k,j = (1− C(m)

k,j )(σ
2,(m)
k−1|k−1,j + σ

2,(m)
v,j ), (7)

where the notation k|s denotes the estimate on interval k given
the data observed up to interval s and C(m)

k,j is given as

C
(m)
k,j =

σ
2,(m)
k−1|k−1,j + σ

2,(m)
v,j

σ
2,(m)
ε + σ

2,(m)
k−1|k−1,j + σ

2,(m)
v,j

. (8)

The spectrogram estimate at frequency ωj on interval k is

fSSMT
k (ωj) = M−1

M∑
m=1

|Z(m)
k|k,j |

2. (9)

The parameters {σ2,(m)
v,j }J,Mj,m=1 and {σ2,(m)

ε }Mm=1 are estimated
with EM algorithm [15]. SSMT tracks nonstationarity in the
data with the time-invariant parameters σ

2,(m)
v,j and σ

2,(m)
ε ,

since Z(m)
k|k,j 6= Z

(m)
k−1|k−1,j and thus fSSMT

k (ωj) 6= fSSMT
k−1 (ωj).

III. ADAPTIVE SSMT

Although SSMT can model slowly time-varying spectral
dynamics, it is restrictive for highly fluctuating spectral dy-
namics. Such strong nonstationarity (or fluctuation) is common
in EEG with external intervention to the brain or with the

change of the brain state during anesthesia/sleep [20]. Fig. 1
shows a snippet of human anesthesia EEG in which SSMT
(Fig. 1(b)) cannot track the apparent dynamics shown by the
MT approach (Fig. 1(a)). However, the proposed ASSMT
(Fig. 1(c)) is able to capture the spectral dynamics and remove
non-relevant background activity.
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Fig. 1. A spectrogram snippet estimated with (a) MT (b) SSMT (c) ASSMT.

The failure of SSMT is due to the time-invariant parame-
ters, as the Kalman gain quickly converges to a steady-state
value C(m)

∞,j [21]. Denoting the observation prediction error as
∆Y

(m)
k,j = Y

(m),F
k,j −Z(m),F

k−1|k−1,j and the latent estimate change

as ∆Z
(m)
k,j = Z

(m)
k|k,j − Z

(m)
k−1|k−1,j , we can express Eq. (6) as

∆Z
(m)
k,j = C

(m)
∞,j∆Y

(m)
k,j . If C(m)

∞,j is low (SSMT for Fig. 1(b)),
Z

(m)
k|k,j fails to reflect fluctuation in Y

(m),F
k,j . Consequently,

fSSMT
k cannot reliably track the spectral dynamics.

To resolve this issue, adaptive SSMT (ASSMT) posits a
time-varying state-space model, to allow the adaptive change
of σ2,(m)

v,j . Specifically, we replace v(m)
k ∼ CN (0, I(σ

2,(m)
v,j ))

in Eq. (5) with v
(m)
k,j ∼ CN (0, I(σ

2,(m)
v,k,j )), to indicate the

state variance’s dependence on time. This prevents Kalman
gain from converging to a steady-state value, allowing the
algorithm to produce more flexible spectrogram estimates.
σ
2,(m)
ε remains constant across windows because we assume

stationary background noise.
With the modified generative model, we now address when

and how ASSMT tracks varying degrees of nonstationarity. We
first quantify the notion of nonstationarity, and then propose
an adaptive parameter estimation approach.

A. Measure of nonstationarity

We define Ỹ (m)
k,j = E|Y (m),F

k,j −Y (m),F
k−1,j |2 as the measure of

nonstationarity, which is the expected observation difference
and a function of window, frequency, and taper. Intuitively,
we use high spectral fluctuation as a proxy for high nonsta-
tionarity, that is, when Ỹ

(m)
k,j exceeds a frequency-dependent

threshold βj .
To estimate Ỹ

(m)
k,j , we use exponential moving average

(EMA), often used as a simple, yet effective approach to
estimate the expectation in the filtering literature [22]

Ỹ
(m)
k,j = (1− α)Ỹ

(m)
k−1,j + α|Y (m),F

k,j − Y (m),F
k−1,j |

2, (10)

where 0 ≤ α ≤ 1 is a smoothing factor chosen a priori. This
approach allows us to use Ỹ

(m)
k,j as a heuristic indicator of

strong nonstationarity, decoupled from the generative model
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and hence the estimation procedure of Z(m)
k,j . The choice of α

reflects the belief on the impulsiveness of nonstationarity and
the volatile nature of the state transitions. With large α, Ỹ (m)

k,j

is sensitive to instantaneous fluctuation.

B. Estimation of parameters & adaptive thresholding

We now examine how to use Ỹ
(m)
k,j to set βj and subse-

quently estimate the parameters. Using Eq. (4), we have

Ỹ
(m)
k,j = E|Y (m),F

k,j − Y (m),F
k−1,j |

2 (11)

= E|(Z(m)
k,j − Z

(m)
k−1,j) + (ε

(m),F
k − ε(m),F

k−1 )|2

= E|Z(m)
k,j − Z

(m)
k−1,j |

2 + E|ε(m),F
k − ε(m),F

k−1 |
2,

where we use the uncorrelatedness of the two differences.
Next, we use the fact that 1) E|Z(m)

k,j −Z
(m)
k−1,j |2 = σ

2,(m)
v,k,j and

2) ε(m),F
k and ε

(m),F
k−1 are independent with variance σ2,(m)

ε ,
hence E|ε(m),F

k − ε(m),F
k−1 |2 = 2σ

2,(m)
ε , which leads to

E|Y (m),F
k,j − Y (m),F

k−1,j |
2 = σ

2,(m)
v,k,j + 2σ2,(m)

ε . (12)

This establishes the connection between the nonstationarity
metric, Ỹ (m)

k,j , and the two sources of variance in our model.
With Eq. (10) and Eq. (12), we can estimate σ

2,(m)
v,k,j . For

σ
2,(m)
ε , we use σ̂2,(m)

ε estimated from SSMT. This leads to

σ̂
2,(m)
v,k,j = Ỹ

(m)
k,j − 2σ̂2,(m)

ε . (13)

We further lower bound σ̂
2,(m)
v,k,j for two reasons. First, we

impose that the time-varying SNR, γk,j = σ
2,(m)
v,k,j /σ

2,(m)
ε ,

is greater than the baseline SNR of the system, i.e., γk,j ≥
γbaseline
k,j . Second, we require nonnegative σ̂2,(m)

v,k,j . Since SSMT
estimates the baseline properties of the data, we set γbaseline

k,j =

σ̂
2,(m),SSMT
v,j /σ̂

2,(m)
ε . This yields the estimation procedure

σ̂
2,(m)
v,k,j = max( Ỹ

(m)
k,j − 2σ̂2,(m)

ε , σ̂
2,(m),SSMT
v,j ). (14)

This obviates the need for EM beyond the initial phase
for estimating σ̂

2,(m)
ε and σ̂

2,(m),SSMT
v,j . Although EM can

estimate the time-varying parameters, it requires multiple
forward/backward passes through the entire data, which is
computationally expensive. In addition, with every new obser-
vation, σ̂2,(m)

v,k,j in the earlier windows need to be re-estimated.

C. Estimation of nonstationary spectra

We use Kalman filter with σ̂
2,(m)
v,k,j to estimate the spec-

trogram fASSMT
k (ωj). ASSMT thus operates with two dif-

ferent modes, depending on βj = 2σ̂
2,(m)
ε + σ̂

2,(m),SSMT
v,j .

If Ỹ (m)
k,j ≥ βj , ASSMT uses larger state variance to track

high nonstationarity. Given σ2,(m)
k−1|k−1,j and σ̂2,(m)

ε in Eq. (8),

we observe that the increase in σ̂
2,(m)
v,k,j leads to the increase

in C
(m)
k,j . This agrees with our intuition, since we want the

Kalman gain to increase such that ∆Z
(m)
k,j explains a greater

portion of ∆Y
(m)
k,j . For Ỹ (m)

k,j < βj , ASSMT simply uses the
baseline σ̂2,(m),SSMT

v,j and thus operates with a fixed Kalman
gain. This explains how ASSMT with adaptive state variance
is able to track strong nonstationarity.

IV. RESULTS

We apply ASSMT to two datasets: 1) nonstationary sim-
ulated data and 2) EEG data from a patient under propofol
anesthesia. We compare the spectrogram estimates between
MT, SSMT, and ASSMT. All spectrograms are in the dB scale.

A. Application to Simulated Data

We simulate the data as a superposition of amplitude-
modulated process yt,1 and frequency-modulated process yt,2.
The process yt,1 is generated from an AR(6) process centered
at 11 Hz. The process yt,2 is generated from ARMA(6,4)
with varying pole loci. The observations are given by yt =
yt,1 cos(2πf0t)+yt,2+σvt, where f0 = 0.02 Hz, vt ∼ N (0, 1)
and σ is chosen to achieve an SNR of 30 dB. More details
can be found in [12]. For MT, we use 6-second windows with
50% overlap and M = 3 Slepian tapers, and 6-second non-
overlapping windows for both SSMT and ASSMT. For SSMT,
we use the entire data to estimate the parameters. For ASSMT,
we use the initial 300 seconds of the data to compute the
baseline parameters and use α = 0.95.

Fig. 2 shows the ground truth and the estimated spectro-
grams. Although MT captures the spectral dynamics reason-
ably well, it picks up background noise and spectral artifacts
(i.e., vertical lines), and induces mixing of adjacent frequency
bands due to low resolution. SSMT (Fig. 2 (c)) resolves
these issues with sharper spectral localization and removal of
spectral artifacts, benefitting from the state-space prior.

ASSMT also shares the artifact rejection and noise reduc-
tion properties of SSMT. Moreover, ASSMT performs better
denoising, as evidenced in the 5 to 20 Hz frequency band.
The Itakura-Saito divergence (IS) [23] between the ground
truth and the spectrogram estimate also confirms this obser-
vation, with ASSMT attaining the lowest value (ISMT = 6.51,
ISSSMT = 3.16, ISASSMT = 2.75). We attribute this difference
to SSMT’s state variance σ̂2,(m),SSMT

v,j and Kalman gain fixed
to high values, between 5 to 20 Hz. However, since ASSMT
does not commit to a fixed value, it can adaptively change the
Kalman gain at different regimes of the data.

B. Application to EEG recorded during anesthesia

The EEG was recorded (fs = 250 Hz) from a volunteer
receiving propofol administered with increasing rate, followed
by the decreasing rate [20]. This setup induces altering states
of unconsciousness (or brain states), resulting in varying levels
of nonstationarity. We used M = 5 Slepian tapers, J = 1, 000
samples. For SSMT, we estimate the spectrogram based on
the parameters estimated from 1) the initial 4 minutes of data
(Fig. 3 (b)) and 2) the entire data (Fig. 3 (c)). For ASSMT, we
use the initial 4 minutes to compute the baseline parameters.
Fig. 3 shows the estimated spectrograms.
SSMT vs. ASSMT: SSMT based on the initial 4 minutes
of the data (Fig. 3 (b)) produces low estimates for σ̂2,(m)

v,j

due to absence of spectral dynamics for the baseline state.
Although it removes background noise well, as a result, it
misses most of the strong spectral fluctuation, as evidenced in
extreme denoising of the spectra from 40 min to 120 min.
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Fig. 2. Spectrograms for simulated data (a) ground truth (b) MT (c) SSMT
(d) ASSMT with α = 0.95.
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Fig. 3. Propofol anesthesia EEG spectrograms (a) MT (b) SSMT with initial
4-min EM window (c) SSMT with full data EM window (d) ASSMT with
α = 0.95 (e) ASSMT with α = 0.05. Both ASSMT use initial 4-min EM
window. Red horizontal lines correspond to 10 and 15 Hz.

This can be mitigated by applying EM to a different section
of the data, or the entire data. Due to high estimates for σ̂2,(m)

v,j ,
SSMT better captures the strong nonstationarity (Fig. 3 (c)).
However, it fails to denoise the baseline state (0 to 40 min) due
to high Kalman gain, as similarly observed in the simulation.
These results demonstrate a drawback of the time-invariant
assumption, as σ̂2,(m)

v,j estimated from different sections could
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Fig. 4. Kalman gain and state noise variance for SSMT and ASSMT for the
first taper m = 1. (a) Kalman gain and (b) State noise variance at 10 Hz. (c)
Kalman gain and (d) state noise variance at 15 Hz.

yield significantly different spectrogram estimates.
In contrast, ASSMT adaptively denoises the spectrogram

(Fig. 3 (d-e)) even with the initial baseline parameters, the
same setting for which SSMT failed (Fig. 3 (b)). The time-
varying nature of the model allows it to switch between
low σ̂

2,(m)
v,k,j , appropriate for removing background noise, and

high σ̂2,(m)
v,k,j , appropriate for capturing the spectral fluctuation,

without fully committing to either parameters.
Another difference is the computation time. The time for

using EM on the entire data and Kalman filtering is 400
seconds. For ASSMT, however, the procedure takes 6 seconds,
demonstrating an appreciable reduction in computational time
and thus, making it more suitable for real-time application.
Effect of Kalman gain: To further understand ASSMT, we
analyze the evolution of state variance and the Kalman gain
across time at the representative frequency bands (10 and
15 Hz), shown in Fig. 4. For both frequency bands, we
observe that the state variance and consequently the Kalman
gain is increased above the threshold, in tandem with the
large spectral fluctuation, as desired. On the other hand, The
SSMT Kalman gain stays fixed at either 0.1 (for initial 4-
min estimation, solid black in Fig. 4) or 0.9 (for entire data
estimation, dotted black in Fig. 4).
Effect of ααα: We observe that the denoising performance
of ASSMT is robust towards the choice of α. To further
understand how α affects the filtering/denoising operation,
we analyze how σ̂

2,(m)
v,k,j and Kalman gain change over time.

ASSMT with α = 0.95 (red) is dominated by the heavy
fluctuation, |Y (m),F

k,j − Y
(m),F
k−1,j |2. In contrast, ASSMT with

small α = 0.05 (blue) shows smoother state variance and
Kalman gain. In this case, ASSMT starts adapting when there
is significant evidence for nonstationarity. This explains why
α = 0.05 performs more denoising than α = 0.95, as it is less
susceptible to instantaneous fluctuations (40 min., 0 to 10 Hz)
and background noise (75 to 95 min., 2 to 10 Hz).
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V. CONCLUSION

We introduced an adaptive state-space multitaper (ASSMT)
framework for estimating spectral dynamics in the nonsta-
tionary time series. By relaxing the time-invariant parameters
assumption and proposing an adaptive parameter estimation
scheme, we demonstrated that ASSMT was able to capture
strong power fluctuations more reliably compared to SSMT.
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A. APPLICATION TO EEG RECORDED DURING ANESTHESIA

We apply ASSMT to EEG recording of another volunteer
receiving propofol anesthesia. All parameter settings of SSMT
and ASSMT are same as those used in the main paper.
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Fig. 5. Propofol anesthesia EEG spectrograms (a) MT (b) SSMT with initial
4-min EM window (c) SSMT with full data EM window (d) ASSMT with
α = 0.95 (e) ASSMT with α = 0.05. Both ASSMT use initial 4-min EM
window.
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