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Abstract—Tensor robust principal component analysis
(TRPCA) is a fundamental model in machine learning and
computer vision. Recently, tensor train (TT) decomposition has
been verified effective to capture the global low-rank correlation
for tensor recovery tasks. However, due to the large-scale tensor
data in real-world applications, previous TRPCA models often
suffer from high computational complexity. In this letter, we
propose an efficient TRPCA under hybrid model of Tucker
and TT. Specifically, in theory we reveal that TT nuclear norm
(TTNN) of the original big tensor can be equivalently converted
to that of a much smaller tensor via a Tucker compression
format, thereby significantly reducing the computational cost of
singular value decomposition (SVD). Numerical experiments on
both synthetic and real-world tensor data verify the superiority
of the proposed model.

Index Terms—Tensor analysis, robust tensor decomposition,
tensor train decomposition, tensor robust principal component
analysis.

I. INTRODUCTION

Tensor decomposition is a fundamental tool for multi-way
data analysis [1]–[3]. In real-world applications, tensor data
are often corrupted with sparse outliers or gross noises [4], [5].
For example, face images recorded in practical applications
might contaminate gross corruptions due to illumination and
occlusion noise. To alleviate this issue, tensor robust prin-
cipal component analysis [6]–[9] (TRPCA) or robust tensor
decomposition [10]–[12] (RTD) were proposed to estimate the
underlying low-rank and sparse components from their sum.
In the past decades, it has been shown that the low-rank and
sparse components can be exactly recovered by solving the
following minimization problem:

min
X,S
‖X‖� + τ‖S‖1, s.t. Y = X+ S, (1)

where ‖ · ‖� and ‖ · ‖1 denote tensor nuclear norm and `1
norm, respectively, and τ > 0 is a hyper-parameter balancing
the low-rank and sparse components.

The essential element of the TRPCA problem is to capture
the high-order low-rank structure. Unlike the matrix case,
there is no unified tensor rank definition due to the complex
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multilinear structure. The most straightforward tensor rank is
CANDECOMP/PARAFAC (CP) rank, which is defined on the
smallest number of rank-one tensors [1]. Nevertheless, both
CP rank and its convex surrogate CP nuclear norm are NP-
hard to compute [13], [14]. To alleviate such issue, Zhao et al.
[15] proposed a variational Bayesian inference framework for
CP rank determination and applied it to the TRPCA problem.
Compared with CP rank, Tucker rank is more flexible and
interpretable since it explores the low-rank structure in all
modes. Tucker rank is defined as a set of ranks of unfolding
matrices associated with each mode [16]. Motivated by the
convex surrogate of matrix rank, the sum of the nuclear norm
(SNN) was adopted as a convex relaxation for Tucker rank
[17]. The work [7] proposed an SNN-based TRPCA model.
Huang et al. [18] presented the exact recovery guarantee for
SNN-based TRPCA. Recently, TT rank-based models have
achieved both theoretical and practical performance better than
Tucker rank models in the field of tensor recovery applications.
Compared with Tucker rank, TT rank was demonstrated to
capture global correlation of tensor entries using the concept of
von Neumann entropy theory [19]. Gong et al. [20] showed the
potential advantages of TT rank by investigating the relation-
ship between Tucker decomposition and TT decomposition.
Similar to SNN, Bengua et al. [19] proposed TT nuclear norm
(TTNN) using the sum of nuclear norm of TT unfolding matrix
along with each mode. Yang et al. [21] proposed a TRPCA
model based on TTNN and applied it to tensor denoising tasks.

It is significantly important to have efficient optimization
algorithms for TRPCA problem. This is especially challenging
for large-scale and high-order tensor data. In this letter, we
propose an efficient TT rank-based TRPCA model which
equivalently converts the TTNN minimization problem of the
original tensor to that of a much smaller tensor. Thus, the
computational complexity of TTNN minimization problem
can be significantly reduced. To summarize, we make the
following contributions:

• We demonstrate that the minimization of TTNN on the
original big tensor can be equivalently converted to a
much smaller tensor under a Tucker compression format.

• We propose an efficient TRPCA model and develop
an effective alternating direction method of multipliers
(ADMM) based optimization algorithm.

• We finally show that the proposed model achieves more
promising recovery performance and less running time
than the state-of-the-art models on both synthetic and
real-world tensor data.
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II. NOTATION AND PRELIMINARY

A. Notations

We adopt the notations used in [1]. The set {1, 2, · · · ,K}
is denoted as [K]. A scalar is given by a standard lowercases
or uppercases letter x,X ∈ R. A matrix is given by a
boldface capital letter X ∈ Rd1×d2 . A tensor is given by
calligraphic letter X ∈ Rd1×d2×···dK . The (i1, i2, · · · , iK)
entry of tensor X is given by X(i1, i2, · · · , iK). The standard
mode-k unfolding [1] of tensor X ∈ Rd1×d2×···×dK is given
by X(k) ∈ Rdk×d1···dk−1dk+1···dK , and the corresponding
matrix-tensor folding operation is given by sfoldk(X(k)).
Another mode-k unfolding for TT decomposition [22] is
denoted as X[k] ∈ Rd1···dk−1×dk···dK , and the corresponding
matrix-tensor folding operation is denoted as foldk(X[k]).

B. Tensor Train Decomposition

Definition 1 (TT decomposition [22]). The tensor train (TT)
decomposition represents a Kth-order tensor Y ∈ Rd1×···×dK
by the sequence multilinear product over a set of third-
order core tensors, i.e., Y = TT(G(1), · · · ,G(K)), where
G(k) ∈ Rrk−1×dk×rk , k ∈ [K], and rK = r0 = 1. Element-
wisely, it can be represented as

Y (i1, i2, · · · , iK) =

r0,··· ,rK∑
υ0,··· ,υK

K∏
k=1

G(k)(υk−1, ik, υk). (2)

The size of cores, rk, k = 1, · · · ,K − 1, denoted by a vector
[r1, · · · , rK−1], is called TT rank.

Definition 2 (TT nuclear norm [19]). The tensor train nuclear
norm (TTNN) is defined by the weighted sum of nuclear norm
along each unfolding matrix:

‖Y‖ttnn :=

K−1∑
k=1

αk‖Y[k]‖∗, (3)

where ‖ · ‖∗ is the matrix nuclear norm, αk > 0 denotes the
weight of mode-k unfolding.

III. EFFICIENT TRPCA UNDER HYBRID MODEL OF
TUCKER AND TT

A. Fast TTNN Minimization under a Tucker Compression

In the following theorem, we show that TT decomposition
can be equivalently given in a Tucker compression format.

Theorem 1. Let X ∈ Rd1×d2×···×dK be a Kth-order tensor
with TT rank [r1, · · · rK−1], it can be formulated as the
following Tucker decomposition format:

X = X̃×1 U1 ×2 · · · ×K UK ,Uk ∈ St(dk, Rk), (4)

where X̃ = TT(G̃
(1)
, G̃

(2)
, · · · , G̃

(K)
) denotes the core ten-

sor, G̃
(k)
∈ Rrk×Rk×rk+1 , and St(dk, Rk) := {U ∈

Rdk×Rk ,U>U = IRk
} is the Stiefel manifold.

Proof. The proof can be completed by discussing in the
following two cases.

Case 1: If dk > rkrk+1, we let Uk be the left singular
matrix of mode-2 unfolding of G(k), i.e., [Uk,Σk,V

>
k ] =

SVD(G
(k)
(2)), and we let G̃

(k)
= sfold2(ΣkV

>
k ).

Case 2: If dk ≤ rkrk+1, we let Uk be the identity matrix,
i.e., Uk = Idk , and G̃

(k)
= G(k).

Combing these two cases, the core tensor of TT decompo-
sition can be given by G(k) = G̃

(k)
×2 Uk, k ∈ [K]. Element-

wisely, we can present TT decomposition of X as

X(i1, · · · , iK)

=G(1)(:, i1, :)G
(2)(:, i2, :) · · ·G(K)(:, iK , :)

=

R1∑
j1=1

· · ·
RK∑
jK=1

G̃
(1)

(:, j1, :)U1(j1, i1)

G̃
(2)

(:, j2, :)U2(j2, i2) · · · G̃
(K)

(:, jK , :)UK(jK , iK)

=

R1∑
j1=1

· · ·
RK∑
jK=1

G̃
(1)

(:, j1, :)G̃
(2)

(:, j2, :) · · ·

G̃
(K)

(:, jK , :)U1(j1, i1)U2(j2, i2) · · ·UK(jK , iK)

=

R1∑
j1=1

· · ·
RK∑
jK=1

TT(G̃
(1)
, · · · , G̃

(K)
)(i1, · · · , iK)

U1(j1, i1) · · ·UK(jK , iK)

=TT(G̃
(1)
, · · · , G̃

(K)
)×1 U1(:, i1) · · · ×K UK(:, iK).

(5)

Thus, we have X = X̃ ×1 U1 · · · ×K UK , where X̃ =

TT(G̃
(1)
, G̃

(2)
, · · · , G̃

(K)
) and Uk ∈ St(dk, Rk), k ∈ [K].

Proof of Theorem 1 is completed.

In the next theorem, we demonstrate that under a Tucker
compression format, TTNN of the original tensor can be
equivalently converted to that of a much smaller tensor.

Theorem 2. Let X ∈ Rd1×···×dK be a Kth-order tensor with
TT rank [r1, · · · rK−1], the TTNN of X can be given by

‖X‖ttnn = ‖X̃‖ttnn, (6)

where X = X̃×1 U1 · · · ×K UK ,Uk ∈ St(dk, Rk), k ∈ [K].

Proof. According to Lemma 3 in [23], we have

X[k] = (Uk ⊗ · · · ⊗U1)X̃[k](UK ⊗ · · · ⊗Uk+1)
>. (7)

Note that the Kronecker product of multiple orthogonal ma-
trices is still orthogonal matrix, that is,

(Uk ⊗ · · · ⊗U1)
>(Uk ⊗ · · · ⊗U1)

= (U>k Uk ⊗ · · · ⊗U>1 U1) = IM ,
(8)

where M =
∏k
j=1Rj . Combining Eq. (8) and Eq. (7), we

have

‖X[k]‖∗ = ‖X̃[k]‖∗, k ∈ [K − 1]. (9)

Proof of Theorem 2 is completed.
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Algorithm 1 Optimization Algorithm for FTTNN-based
TRPCA Model
input Y, τ.
initialize µ = 10−2, µmax = 1010, ρ = 1.1, tol = 10−8, G(k)

using N (0, 1) distribution.
1: while not converge do
2: Update Mk,t+1 = foldk

(
Dαk/µ(X̃

t
[k]− 1

µ
Qk,t

[k] )
)

, where
Dαk/µ(·) denotes the SVT operator [24].

3: Update Xt+1 = Yt−St+ X̃
t×1U

t
1 · · ·×KUt

K + 1
µ
(Et−

Pt).

4: Update St+1 = Sτ (Yt−Xt+1+ 1
µ
Et), where Sτ denotes

the soft-shrinkage operator [25].
5: Update X̃

t+1
= 1

Kµ

(
(µXt+1+Pt)×1U

t,>
1 · · ·×KUt,>

K +∑K
k=1 µM

k,t +Qk,t
)

.
6: Update Ut+1

k = AkBk, where ( 1
µ
Pt

(k) + Xt+1
(k) )V(k) =

AkDkBk is the SVD of ( 1
µ
P(k) +X(k))V(k), and V =

Xt+1 ×1 U
t+1,>
1 · · · ×k−1 U

t+1,>
k−1 ×k+1 U

t,>
k+1 · · ·U

t,>
K .

7: Update Qk,t+1 = Qk,t+µ(Mk,t+1− X̃
t+1

), k ∈ [K−1].
8: Update Pt+1 = Pt + µ(Xt+1 − X̃

t+1 ×1 U
t+1
1 ×2 · · · ×K

Ut+1
K ).

9: Update µ = max(ρµ, µmax).
10: Check the convergence condition:
11: max

(‖St+1−St‖F
‖St‖F , ‖Xt+1−Xt‖F

‖Xt‖F

)
≤ tol.

12: t← t+ 1.
13: end while

B. Efficient TRPCA under Hybrid Model of Tucker and TT

TRPCA aims to recover the low-rank and sparse compo-
nents from their sum. The low-rank TT-based TRPCA model
can be formulated as

min
X,S
‖X‖ttnn + τ‖S‖1 s.t. Y = X+ S, (10)

where τ > 0 denotes the hyper-parameter. Combining Theo-
rem 1 and Theorem 2, problem (10) can be equivalently given
in a fast TTNN (FTTNN) minimization format:

min
X,X̃,S,{Uk}Kk=1

‖X̃‖ttnn + τ‖S‖1

s.t. X = X̃×1 U1 ×2 · · · ×K UK ,

Y = X+ S,Uk ∈ St(Ik, Rk).

(11)

By incorporating auxiliary variables {Mk}Kk=1, the augmented
Lagrangian function of problem (11) is given by

Lµ({Mk}K−1k=1 , X̃,S, {Uk}Kk=1, {Q
k}K−1k=1 ,E,P)

=

K−1∑
k=1

αk‖Mk
[k]‖∗ + τ‖S‖1

+

K−1∑
k=1

〈Qk,Mk − X̃〉+ µ

2
‖Mk − X̃‖2F

+ 〈Y−X− S,E〉+ µ

2
‖Y−X− S‖2F

+ 〈P,X− X̃×1 U1 ×2 · · · ×K UK〉

+
µ

2
‖X− X̃×1 U1 ×2 · · · ×K UK‖2F

s.t. Uk ∈ St(Ik, Rk), k ∈ [K],

(12)

TABLE I
RECOVERY RESULTS OF THE PROPOSED FTTNN AND TTNN ON

SYNTHETIC TENSOR DATA

d TT rank NR Alg RSE-X RSE-S Time

30

3
5% TTNN 1.52e-8 1.36e-10 18.05

FTTNN (ours) 1.83e-9 3.63e-11 7.29

10% TTNN 1.54e-8 1.30e-10 20.34
FTTNN (ours) 1.41e-9 2.31e-11 7.81

4
5% TTNN 1.52e-8 2.09e-10 17.64

FTTNN (ours) 1.52e-9 4.72e-11 8.29

10% TTNN 1.49e-8 2.00e-10 19.03
FTTNN (ours) 1.06e-9 2.69e-11 8.47

40

4
5% TTNN 1.46e-8 1.07e-10 129.69

FTTNN (ours) 1.89e-9 3.40e-11 23.27

10% TTNN 1.31e-8 9.64e-11 122.99
FTTNN (ours) 1.26e-9 1.77e-11 24.46

5
5% TTNN 1.31e-8 1.40e-10 112.36

FTTNN (ours) 1.45e-9 3.60e-11 28.58

10% TTNN 1.32e-8 1.34e-10 117.01
FTTNN (ours) 5.46e-7 1.25e-8 27.72

where µ > 0 denotes penalty parameter, {Qk}Kk=1,E and P

are Lagrange multipliers. All variables of Eq. (12) can be
solved separately based on ADMM method [26]. The update
details are summarized in Algorithm 1.

Compared with the time complexity O(d3K/2) in TTNN
of the original big tensor, the proposed FTTNN-based TR-
PCA model only requires time complexity O(KR2dK−1 +
KR3K/2 + KRdK), which will greatly accelerate the opti-
mization algorithm if the given rank R is significantly low.

IV. NUMERICAL EXPERIMENTS

In this section, we present the numerical experiment results
on synthetic tensor data as well as color image and video
data, of the proposed and state-of-the-art model, namely BRTF
[15], SNN [7], tSVD [6] and TTNN [21]. All experiments are
tested with respect to different sparse noise ratios (NR), which
is given by NR = N/

∏K
k=1 dk × 100%, where N denotes

the number of sparse component entries. The relative standard
error (RSE) is adopted as a performance metric, and is given
by RSE = ‖X∗ − X0‖F /‖X0‖F , where X∗ and X0 are the
estimated and true tensor, respectively. Matlab implementation
of the proposed method is publicly available 1.

A. Synthetic Data

We generate a low-rank tensor X0 ∈ Rd×d×d×d by TT
contraction [22] with TT rank [r, r, r]. The entries of each core
tensor are generated by i.i.d. standard Gaussian distribution,
i.e., g(k)vk,ik,vk+1

∼ N (0, 1), k ∈ [K]. The support of sparse
noise S0 is uniformly sampled at random. For (i1, i2, i3, i4) ∈
supp(S0), we let S0(i1, i2, i3, i4) = B(i1, i2, i3, i4), where B

is generated by the independent Bernoulli distribution. The
observed tensor is formed by Y = X0 + S0. The parameter
τ = 1/(K − 1)

∑K−1
k=1 1/

√
max(d1,k, d2,k). For the weight

αk, k ∈ [K − 1], we adopt the same strategy used in [19].
1) Effectiveness of the Proposed FTTNN-based TRPCA:

To verify the effectiveness of the proposed FTTNN-based
TRPCA, we conduct experiments on multiple conditions. We
let d ∈ {30, 40}, and r ∈ {3, 4, 5}. The sparse noise ratio

1https://github.com/ynqiu/fast-TTRPCA
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Fig. 1. Plots of RSE of recovered X∗, S∗ and running time versus varying
initialization of rank. (a) RSE-X versus different ranks; (b) RSE-S versus
different ranks; (c) Running time versus different ranks.

Original Corrupted BRTF SNN tSVD TTNN HTTNN (ours)

Fig. 2. Visual performance of the proposed FTTNN compared with related
BRTF, SNN, tSVD and TTNN (best seen in larger resolution on monitor).

is selected in a candidate set: NR ∈ {5%, 10%}. The given
rank is set to R1 = R4 = round(1.2r) and R2 = R3 =
round(1.2r2). For each fixed setting, we repeat the experiment
10 times and report their average. Table I shows the results of
FTTNN and TTNN on synthetic tensor data. As can be seen,
FTTNN provides lower RSE on both low-rank X and sparse S

components compared with TTNN in most cases. Moreover,
FTTNN is at least 2 times faster than TTNN when d = 30
and at least 4 times faster than TTNN when d = 40.

2) Robustness of the Given Rank: In this part, we inves-
tigate robustness of the given rank for FTTNN. Similar with
the above simulation, we set d ∈ {30, 40}, r ∈ {3, 4} and
let the sparse noise ratio NR ∈ {5%, 10%}. The given rank
of the proposed model is set to R1 = R4 = round(qr) and
R2 = R3 = round(qr2) with q ∈ {0.7, 0.8, · · · , 1.5}. In Fig.
1, we plot its average RSE and running time versus different
given ranks. It can be observed that the proposed FTTNN
achieves stable recovery performance versus different given
ranks if q ≥ 1, which verifies the correctness of Theorem
2. Additionally, running time of the proposed FTTNN grows
slowly as the given rank increases.

B. Robust Recovery of Noisy Light Field Images

In this part, we conduct robust noisy light field image recov-
ery experiment on four light field benchmark images2, namely,
“greek”,“medieval2”,“pillows” and “vinyl”. The dimensions
of each image is down sampled to 128 × 128 × 3 × 81.
The given rank of the proposed model is set to [80, 80, 3, 10]
and the weight α is set to [0.1, 0.8, 0.1]. For each image, we
randomly select 20% entries with their values being randomly

2https://lightfield-analysis.uni-konstanz.de/

TABLE II
AVERAGE RECOVERY RESULTS OF COMPARED MODELS ON FOUR

BENCHMARK IMAGES

Models greek medieval2 pillows vinyl Avg. time
Noisy 0.2753 0.5175 0.3364 0.5854 -
BRTF 0.0934 0.1666 0.0941 0.1965 112.75
SNN 0.0733 0.0859 0.0535 0.0852 930.04
tSVD 0.0516 0.0497 0.0383 0.0524 71.67
TTNN 0.0447 0.0403 0.0310 0.0333 104.68
FTTNN (ours) 0.0354 0.0348 0.0207 0.0286 53.13

10% 15% 20% 25% 30% 35% 40%

NR

0.1

0.3

BRTF

SNN

tSVD

TTNN

FTTNN (ours)

(a)

10% 15% 20% 25% 30% 35% 40%

NR

10
2

10
3

10
4

T
im

e

BRTF

SNN

tSVD

TTNN

FTTNN (ours)

(b)

Fig. 3. Plots of average RSE and running time of compared models under
different NR. (a) RSE versus NR; (b) running time versus NR.

distributed in [0, 255]. Fig. 2 depicts the 50th recovered image,
i.e., Y(:, :, :, 50). From Fig. 2, we can observe that the results
obtained by the proposed FTTNN are superior to the compared
models, especially for the recovery of local details. Table
II shows the recovered RSE and average running time on
four benchmark images. Compared with the state-of-the-art
models, the proposed FTTNN achieves both minimum RSE
and average running time in all light field images, which
indicates its efficiency.

C. Robust Recovery of Noisy Video Sequences

In this part, we investigate the robust recovery performance
of the compared models on five YUV video sequences3,
namely, “akiyo”,“bridge”,“grandma”, “hall” and “news”. We
select the first 100 frames of videos. Thus, the video data are
the fourth-order tensors of size 144×176×3×100. The given
rank and weight are set to the same as the above section. For
each video, we set the noise ratio NR ∈ {10%, · · · , 40%}. Fig.
3 shows the average RSE of five videos versus different NR.
The proposed FTTNN obtains the lowest average RSE on five
videos compared with state-of-the-art models. Additionally,
our model is the fastest models, and is at least two times faster
than TTNN. Since SNN, TTNN and tSVD have to compute
SVD or tSVD on the original large-scale video data, they run
slower.

V. CONCLUSION

In this letter, an efficient TRPCA model is proposed based
on low-rank TT. By investigating the relationship between
Tucker decomposition and TT decomposition, TTNN of the
original big tensor is proved to be equivalent to that of a
much smaller tensor under a Tucker compression format, thus
reducing the computational cost of SVD operation. Experi-
mental results show that the proposed model outperforms the
state-of-the-art models in terms of RSE and running time.

3http://trace.eas.asu.edu/yuv/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

REFERENCES

[1] Tamara G. Kolda and Brett W. Bader, “Tensor decompositions and
applications,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[2] Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou,
Qibin Zhao, Cesar Caiafa, and Huy Anh Phan, “Tensor decompositions
for signal processing applications: From two-way to multiway compo-
nent analysis,” IEEE Signal Processing Magazine, vol. 32, no. 2, pp.
145–163, 2015.

[3] Jing Zhang, Xinhui Li, Peiguang Jing, Jing Liu, and Yuting Su, “Low-
rank regularized heterogeneous tensor decomposition for subspace clus-
tering,” IEEE Signal Processing Letters, vol. 25, no. 3, pp. 333–337,
2017.

[4] Kohei Inoue, Kenji Hara, and Kiichi Urahama, “Robust multilinear prin-
cipal component analysis,” in 2009 IEEE 12th International Conference
on Computer Vision. IEEE, 2009, pp. 591–597.

[5] Ali Zare, Alp Ozdemir, Mark A. Iwen, and Selin Aviyente, “Extension
of PCA to higher order data structures: An introduction to tensors, tensor
decompositions, and tensor PCA,” Proceedings of the IEEE, vol. 106,
no. 8, pp. 1341–1358, 2018.

[6] Zemin Zhang, Gregory Ely, Shuchin Aeron, Ning Hao, and Misha
Kilmer, “Novel methods for multilinear data completion and de-noising
based on tensor-SVD,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 3842–3849.

[7] Donald Goldfarb and Zhiwei Qin, “Robust low-rank tensor recovery:
Models and algorithms,” SIAM Journal on Matrix Analysis and Appli-
cations, vol. 35, no. 1, pp. 225–253, 2014.

[8] Jineng Ren, Xingguo Li, and Jarvis Haupt, “Robust PCA via tensor
outlier pursuit,” Conference Record - Asilomar Conference on Signals,
Systems and Computers, pp. 1744–1749, 2017.

[9] Mehdi Bahri, Yannis Panagakis, and Stefanos Zafeiriou, “Robust Kro-
necker Component Analysis,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 41, no. 10, pp. 2365–2379, 2019.

[10] Quanquan Gu, Huan Gui, and Jiawei Han, “Robust tensor decomposition
with gross corruption,” Advances in Neural Information Processing
Systems, vol. 2, no. January, pp. 1422–1430, 2014.

[11] Miaohua Zhang, Yongsheng Gao, Changming Sun, John La Salle, and
Junli Liang, “Robust tensor factorization using maximum correntropy
criterion,” Proceedings - International Conference on Pattern Recogni-
tion, vol. 0, no. 1, pp. 4184–4189, 2016.

[12] Qun Li, Xiangqiong Shi, and Dan Schonfeld, “Robust HOSVD-based
higher-order data indexing and retrieval,” IEEE Signal Processing
Letters, vol. 20, no. 10, pp. 984–987, 2013.

[13] Christopher J Hillar and Lek-Heng Lim, “Most Tensor Problems Are
NP-Hard,” J. ACM, vol. 60, no. 6, 2013.

[14] Shmuel Friedland and Lek-Heng Lim, “Nuclear norm of higher-order
tensors,” Mathematics of Computation, vol. 87, no. 311, pp. 1255–1281,
sep 2017.

[15] Qibin Zhao, Guoxu Zhou, Liqing Zhang, Andrzej Cichocki, and
Shun Ichi Amari, “Bayesian Robust Tensor Factorization for Incomplete
Multiway Data,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 27, no. 4, pp. 736–748, 2016.

[16] Ledyard R Tucker, “Some mathematical notes on three-mode factor
analysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[17] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye, “Tensor
completion for estimating missing values in visual data,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1,
pp. 208–220, jan 2013.

[18] Bo Huang, Cun Mu, Donald Goldfarb, and John Wright, “Provable
models for robust low-rank tensor completion,” Pacific Journal of
Optimization, vol. 11, no. 2, pp. 339–364, 2015.

[19] Johann A. Bengua, Ho N. Phien, Hoang Duong Tuan, and Minh N.
Do, “Efficient Tensor Completion for Color Image and Video Recovery:
Low-Rank Tensor Train,” IEEE Transactions on Image Processing, vol.
26, no. 5, pp. 2466–2479, 2017.

[20] Xiao Gong, Wei Chen, Jie Chen, and Bo Ai, “Tensor denoising using
low-rank tensor train decomposition,” IEEE Signal Processing Letters,
vol. 27, pp. 1685–1689, 2020.

[21] Jing Hua Yang, Xi Le Zhao, Teng Yu Ji, Tian Hui Ma, and Ting Zhu
Huang, “Low-rank tensor train for tensor robust principal component
analysis,” Applied Mathematics and Computation, vol. 367, 2020.

[22] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on
Scientific Computing, vol. 33, no. 5, pp. 2295–2317, jan 2011.

[23] Cun Mu, Bo Huang, John Wright, and Donald Goldfarb, “Square deal:
Lower bounds and improved relaxations for tensor recovery,” 31st
International Conference on Machine Learning, ICML 2014, vol. 2, pp.
1242–1250, 2014.

[24] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen, “A singular
value thresholding algorithm for matrix completion,” SIAM Journal on
optimization, vol. 20, no. 4, pp. 1956–1982, 2010.

[25] Amir Beck and Marc Teboulle, “A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, jan 2009.

[26] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan
Eckstein, “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and Trends
in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010.


	I Introduction
	II Notation and Preliminary
	II-A Notations
	II-B Tensor Train Decomposition

	III Efficient TRPCA under Hybrid Model of Tucker and TT
	III-A Fast TTNN Minimization under a Tucker Compression
	III-B Efficient TRPCA under Hybrid Model of Tucker and TT

	IV Numerical Experiments
	IV-A Synthetic Data
	IV-A1 Effectiveness of the Proposed FTTNN-based TRPCA
	IV-A2 Robustness of the Given Rank

	IV-B Robust Recovery of Noisy Light Field Images
	IV-C Robust Recovery of Noisy Video Sequences

	V Conclusion
	References

