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Abstract—This letter presents a feature alignment method
for domain adaptive Acoustic Scene Classification (ASC) across
recording devices. First, we design a two-stream network, in
which each stream processes two features, i.e., Log-Mel spec-
trogram and delta-deltas, using two sub-networks. Second, we
investigate different loss functions for feature alignment between
the feature maps obtained by the source and target domains.
Last, we present an alternate training strategy to deal with the
data imbalance problem between paired and unpaired samples.
The experimental results obtained on the DCASE benchmarks
demonstrate the effectiveness and superiority of the proposed
method. The source code of the proposed method is available at
https://github.com/Jingqiao-Zhao/FAASC.

Index Terms—Acoustic Scene Classification, domain adaption,
feature alignment.

I. INTRODUCTION

Acoustic Scene Classification (ASC) is a popular research
topic in computational auditory scene analysis. Given an audio
sequence, ASC aims to detect and classify the environment in
which the audio was recorded. ASC has many practical appli-
cations, such as IoT services [1] and surveillance systems [2].

During the last decades, a wide spectrum of ASC methods
have been proposed. Classical ASC approaches usually use
hand-crafted features, such as Mel Frequency Cepstral Coeffi-
cients (MFCCs), and shallow classifiers, e.g., Hidden Markov
Models (HMMs) [3], Support Vector Machine (SVM) [4] and
decision trees [5]. In recent years, deep learning has become
the mainstream in ASC due to its promising performance in
various benchmarks and competitions. In general, an audio se-
quence is first converted to a 2D image using a time-frequency
analysis method, such as wavelet transform, short-time Fourier
transform and Log-Mel spectrogram, as the input of a deep
Convolutional Neural Network (CNN). Then various networks,
such as VGG [6] and ResNet [7], can be used to extract
deep features for ASC [8]–[10]. Ren et al. demonstrated that
the use of large receptive fields is more conducive for the
task [11]. Bai et al. improved the performance of CNN by
selecting relevant acoustic scene segments and using a two-
stage attention strategy [12].
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Most of the existing methods focus on ASC for a single
device. However, in practice, different audio sequences are
usually recorded by a variety of devices, leading to incon-
sistency across the captured signals. In this case, the perfor-
mance of ASC methods may degrade significantly. To address
this issue, one solution is to use ensemble modeling [13],
[14]. However, this strategy is expensive, which increases
the computational complexity significantly thus not suitable
for real-time ASC tasks. The use of ensemble methods is
not encouraged by many competitions such as DCASE2021.
Another popular solution is domain adaption. Suppose we
have two different datasets with different distributions (source
and target domains), domain adaption aims to transfer the
knowledge learned from the source domain to the target one,
hence improving the generalization capability of a trained
model across different data distributions.

The existing domain adaption methods can be divided into
three categories [15]. The first one is instance adaptation that
applies weighted re-sampling to the samples of the source
domain for the approximation of the distribution of the target
domain [16]. For example, a weighted local domain adaptive
method was used to establish a connection between the source
and target domains [17]. The second category is feature
adaptation [18], [19]. This method aims to project the data of
the source and target domains into a common feature space.
For example, we can use multiple features obtained from the
source domain to extract target domain features by establishing
saddle points to improve the classification accuracy [20].
The last one is model adaptation, which modifies the loss
function in the source domain to match the loss in the target
domain [21].

This letter addresses the domain adaptation problem for
ASC using feature alignment. Specifically, we achieve domain
adaptation by investigating different alignment positions and
different alignment loss functions for the proposed two-stream
network. Furthermore, the numbers of samples collected by
different devices may vary significantly, leading to a serious
data imbalance issue. To mitigate this problem, we propose
an alternate training strategy. The main contributions of the
proposed method include:

• We design a two-stream network that performs ASC using
different features in the source and target domains.

• We investigate different feature alignment loss functions
and alignment positions for the proposed network.

• We deal with the training data imbalance problem using
an alternate training strategy.

https://github.com/Jingqiao-Zhao/FAASC
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Fig. 1: The overall architecture of the proposed domain adaptation method using feature alignment.

II. THE PROPOSED METHOD

This section first introduces the architecture of the proposed
network. Then we present the proposed domain adaptation
approach, including training data partition, feature alignment
and alternative network training.

A. Network Architecture
The proposed network architecture is shown in Fig. 1. It

has two main streams for the source and target domains,
respectively. Note that the parameters of the two streams are
shared. For each stream, there are two sub-networks for acous-
tic scene classification. The reason is that different acoustic
features have different characteristics thus should be processed
by different network configurations [22]. Specifically, we use
three types of acoustic features. One branch uses a two-channel
input with the deltas and delta-deltas features as input, and the
other one uses the Log-Mel spectrogram as input.

Each branch in a stream has three convolutional blocks,
consisting of two convolutional layers followed by the batch
normalization and average pooling layers. After the convo-
lutional blocks, we apply average pooling to the frequency
dimension and max pooling to the time dimension of the
output feature map for dimensionality reduction, by which a
C ×H ×W tensor is reduced to C × 1× 1. Then we use the
log-softmax layer for nonlinear activation and the Negative
Log-Likelihood (NLL) loss for network training:

l (p, y) = −
∑K

k=1yk ∗ pk/K, (1)

where y = (y1, ..., yK) ∈ {0, 1}K is the class label and K
is the number of classes. The prediction p = (p1, ..., pK) ∈
[0, 1]

K is the predicted probability of sound classes.
Besides, several feature alignment loss functions are used

to perform domain adaptation across different devices, as
introduced in Section II-C.

B. Training Data Partition
To perform domain adaptive network training, the source

stream only processes the samples captured by one device,

and the target stream processes all the samples captured by
the other devices. Note that we intercept the same location
clips recorded by different devices to obtain the samples for
network training. Although there might be a slight difference
between the arrival times of an event at the microphones of
two devices, the recorded audios can be considered identical
in time.

It should be noted that, to perform feature alignment across
domains, a sample in the target stream should have the
corresponding sample in the source stream. To meet this
requirement, we split the training samples into paired and
unpaired ones. We denote a source domain training sample
as {Xs, Ys} and a target domain training sample as {Xt, Yt},
where X is the input data and Y is the class label.

The paired data includes the samples captured by more than
one device. The device with the maximal number of samples
is used as the inputs of the source stream and the others are
used as the inputs of the target stream. The unpaired samples
are captured by only one device. We only use the unpaired
samples for the training of the source stream network. We use
the paired samples for the training of the source and target
streams to achieve feature alignment across recording devices.

C. Feature Alignment

To perform feature alignment in domain adaptive network
training, the most widely used loss functions are distribution
losses, such as the Maximum Mean Discrepancy (MMD)
and Kullback-Leibler (KL) divergence [23]. However, the
differences among different acoustic recording devices may
not be represented by the variations in the distributions of
different domains. The differences can be represented in the
spectral energy value of the recording equipment. In this case,
the use of distribution loss functions may not perform well.
To mitigate this issue, this letter investigates different loss
functions, including MMD, KL, Mean Squared Error (MSE),
and L1 loss functions for feature alignment. To be specific,
we denote F ∈ RW×H×D ∼ P and F̃ ∈ RW×H×D ∼ Q as
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the feature maps obtained by the source and target streams,
respectively. The above loss functions are defined as below:

MMD(P,Q) = ||γ(F)− γ(F̃)||H, (2)

KL(P ||Q) =
∑M

i=1pilog(
pi

qi
), (3)

MSE(F , F̃) =
∑M

i=1(Fi − F̃i)
2/M, (4)

L1(F , F̃) =
∑M

i=1|Fi − F̃i|/M, (5)

where γ(·) is a function that maps the data to the reproducing
kernel Hilbert space H with Gaussian kernel as the default
setting, M =W ×H ×D is the total number of elements in
each feature map.

D. Alternative Network Training

To fully exploit the paired and unpaired samples, we pro-
pose a two-stage alternative training strategy. We use X and
X̃ for source and target domain inputs. In each training batch,
the first stage uses unpaired samples to train the two sub-
networks of both streams. Note that the network parameters
of the two streams are shared. One sub-network uses Log-Mel
spectrogram Xm and the other one uses deltas and delta-deltas
information Xd. The training loss for the source domain is:

Ls = l(φm(Xm), Y ) + l(φd(Xd), Y ), (6)

where l(·, ·) is the NLL loss and Y is the label. The functions
φm() and φd() are the convolutional layers of the mel and
delta branches.

In the second stage, the networks are trained using the target
domain classification loss and feature alignment loss jointly.
It is worth noting that in the process of feature alignment,
when the data of the source domain and the target domain
pass through the network. There is no dimensionality reduction
and subsequent operations. Still, the feature alignment is
performed after the convolution block. This part of the network
is represented by ζm() and ζd().

Lf = ε(ζm(Xs,m ), ζm(Xt,m )) + ε(ζd(Xs,d ), ζd(Xt,d )),
(7)

Lt = ξ(φm(Xt,m ), Y ) + ξ(φd(Xt,d ), Y ) + λ ∗ Lf , (8)

where Lf is the feature alignment loss as defined in the last
section between the source and target domain feature maps,
ε() is the feature alignment loss, λ is the hyper-parameter for
balancing the total loss function.

As the number of unpaired training samples is much larger
than that of the paired training samples, we propose an
alternate training strategy for effective network training. The
samples of each batch are selected by using the same number
of unpaired and paired samples without putting them back.
When all the paired samples are selected, there are still many
unpaired samples left. In this case, we restore the paired data
and select them with the left unpaired samples until all the
unpaired samples are selected. In each iteration, we calculate
Ls and Lt for back propagation separately.

TABLE I: Effects of data augmentation and feature alignment

System Data Augmentation Alignment loss Acc.(%)
Baseline NO / YES NO 54.1 / 56.2
Two-Stage NO / YES MMD 69.6 / 71.1
Two-Stage NO / YES KL 68.6 / 69.8
Two-Stage NO / YES L1 70.8 / 71.2
Two-Stage NO / YES MSE 70.2 / 72.2

III. EXPERIMENTAL RESULTS

A. Datasets and Experimental Settings

We evaluate the proposed method on the DCASE2019
Task1b [24] and DCASE2020 Task1a [25] benchmarks.
DCASE2020 contains 15480 samples captured by 9 devices:
14400× 3 samples of 3 real devices (A, B, C) and 1080× 6
samples of 6 simulated devices (S1-S6). Note that the samples
of S4-S6 do not appear in the training set. DCASE2019
contains 16560 segments, including 14400/1080/1080 samples
from the devices A/B/C, respectively.

The audios are re-sampled to 32kHz. Then the Log-Mel
spectrogram of each audio signal is extracted with the window
size of 2048 (25% hop size). The number of frequency bands
is assigned by 64. The Log-Mel features are normalized over
each frequency bin such that the training data values have zero
mean and are in the range of [-1, 1].

We implemented our method using PyTorch. We train our
network for 200 epochs on one RTX 3090 card with the
AdamW optimizer and the batch size of 64. The optimizer
has the learning rate of 0.001, betas of (0.9, 0.999), eps of
1e-08, and weight decay of 0.01. The learning rate decreases
for every 200 iterations exponentially with the rate of 0.1.

We applied data augmentation methods, including mix-
up [26] (alpha: 0.5), SpecAugment [27] (frequency mask: 10;
time mask: 10), and random crop (40 frames along the time
dimension) to the proposed method.

B. Effect of Domain Adaption

We use the model proposed in [28] as the baseline method
and test different feature alignment loss functions. Meanwhile,
the difference raised by not using domain adaption is also
analyzed. As shown in Table I, unlike other domain adaption
tasks, the MMD loss and KL loss achieve worse results.
Instead, the use of MSE and L1 loss functions performs
better. Obviously, by adding feature alignment loss for domain
adaptation, the features obtained from the high-dimensional
source domain can be effectively aligned with the target
domain, as shown in Fig. 2.

We select three categories from sound sources of a variety
of different devices, including large-sample data (Device A) as
source domain, small-sample data (Device B) as target domain
and the data that does not appear in the training set (Device
S4) as unseen domain from the DCASE 2020 dataset. The t-
SNE method is used for visualization. Fig. 4 shows the method
using feature alignment (second row) outperforms those with-
out feature alignment (first row). We can see that the method
can better distinguish the features from different categories by
performing domain adaptation with feature alignment.
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(a) Without feature alignment (b) With feature alignment

Fig. 2: Visualization of feature alignment. The original Log-
Mel spectrogram images and extracted features are very dif-
ferent without feature alignment. In contrast, the extracted
features become very similar by applying feature alignment.
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Fig. 3: The effect of feature alignment at different positions.
The ‘ensemble’ one performs alignment at all the 3 positions.

C. Ablation Study

We further conduct a series of ablation experiments to
study the influence on domain adaptation by using feature
alignment in different positions. Meanwhile, the effect of λ
is also investigated. As we know, CNNs can extract general
features of an image in shallow layers. In contrast, we can
obtain high-level abstract features from a deeper layer. We first
fixed the value of λ to 1. Fig. 3 indicates the effectiveness and
robustness of the network as the degree of feature alignment
deepens in different layers. With this model, we can achieve
the best performance by using the three aligned convolution
modules after feature extraction.

The parameter, λ, represents the ratio of the classification
loss of the target domain to the feature alignment loss in the
second round of training. In the ablation experiment, we use
the MSE loss to perform feature alignment using the ensemble
strategy that integrates the feature alignment results obtained
from the previous convolution blocks. As shown in Fig. 3,
the effectiveness of using feature alignment is better than that
without feature alignment. The highest accuracy, 72.2%, is
obtained when we set λ to 1.
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Fig. 4: The t-SNE plots of the models trained on DCASE2020
task 1-A.

TABLE II: A comparison with the SOTA methods.
DCASE 2020 DCASE 2019

Method Ensemble 2020 Acc.(%) Method Ensemble Acc.(%)
Baseline w/o 51.6 Baseline w/o 41.4
CNNensem 3 68.8 hitsplab-2 w/o 41.4
VilEnsemb3 4 70.3 IITKGP-MFDWC19 w/o 52.3
Cp-res w/o 71.8 cvssp-cnn9 w/o 52.7
UOS-totens 3 71.9 Rui-task1b w/o 54.8
B3-all-mix 16 71.9 Randomforest-16 16 62.2
Ours w/o 72.2 UniSA-1b3 w/o 64.2
Gao-UNISA 16 72.5 CPR-Ensemble 8 65.1
Liu-SHNU 3 73.1 Ours w/o 66.5
Suh-ETRI 3 74.2 Kent 2 72.9

D. A Comparison with SOTA Methods

We compare the proposed method with the recently pub-
lished state-of-the-art approaches on the DCASE2019 and
2020 datasets in Table II. In the table, many approaches use
ensemble methods to improve their performance, resulting in
high computational complexity. However, this strategy is not
encouraged by DCASE since 2021. In contrast, the proposed
method does not use any additional data or ensemble methods.
It has much fewer model parameters as compared with the
ensemble methods in the table. According to the table, the
proposed method beats all the SOTA methods that do not use
ensemble modeling. As compared with the ensemble methods,
our method still achieves competitive (or even better) results.

IV. CONCLUSION

In this letter, we proposed a novel method to solve the
device mismatch problem in acoustic scene classification. We
used a two-stream CNN to extract the features from the
Log-Mel spectrogram and deltas dimensions. Different feature
alignment losses were investigated for feature alignment. We
also addressed the data imbalance problem via an alternative
training strategy. As evaluated on the DCASE2019 and 2020
benchmarks, the proposed method achieves promising results
as compared with the state of the art approaches.
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